首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Co-segregation of male fertility with DNA markers selected by targeted mapping approaches as being potentially linked to the Rfp1 restorer gene for the pol cytoplasmic male sterility (CMS) was analyzed using two canola (Brassica napus L.) backcross populations. Eleven DNA markers (10 RFLP markers and one RAPD marker) directly linked to the Rfp1 locus were identified. The linkage group containing the Rfp1 locus was found to correspond to B. napus linkage group 18 of Landry et al. (1991). A similar pattern of co-segregation between DNA markers and male fertility was observed in a backcross population segregating for the pol restorer gene Rfp2 from line ‘UM2383’; one RFLP marker, cRF1b, showed perfect linkage with both Rfp1 and Rfp2 and detected identical polymorphic fragments in both the Rfp1 and Rfp2 restorer lines. Our findings indicate that restoration of pol CMS is controlled by a single nuclear genetic locus on linkage group 18 and that Rfp1 and Rfp2 are likely allelic. Received: 2 October 1996 / Accepted: 20 December 1996  相似文献   

2.
An allo-cytoplasmic male sterile line, which was developed through somatic hybridization between Brassica napus and Sinapis arvensis (thus designated as Nsa CMS line), possesses high potential for hybrid production of rapeseed. In order to select for restorer lines, fertile plants derived from the same somatic hybridization combination were self-pollinated and testcrossed with the parental Nsa CMS line for six generations. A novel disomic alien addition line, B. napus–S. arvensis, has been successfully developed. GISH analysis showed that it contains one pair of chromosomes from S. arvensis and 19 pairs from B. napus, and retains stable and regular mitotic and meiotic processes. The addition line displays very strong restoration ability to Nsa CMS line, high resistance to Sclerotinia sclerotiorum and a low incidence of pod shattering. Because the addition line shares these very important agricultural characters, it is a valuable restorer to Nsa CMS line, and is named NR1 here (Nsa restorer no. 1).  相似文献   

3.
4.
Self-incompatibility (SI) promotes outbreeding in flowering plants, and in Brassica SI is genetically controlled by the S locus. Self-incompatible Brassica and self-fertile Arabidopsis belong to the same crucifer family. In addition, a comparative analysis reveals a high degree of microsynteny between the B. campestris S locus and its homologous region in Arabidopsis– with the notable exception that the Brassica SI genes, SLG and SRK, are missing. Brassica ARC1 encodes a component of the SRK signal transduction pathway leading to self-pollen rejection, and no closely related ARC1 homolog has been identified in Arabidopsis. The purpose of the research reported here was to introduce Brassica SI components into Arabidopsis in an attempt to compensate for the missing genes and to investigate whether the SI phenotype can be transferred. Inserts of approximately 40 kb from the fosmid clones F20 and F22, which span the B. napus W1 SLG-SRK region, were cloned into the plant transformation vector pBIBAC2. Transgenic plants were generated that expressed the Brassica SI genes in the flower buds. In addition, the endogenous, SLG-like, gene AtS1 was not co-suppressed by the Brassica SLG transgene. No SI phenotype was observed among the T1 BIBAC2-F20 and BIBAC2-F22 transgenic plants. When the ARC1 gene was transformed into BIBAC2-F20 or BIBAC2-F22 plants, the resulting BIBAC2-F20-ARC1 and BIBAC2-F22-ARC1 plants still set seeds normally, and no rejection response was observed when self-incompatible B. napus W1 pollen was placed on BIBAC2-F20-ARC1 or BIBAC2-F22-ARC1 Arabidopsis stigmas. Taken together, our results suggest that complementing Arabidopsis genome with Brassica SLG, SRK and ARC1 genes is unlikely to be sufficient to transfer the SI phenotype. Received: 11 November 1999 / Accepted: 14 February 2000  相似文献   

5.
We have developed a cytoplasmic male sterile (CMS) line of Brassica juncea through somatic hybridization with Moricandia arvensis and introgressed the fertility restorer gene into B. juncea. This fertility restorer locus is unique in that it is capable of restoring male fertility to two other alloplasmic CMS systems of B. juncea. As a first step toward cloning of this restorer gene we attempted molecular tagging of the Rf locus using the amplified fragment length polymorphism (AFLP) technique. A BC1F1 population segregating for male sterility/fertility was used for tagging using the bulk segregant analysis method. Out of 64 primer combinations tested in the bulks, 5 combinations gave polymorphic amplification patterns. Further testing of these primers in individual plants showed four amplicons associated with the male fertility trait. Polymorphic amplicons were cloned and used for designing SCAR primers. One of the SCAR primers generated amplicons mostly in the fertile plants. Linkage analysis using MAPMAKER showed two AFLP and one SCAR markers linked to the male fertility gene with a map distance ranging from 0.6 to 2.9 cM. All the markers are located on one side of the Rf locus.  相似文献   

6.
A novel cytoplasmic male sterility (CMS) was identified in Brassica juncea, named as hau CMS (00-6-102A). Subsequently, the male sterility was transferred to B. napus by interspecific hybridization. The hau CMS has stable male sterility. Flowers on the A line are absolutely male sterile, and seeds harvested from the line following pollinations with the maintainer gave rise to 100% sterile progeny. The anthers in CMS plants are replaced by thickened petal-like structures and pollen grains were not detected. In contrast, in other CMS systems viz. pol, nap, tour, and ogu, anthers are formed but do not produce viable pollen. The sterility of hau CMS initiates at the stage of stamen primordium polarization, which is much earlier compared with the other four CMS systems. We have successfully transferred hau CMS from B. juncea to B. napus. Restorer lines for pol, ogu, nap, and tour CMS systems were found to be ineffective to restore fertility in hau CMS. Sixteen out of 40 combinations of mitochondrial probe/enzyme used for RFLP analysis distinguished the hau CMS system from the other four systems. Among these sixteen combinations, five ones alone could distinguish the five CMS systems from each other. The evidence from genetic, morphological, cytological and molecular studies confirmed that the hau CMS system is a novel CMS system. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
A collaborative Brassica rapa genome sequencing project is currently in progress to aid the identification of agronomically important traits in Brassica species. As an initial stage, the ends of over 110 000 bacterial artificial chromosome clones were sequenced and mined for simple sequence repeats (SSRs). We present the characterization of 40 of these SSRs and their application in Brassica napus. The markers were screened against six Brassica species and Arabidopsis, and demonstrated reliable amplification, genome specificity, cross‐amplification and significant polymorphism. These SSRs will be useful for genetic analysis of Brassica germplasm.  相似文献   

8.
The present study was designed (1) to observe the characterization of 5-bromo-2′-dexoyuridine (BrdU) incorporation into cultured Brassica cotyledon protoplasts and (2) to investigate the genetic differences in the levels of nuclear DNA synthesis (expressed by the percentage of nuclei labelled with BrdU) in cotyledon protoplast cultures from 12 cultivars of three Brassica species (Brassica napus, B. campestris and B. oleracea) at an early stage using immunocytochemistry. Nuclei labelled with BrdU were different from those showing only staining with 4′-6′-diamidino-2-phenylindole (DAPI) under fluorescence and light microscopy. Two to 5% of nuclei were labelled with BrdU after 1 h of culture, indicating that nuclear DNA synthesis occurred at a very early stage of culture. The percentage of nuclei labelled with BrdU increased with time over the length of the culture period. The mean percentage of nuclei labelled with BrdU in the 12 cultivars was about 25% at 24 h after culture initiation. The curve of the increase in percentage of nuclei labelled with BrdU exhibited an S-shape from 1 to 24 h. However, cultivar differences in percentages of nuclei labelled with BrdU were very significant over the time course of 1-24 h from initial culture, with cultivars Eureka (B. napus), Global (B. napus), Narc 82 (B. napus), Bunyip (B. campestris) and Sugar Loaf (B. oleracea) having a consistently higher percentage of nuclei labelled with BrdU than the other cultivars. Species differences were also significant, with cultivars of B. napus showing much higher percentages than the tested cultivars of B. campestris and B. oleracea. The results indicate that the differences in nuclear DNA synthesis in Brassica cotyledon protoplast cultures were most likely at both intra- and interspecies levels.  相似文献   

9.
Methylthioalkylmalate (MAM) synthases and their associated genes that have been extensively investigated in Arabidopsis control the side-chain elongation of methionine during the synthesis of aliphatic glucosinolates. A Brassica homolog of the Arabidopsis MAM genes was used in this study to analyze the role of MAM genes in B. napus through RNA interference (RNAi). The silencing of the MAM gene family in B. napus canola and B. napus rapeseed resulted in the reduction of aliphatic glucosinolates and total glucosinolate content. The results indicated that RNAi has potential for reducing glucosinolate content and improving meal quality in B. napus canola and rapeseed cultivars. Interestingly, MAM gene silencing in B. napus significantly induced the production of 2-propenyl glucosinolate, a 3-carbon side-chain glucosinolate commonly found in B. juncea mustard. Most transgenic plants displayed induction of 2-propenyl glucosinolate; however, the absolute content of this glucosinolate in transgenic B. napus canola was relatively low (less than 1.00 μmol g−1 seed). In the high glucosinolate content progenies derived from the crosses of B. napus rapeseed and transgenic B. napus canola, MAM gene silencing strongly induced the production of 2-propenyl glucosinolate to high levels (up to 4.45 μmol g−1 seed).  相似文献   

10.
Broadening the avenue of intersubgenomic heterosis in oilseed Brassica   总被引:1,自引:0,他引:1  
Accumulated evidence has shown that each of the three basic Brassica genomes (A, B and C) has undergone profound changes in different species, and has led to the concept of the “subgenome”. Significant intersubgenomic heterosis was observed in hybrids between traditional Brassica napus and first generation lines of new type B. napus. The latter were produced by the partial introgression of subgenomic components from different species into B. napus. To increase the proportion of exotic subgenomic components and thus achieve stronger heterosis, lines of first generation new type B. napus were intercrossed with each other, and subjected to intensive marker-assisted selection to develop the second generation of new type B. napus. The second generation showed better agronomic traits and a higher proportion of introgression of subgenomic components than did the first generation. Compared with the commercial hybrid and the hybrids produced with the first generation new type B. napus, the novel hybrids showed stronger heterosis for seed yield during the 2 years of field trials. The extent of heterosis showed a significant positive correlation with the introgressed subgenomic components in the parental new type B. napus. To increase the content of the exotic subgenomic components further and to allow sustainable breeding of novel lines of new type B. napus, we initiated the development of a gene pool for new type B. napus that contained a substantial amount of genetic variation in the Ar and Cc genome. We discuss new approaches to broaden the avenue of intersubgenomic heterosis in oilseed Brassica.  相似文献   

11.
Interspecific hybrids from the crosses betweenBrassica campestris, B. carinata, B. juncea andB. napus were obtained throughin vitro ovary and ovule culture. F1 hybrids were studied morphologically and flow cytometry was used to estimate 2C nuclear DNA content both in parentalBrassica species and their hybrids. It was found that in comparison with the A genome, the B and the C genomes ofBrassica contained 26.9 % and 43.9 % more DNA, respectively. This finding may be used to distinguish interspecific hybrids containing various genome combinations. It was concluded that flow cytometric analysis of nuclear DNA content might be useful tool inBrassica breeding.  相似文献   

12.
Summary Broccoli (Brassica oleracea L. italica) hypocotyl protoplasts were fused with mesophyll protoplasts of two B. napus lines, one carrying the Ogura (ogu) cms cytoplasm, and the other carrying a hybrid cytoplasm consisting of ogu mitochondria combined with triazine-tolerance-conferring chloroplasts from ctr cytoplasm. Two male-sterile somatic hybrids were recovered from the fusion of broccoli protoplasts with those of ogu/ctr cybrid B. napus. The ogu mtDNAs and ctr cpDNAs were not altered in these hybrids. Four male-sterile plants were recovered from the somatic hybridization of broccoli with ogu cms B. napus. Three of these possessed mitochondrial genomes that appeared to have resulted from recombination between the ogu and normal B. oleracea (ole) mtDNAs, while the fourth possessed an unrearranged ogu mtDNA. All four of these plants had B. oleracea cpDNA, and none displayed the seedling chlorosis associated with ogu chloroplasts. Most of the plants recovered from these fusions had the chromosome number expected of B. oleracea + B. napus hybrids (2n = 56). The novel cytoplasms may prove to be useful for the molecular analysis of Brassica cms and for the production of hybrid Brassica.  相似文献   

13.
Summary Restriction fragment length polymorphisms (RFLPs) of nuclear DNAs have been used to explore the origin and evolution of the six cultivated Brassica species. Extensive RFLP variation was found at the species, subspecies and variety levels. Based on RFLP data from Brassica and related genera, a detailed phylogenetic tree was generated using the PAUP microcomputer program, which permits a quantitative analysis of the interrelationships among Brassica species. The results suggested that 1) B. nigra originated from one evolutionary pathway with Sinapis arvensis or a close relative as the likely progenitor, whereas B. campestris and B. oleracea came from another pathway with a possible common ancestor in wild B. oleracea or a closely related nine chromosome species; 2) the amphidiploid species B. napus and B. juncea have evolved through different combinations of the diploid morphotypes and thus polyphyletic origins may be a common mechanism for the natural occurrence of amphidiploids in Brassica; 3) the cytoplasm has played an important role in the nuclear genome evolution of amphidiploid species when the parental diploid species contain highly differentiated cytoplasms. A scheme for the origins of diploid and amphidiploid species is depicted based on evidence gathered from nuclear RFLP analysis, cpDNA RFLP analysis, cytogenetic studies and classical taxonomy.  相似文献   

14.

Background  

The amphiploid species Brassica napus (oilseed rape, Canola) is a globally important oil crop yielding food, biofuels and industrial compounds such as lubricants and surfactants. Identification of the likely ancestors of each of the two genomes (designated A and C) found in B. napus would facilitate incorporation of novel alleles from the wider Brassica genepool in oilseed rape crop genetic improvement programmes. Knowledge of the closest extant relatives of the genotypes involved in the initial formation of B. napus would also allow further investigation of the genetic factors required for the formation of a stable amphiploid and permit the more efficient creation of fully fertile re-synthesised B. napus. We have used a combination of chloroplast and nuclear genetic markers to investigate the closest extant relatives of the original maternal progenitors of B. napus. This was based on a comprehensive sampling of the relevant genepools, including 83 accessions of A genome B. rapa L. (both wild and cultivated types), 94 accessions of B. napus and 181 accessions of C genome wild and cultivated B. oleracea L. and related species.  相似文献   

15.
Summary Genetic and molecular analysis of the self-incompatibility locus (S-locus) of the crucifer Brassica has led to the characterization of a multigene family involved in pollen-stigma interactions. While the crucifer Arabidopsis thaliana does not have a self-incompatibility system, S-related sequences were detected in this species by cross-hybridization with Brassica DNA probes. In this paper, we show that an A. thaliana S-related sequence, designated AtS1, is expressed specifically in flower buds. Sequence analysis suggests that AtS1 encodes a secreted glycoprotein that is most similar to the Brassica S-locus related protein SLR1. As has been proposed for SLR1, this gene may be involved in determining some fundamental aspect of pollen-stigma interactions during pollination. The molecular and genetic advantages of the Arabidopsis system will provide many avenues for testing this hypothesis.  相似文献   

16.
The cytoplasmic male sterility (CMS) of wild-abortive (WA) cytoplasm has been widely used for breeding hybrid rice. Two restorer genes for the CMS have been found by traditional genetic analysis. To tag the restorer genes we used a set of near-isogenic lines (NILs) of Zhenshan 97 carrying different genotypes for fertility restoration from IR24, to perform RAPD analysis. From the survey of 720 random primers, six RAPD markers were identified to be associated with Rf-3. Three of these OPK05-800, OPU10-1100 and OPW01-350, were mapped on chromosome 1. Two populations from the crosses between Zhenshan 97 A and a near-isogenic restorer line ZSR21 and between Zhenshan 97 A and IR24 were used for mapping Rf-3. The three RAPD markers and three RFLP markers, RG532, RG140 and RG458, were found to be closely linked to Rf-3 in the two populations. The same location of Rf-3 was also found in a population from the cross of IR58025 A//IR36/IR58025 B. At the RG532 locus, different alleles were found between two CMS lines, Zhenshan 97 A and IR58025 A, and between two restorer lines, IR24 and IR36. The use of these molecular markers closely linked to Rf-3 in facilitating the development of hybrid rice is discussed. Received: 3 January 1996 / Accepted: 17 May 1996  相似文献   

17.
The Brassicas are an important group of crops in India yielding edible oils and many vegetables. For improving cultivated Brassicas, the wild relatives are of considerable value. The Brassica group of seed oil and vegetables comprises six cultivated species, out of which three are diploids and three are digenomic tetraploids. Brassica juncea is the major seed oil crop in India which can be improved for several traits by incorporating genes from its distant relatives. The early work in India relating to genome manipulation consisted of synthesis of B. juncea by crossing B. campestris with B. nigra, experimental resynthesis of Brassica species and non-homologous pairing and genetic exchange at the interspecific level. The alloploid species B. napus and B. carinata have not been successful in India due to agrometereological limitations. However, synthetic forms of B. napus have been produced which have a desirable maturity period with good yield potential. Also, through non-homologous pairing, pod shatter resistant B. napus has been obtained, B. napus ordinarily suffers from pod shattering. Similarly, synthetic forms of B. carinata have been derived from reciprocal crosses between morphotypes of B. oleracea and B. nigra and also through protoplast fusion of B. nigra with B. oleracea. Molecular analysis has revealed that one of the somatic hybrids had a novel cytoplasmic combination which carried B. nigra mitochondrial and B. oleracea chloroplast genomes. A range of wild and weedy species related to crop Brassicas possess extensive genetic variability. Work for utilizing this variability included hybridization between wild and crop species, analysis of chromosome pairing and induction of alloploidy. Among Brassicas of interest to India, protoplast culture and regeneration has been successful in the case of B. oleracea, B. juncea, B. nigra and B. carinata (cultivated species) and Eruca sativa and Diplotaxis muralis (related wild species). Polyethylene glycol mediated protoplast fusion has been the most commonly used method in India for producing somatic hybrids involving Brassicas. The eight somatic hybrids produced and studied showed that in the majority of cases the fusions led to symmetric hybrids combining the complete genomes of the donor species. For developing suitable male sterile lines, B. juncea, B. campestris and B. napus nuclei have been combined with the cytoplasm of six wild species and stable male steriles have been developed. Protoplast fusion methodology has been used extensively for improving these CMS by manipulating cytoplasmic organelles, including production of new combinations of cp and mt.  相似文献   

18.
Self-incompatibility (SI) in Brassica is controlled by the S locus. The specificity of the SI response is controlled on the stigma side by the S receptor kinase (SRK) and on the pollen side by the SCR (S locus cysteine-rich) protein, but other proteins might be involved in the process of self-pollen rejection. In this study, we show that the AtPP gene linked to the S locus of Brassica napus is expressed in the stigmas of SI lines. AtPP has a developmental pattern of expression similar to the SRK gene. The AtPP protein has similarity with members of an Arabidopsis protein family and with an S-adenosyl-L-methionine:salicylic acid carboxyl methyltransferase, which is a plant defense-related protein of Clarkia breweri representing a new class of methyltransferases. A member of the AtPP gene family is present in the homeolog region of the S locus in Arabidopsis. Therefore, this gene might have co-evolved with S genes from an ancestral S locus of Brassicaceae. Possible functions of the AtPP protein in the self-recognition process are discussed. Received: 9 October 2000 / Revision accepted: 23 April 2001  相似文献   

19.

Background and Aims

Spontaneous male sterility is an advantageous trait for both constructing efficient pollination control systems and for understanding the developmental process of the male reproductive unit in many crops. A triallelic genetic male-sterile locus (BnMs5) has been identified in Brassica napus; however, its complicated genome structure has greatly hampered the isolation of this locus. The aim of this study was to physically map BnMs5 through an integrated map-based cloning strategy and analyse the local chromosomal evolution around BnMs5.

Methods

A large F2 population was used to integrate the existing genetic maps around BnMs5. A map-based cloning strategy in combination with comparative mapping among B. napus, Arabidopsis, Brassica rapa and Brassica oleracea was employed to facilitate the identification of a target bacterial artificial chromosome (BAC) clone covering the BnMs5 locus. The genomic sequences from the Brassica species were analysed to reveal the regional chromosomal evolution around BnMs5.

Key Results

BnMs5 was finally delimited to a 0·3-cM genetic fragment from an integrated local genetic map, and was anchored on the B. napus A8 chromosome. Screening of a B. napus BAC clone library and identification of the positive clones validated that JBnB034L06 was the target BAC clone. The closest flanking markers restrict BnMs5 to a 21-kb region on JBnB034L06 containing six predicted functional genes. Good collinearity relationship around BnMs5 between several Brassica species was observed, while violent chromosomal evolutionary events including insertions/deletions, duplications and single nucleotide mutations were also found to have extensively occurred during their divergence.

Conclusions

This work represents major progress towards the molecular cloning of BnMs5, as well as presenting a powerful, integrative method to mapping loci in plants with complex genomic architecture, such as the amphidiploid B. napus.  相似文献   

20.
Alloplasmic lines of cultivated Brassica species with B. oxyrrhina cytoplasm are male-sterile and suffer from severe chlorosis. We developed male-sterile lines corrected for chlorosis by fusing protoplasts of CMS B. juncea (AABB) with ’oxy’ cytoplasm and normal B. oleracea (CC). A large number of male-sterile AABBCC somatic hybrids with desirable organelle combinations, i.e. chloroplasts of B. oleracea and mitochondria with recombinant genomes, were recovered. While no recombination was observed in the chloroplast genome, the mitochondrial genome showed extensive recombination that resulted in the appearance of totally novel banding patterns in some of the hybrids. Hybrids with a parental-type mitochondrial genome as well as recombinant patterns close to either of the parental types were also obtained. Using AABBCC somatic hybrids as bridging material, we transferred the desirable organelle combinations to B. juncea (AABB), B. napus (AACC), and B. carinata (BBCC). Many of these lines are now at advanced stages of backcrossing and show stable inheritance of the CMS character and do not suffer from chlorosis. Received: 9 August 1999 / Accepted: 14 September 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号