首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Neisseria meningitidis is a major cause of meningitis and sepsis. Despite nearly 25 years of work, there is no promising vaccine candidate for prevention of disease caused by meningococcal B strains. This review summarizes newer approaches for eliciting protective meningococcal B immune responses, including the use of molecular mimetics of group B polysaccharide and conserved membrane proteins as immunogens. The capsular polysaccharide of this organism is conserved and serum antibody to this capsule confers protection against disease. However, the immunogenicity of meningococcal B polysaccharide-based vaccines is poor. Further, a portion of the antibody elicited has autoantibody activity. Recently, our laboratory produced a panel of murine monoclonal antibodies (Mabs) that react specifically with capsular polysaccharide epitopes on meningococcal B that are distinct from host polysialic acid. These Mabs elicit complement-mediated bactericidal activity and confer passive protection in animal models. The anti-capsular Mabs were used to identify molecular mimetics from phage display peptide libraries. The resulting peptides were antigenic mimetics as defined by binding to the Mabs used to select them but, to date, are poor immunogenic mimetics in failing to elicit anti-capsular antibodies.  相似文献   

2.
Using 6mer and 12mer phage peptide libraries three unique phage clones were identified which specifically bind to a monoclonal anti‐FITC antibody, B13‐DE1. The two 6mer and one 12mer peptide insert sequences are clearly related to each other and contain a high proportion of hydrophobic amino acids. The peptides are bound by the antibody combining site of B13‐DE1 probably in a similar manner to FITC and represent therefore true peptidic mimics of the fluorescein hapten. No reactivity of the peptides could be demonstrated with another monoclonal anti‐fluorescein antibody or with polyclonal anti‐fluorescein antibodies. Immunization of mice with the peptides resulted in the production of antibodies cross‐reacting with all peptides but not with fluorescein. The results show that phage peptide libraries can be used to isolate mimotope peptides which can mimic low molecular weight structures seen by a specific antibody and probably other recognition molecules. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
The ability to induce anti-HIV-1 antibodies that can neutralize a broad spectrum of viral isolates from different subtypes seems to be a key requirement for development of an effective HIV-1 vaccine. The epitopes recognized by the most potent broadly neutralizing antibodies that have been characterized are largely discontinuous. Mimetics of such conformational epitopes could be potentially used as components of a synthetic immunogen that can elicit neutralizing antibodies. Here we used phage display technology to identify peptide motifs that mimic the epitope recognized by monoclonal antibody VRC01, which is able to neutralize up to 91% of circulating primary isolates. Three rounds of biopanning were performed against 2 different phage peptide libraries for this purpose. The binding specificity of selected phage clones to monoclonal antibody VRC01 was estimated using dot blot analysis. The putative peptide mimics exposed on the surface of selected phages were analyzed for conformational and linear homology to the surface of HIV-1 gp120 fragment using computational analysis. Corresponding peptides were synthesized and checked for their ability to interfere with neutralization activity of VRC01 in a competitive inhibition assay. One of the most common peptides selected from 12-mer phage library was found to partially mimic a CD4-binding loop fragment, whereas none of the circular C7C-mer peptides was able to mimic any HIV-1 domains. However, peptides identified from both the 12-mer and C7C-mer peptide libraries showed rescue of HIV-1 infectivity in the competitive inhibition assay. The identification of epitope mimics may lead to novel immunogens capable of inducing broadly reactive neutralizing antibodies.  相似文献   

4.
As an alternative approach toward the development of a cholera vaccine, the potential of peptide mimics of Vibrio cholerae lipopolysaccharide (LPS) to elicit cross-reactive immune responses against LPS was investigated. Two closely related protective monoclonal antibodies, S-20-4 and A-20-6, which are specific for Ogawa O-antigen (O-specific polysaccharide; O-SP) of V. cholerae O1, were used as the target antibodies (Abs) to pan phage display libraries under different elution conditions. Six phage clones identified from S-20-4 panning showed significant binding to both S-20-4 and A-20-6. Thus, it is likely that these phage-displayed peptides mimic an important conformational epitope of Ogawa antigens and are not simply functionally recognized by S-20-4. Each of the six phage clones that could bind to both monoclonal antibodies also competed with LPS for binding to S-20-4, suggesting that the peptides bind close to the paratope of the Ab. In order to predict how these peptide mimics interact with S-20-4 compared with its carbohydrate counterpart, one peptide mimic, 4P-8, which is one of the highest affinity binders and shares motifs with several other peptide mimics, was selected for further studies using computer modeling methods and site-directed mutagenesis. These studies suggest that 4P-8 is recognized as a hairpin structure that mimics some O-SP interactions with S-20-4 and also makes unique ligand interactions with S-20-4. In addition, 4P-8-KLH was able to elicit anti-LPS Abs in mice, but the immune response was not vibriocidal or protective. However, boosting with 4P-8-KLH after immunizing with LPS prolonged the LPS-reactive IgG and IgM Ab responses as well as vibriocidal titers and provided a much greater degree of protection than priming with LPS alone.  相似文献   

5.
Prostate-specific antigen (PSA) is a serine protease with highly prostate-specific expression. Measurement of PSA in serum is widely used for diagnosis and monitoring of prostate cancer. PSA dissolves the seminal gel forming after ejaculation. It has been suggested to mediate invasion and metastasis of prostate cancer but also to exert antiangiogenic activity. We have identified peptides specific for PSA by screening cyclic phage display peptide libraries. PSA-binding peptides were isolated from four different libraries and produced as a fusion protein with glutathione S-transferase (GST). The phage and fusion proteins were shown to bind to PSA specifically as indicated by lack of binding to other serine proteinases. A peptide with four cysteines showed the highest affinity for PSA. Zn2+, an inhibitor of PSA activity, increased the affinity of the peptides to PSA. The binding specificity was characterized by cross-inhibition using monoclonal anti-PSA antibodies of known epitope specificities. The peptides bound to the same region as mAbs specific for free PSA indicating that they bind close to the active site of the enzyme. The peptides enhanced the enzyme activity of PSA against a chromogenic substrate. These results show that peptides binding to PSA and modulating its enzyme activity can be developed by phage display technique. The peptides have the potential to be used for identification of PSA variants and for imaging and targeting of prostatic tumors.  相似文献   

6.
Random peptide libraries displayed on phage are used as a source of peptides for epitope mapping, for the identification of critical amino acids responsible for protein—protein interactions and as leads for the discovery of new therapeutics. Efficient and simple procedures have been devised to select peptides binding to purified proteins, to monoclonal and polyclonal antibodies and to cell surfaces in vivo and in vitro.  相似文献   

7.
Phage Peptide Libraries   总被引:1,自引:0,他引:1  
Filamentous phage particles have been central in the construction of libraries displaying vast numbers of random peptides. These random peptides can be antigenically presented as fusions to coat proteins III and VIII of the phage. The isolation of ligate-reactive phage from an immense background of nonspecific phage is achieved by the biopanning process. Enrichment of reactive phage relative to unreactive phage occurs with alternate rounds of affinity selection to the desired molecular target and amplification of the specifically bound phage. This allows the isolation of rare binding species contained in the phage peptide libraries. Each phage particle contains the information in its genome pertaining to the type of random peptide insert displayed. Hence, the identification of binding motifs displayed on ligate-reactive phage is revealed by sequencing the relevant insert site in the phage genome. Phage peptide libraries have been used to isolate ligands to an array of protein ligates. The libraries have proved particularly effective in defining the binding sites of monoclonal antibodies and to some extent polyclonal sera. The analysis of the peptide insert sequences of a number of different clones of antibody binding phage can reveal a great deal about the nature and restriction of the amino acid residues critical for the antibody–antigen interaction.  相似文献   

8.
The method for searching for ligands exerting an adjuvant effect is described. The method involves isolation of polysomes using an immobilized peptide mimetic of N-acetylglucosaminyl-N-acetylmuramyl dipeptide (GMDP) — RN-peptide. After the affinity chromatography and washing, RN-peptide complexes with the target sequences were dissociated with guanidine hydrochloride. The obtained mRNA was used for cDNA synthesis and subsequent cloning in an expression vector. Further studies showed the effectiveness of this method. Clones interacting with the peptide were selected using biotinylated RN-peptide. It was found that all clones encode a sequence identical to the protein YB-1. Recombinant antibodies against protein YB-1 were selected from a phage display human scFv library. Using these antibodies, we determined the binding constant of RN-peptide to protein YB-1. Competitive analysis showed that RN-peptide and GMDP compete for the same portion of YB-1 at molar ratio 1: 12.  相似文献   

9.
We investigated the murine antibody response to recombinant p17 (rp17) of human immunodeficiency virus type 1 (HIV-1) and the human antibody response directed to p17 in HIV-1 infection. Three large peptides covering residues 12-29, 53-87 and 87-115 of p17 were synthesized. The cysteine residues 57 and 87 of peptide 53-87 were reoxidized to form a disulfide bridge. Eighteen out of 19 murine monoclonal anti-rp17 antibodies had relatively high affinities (KA = 1.9 × 105?1.4 × 108 M?1) with one of the 3 p17 peptides in the liquid phase. Each monoclonal antibody reacted only with one particular peptide and had no reactivity with the other 2 p17 peptides. All the monoclonal antibodies reacted with rp17 in the liquid phase with a reasonable degree of affinity (KA = 2.0 × 105?1.8 × 107 M?1). Four HIV-1 carrier sera, which were positive in ELISA using rp17 as the antigen, reacted positively in an ELISA using 3 p17 peptides which were used to titrate murine monoclonal antibodies. Murine monoclonal antibodies having specificity for the 3 p17 peptides stained live HIV-1-infected cells by means of indirect membrane immunofluorescence, irrespective of their specificity. This suggests that the various portions of p17 (at least 3 regions of p17) were exposed on the surface of live infected cells, probably as short polypeptide chains.  相似文献   

10.
Clostridium botulinum neurotoxin type A (BTx-A) is known to inhibit the release of acetylcholine at the neuromuscular junctions and synapses and to cause neuroparalysis and death. In this study, we have identified two monoclonal antibodies, BT57-1 and BT150-3, which protect ICR mice against lethal doses of BTx-A challenge. The neutralizing activities for BT57-1 and BT150-3 were 103 and 104 times the 50% lethal dose, respectively. Using immunoblotting analysis, BT57-1 was recognized as a light chain and BT150-3 was recognized as a heavy chain of BTx-A. Also, applying the phage display method, we investigated the antibodies' neutralizing B-cell epitopes. These immunopositive phage clones displayed consensus motifs, Asp-Pro-Leu for BT57-1 and Cys-X-Asp-Cys for BT150. The synthetic peptide P4M (KGTFDPLQEPRT) corresponded to the phage-displayed peptide selected by BT57-1 and was able to bind the antibodies specifically. This peptide was also shown by competitive inhibition assay to be able to inhibit phage clone binding to BT57-1. Aspartic acid (D5) in P4M was crucial to the binding of P4M to BT57-1, since its binding activity dramatically decreased when it was changed to lysine (K5). Finally, immunizing mice with the selected phage clones elicited a specific humoral response against BTx-A. These results suggest that phage-displayed random-peptide libraries are useful in identifying the neutralizing epitopes of monoclonal antibodies. In the future, the identification of the neutralizing epitopes of BTx-A may provide important information for the identification of the BTx-A receptor and the design of a BTx-A vaccine.  相似文献   

11.
The aim of obtaining novel vaccine candidates against malaria and other transmissible diseases can be partly based on selecting non-polymorphic peptides from relevant antigens of pathogens, which have to be then precisely modified for inducing a protective immunity against the disease. Bearing in mind the high degree of the MSA-221–40 peptide primary structure’s genetic conservation among malaria species, and its crucial role in the high RBC binding ability of Plasmodium falciparum (the main agent causing malaria), structurally defined probes based on non-natural peptide-bond isosteres were thus designed. Thus, two peptide mimetics were obtained (so-called reduced amide pseudopeptides), in which naturally made amide bonds of the 30FIN32-binding motif of MSA-2 were replaced with ψ–[CH2–NH] methylene amide isostere bonds, one between the F–I and the second between I–N amino acid pairs, respectively, coded as ψ-128 ψ-130. These peptide mimetics were used to produce poly- and monoclonal antibodies in Aotus monkeys and BALB/c mice. Parent reactive mice-derived IgM isotype cell clones were induced to Ig isotype switching to IgG sub-classes by controlled in vitro immunization experiments. These mature isotype immunoglobulins revealed a novel epitope in the MSA-225–32 antigen and two polypeptides of rodent malaria species. Also, these antibodies’ functional activity against malaria was tested by in vitro assays, demonstrating high efficacy in controlling infection and evidencing neutralizing capacity for the rodent in vivo malaria infection. The neutralizing effect of antibodies induced by site-directed designed peptide mimetics on Plasmodium’s biological development make these pseudopeptides a valuable tool for future development of immunoprophylactic strategies for controlling malarial infection.  相似文献   

12.
Small diversity libraries, composed of 4550 synthetic dodecapeptides and 8000 synthetic tripeptides, have been used to identify sequences homologous to small linear and non-linear parts of epitopes. Here we report that synthetic peptides identified through alignment of dodecapeptides and tripeptides derived from these small libraries have, in direct ELISA and/or competitive ELISA, activities similar to that of peptides covering the native epitope and similar to that of peptides derived from large expression libraries composed of 106–107 random peptides. This result was obtained with the monoclonal antibodies 6A.A6 and M2. Mab 6A.A6 binds the transmissible gastroenteritis virus (TGEV) and mAb M2 binds the FLAG®-peptide, an affinity tag. It was also found that the antibody binding activity of peptides, derived from small or large libraries, can strongly depend on the way in which the peptide is presented to the antibody, i.e. high antibody titers were obtained when these peptides were synthesized on pins or coated onto microtiter plates, whereas low IC50s were obtained with these peptides in solution. We postulate that small peptide libraries may be a powerful tool to quickly identify new peptides that can be used as sensitive markers for mAbs of interest. © 1997 John Wiley & Sons, Ltd.  相似文献   

13.
The search for new adjuvants remains the critical task for the creation of hepatitis C vaccines due to the weak immunogenicity of biotechnological products. When immunizing mice with the recombinant proteins NS3 and NS5B of the hepatitis C virus (HCV), the adjuvant activity of three immunomodulators was compared. Phosprenyl® on the basis of polyprenyl phosphate (PPP), chemically synthesized analogue of the bacterial cell wall glucosaminyl muramyl dipeptide (GMDP), and IFN-α recombinant protein were tested. GMDP increased the activity of IgG1 antibodies 4–6 times but did not stimulate the production of IFN-γ; IFN-α has not shown any adjuvant properties. The introduction of recombinant HCV proteins together with PPP in low doses increased the activity of IgG2a isotype antibodies 4–7 times and increased IFN-γ secretion 3 times. Thus, it was first shown that PPP polarizes the immune response to Th1-type and is a promising adjuvant for the development of a vaccine against hepatitis C.  相似文献   

14.
Current strategy for the blockade of molecules inhibiting T-cell immunity, the immune checkpoints (ICP), such as CTLA-4, PD-1, and B7-H1(PD-L1), using monoclonal antibodies (mAbs), showed significant clinical effects in cancer immunotherapy. In this kind of therapy, antibodies do not kill tumor cells directly, but block inhibitory signals for T lymphocytes, resulting in activation of the immune response cascade that eliminate malignant cells and lead to tumor degradation. However, the mAb preparations have some limitations, and the development of new low-molecular-weight antagonists (for example, peptides) is an important issue. In this study, we used peptide microarrays and phage display libraries to search for peptides that interact with the immune checkpoints. We found peptides that specifically bind CTLA-4, PD-1, B7-1, B7-2 and B7-H1(PD-L1) which play important role in the regulation of the immune responses. These synthetic peptides can be applied to the development of new immunomodulating drugs for cancer immunotherapy.  相似文献   

15.
Antimicrobial peptides were isolated from a phage display peptide library using bacterial magnetic particles (BacMPs) as a solid support. The BacMPs obtained from “Magnetospirillum magneticum” strain AMB-1 consist of pure magnetite (50 to 100 nm in size) and are covered with a lipid bilayer membrane derived from the invagination of the inner membrane. BacMPs are easily purified from a culture of magnetotactic bacteria by magnetic separation. Approximately 4 × 1010 PFU of the library phage (complexity, 2.7 × 109) was reacted with BacMPs. The elution of bound phages from BacMPs was performed by disrupting its membrane with phospholipase D treatment. Six candidate peptides, which were highly cationic and could bind onto the BacMP membrane, were obtained. They exhibited antimicrobial activity against Bacillus subtilis but not against Escherichia coli and Saccharomyces cerevisiae. The amino acid substitution of the selected peptide, KPQQHNRPLRHK (peptide 6-7), to enhance the hydrophobicity resulted in obvious antimicrobial activity against all test microorganisms. The present study shows for the first time that a magnetic selection of antimicrobial peptides from the phage display peptide library was successfully achieved by targeting the actual bacterial inner membrane. This BacMP-based method could be a promising approach for a high-throughput screening of antimicrobial peptides targeting a wide range of species.  相似文献   

16.
Vast libraries of filamentous phage expression vectors that display foreign (poly)peptides on the virion surface can be screened by affinity-purifying those phage whose displayed foreign peptide binds to an antibody or another binding protein. Present libraries display only short random peptides, but work is presently underway to create libraries displaying antibodies with a great diversity of binding specificities.  相似文献   

17.
《MABS-AUSTIN》2013,5(6):1415-1424
Background: Development of functional monoclonal antibodies against intractable GPCR targets.

Results: Identification of structured peptides mimicking the ligand binding site, their use in panning to enrich for a population of binders, and the subsequent challenge of this population with receptor overexpressing cells leads to functional monoclonal antibodies.

Conclusion: The combination of techniques provides a successful strategic approach for the development of functional monoclonal antibodies against CXCR2 in a relatively small campaign.

Significance: The presented combination of techniques might be applicable for other, notoriously difficult, GPCR targets.

Summary: The CXC chemokine receptor-2 (CXCR2) is a member of the large ‘family A’ of G-protein-coupled-receptors and is overexpressed in various types of cancer cells. CXCR2 is activated by binding of a number of ligands, including interleukin 8 (IL-8) and growth-related protein α (Gro-α). Monoclonal antibodies capable of blocking the ligand-receptor interaction are therefore of therapeutic interest; however, the development of biological active antibodies against highly structured GPCR proteins is challenging. Here we present a combination of techniques that improve the discovery of functional monoclonal antibodies against the native CXCR2 receptor.

The IL-8 binding site of CXCR2 was identified by screening peptide libraries with the IL-8 ligand, and then reconstructed as soluble synthetic peptides. These peptides were used as antigens to probe an antibody fragment phage display library to obtain subpopulations binding to the IL-8 binding site of CXCR2. Further enrichment of the phage population was achieved by an additional selection round with CXCR2 overexpressing cells as a different antigen source. The scFvs from the CXCR2 specific phage clones were sequenced and converted into monoclonal antibodies. The obtained antibodies bound specifically to CXCR2 expressing cells and inhibited the IL-8 and Gro-α induced ß-arrestin recruitment with IC50 values of 0.3 and 0.2 nM, respectively, and were significantly more potent than the murine monoclonal antibodies (18 and 19 nM, respectively) obtained by the classical hybridoma technique, elicited with the same peptide antigen. According to epitope mapping studies, the antibody efficacy is largely defined by N-terminal epitopes comprising the IL-8 and Gro-α binding sites. The presented strategic combination of in vitro techniques, including the use of different antigen sources, is a powerful alternative for the development of functional monoclonal antibodies by the classical hybridoma technique, and might be applicable to other GPCR targets.  相似文献   

18.
Cryptococcus neoformansis an encapsulated fungus that causes a life-threatening meningoencephalitis in patients with AIDS. Monoclonal antibodies to the capsular glucuronoxylomannan can modulate the infection in mice, but the epitopes on this complex polysaccharide recognized by protective and non-protective antibodies have not been defined. We have used 2H1, one of our most protective antibodies, to screen phage display peptide libraries for peptide mimotopes that would allow us to explore the fine specificity of anti-cryptococcal polysaccharide antibodies. Hexa- and decapeptides have been identified with sequence homologies that define four motifs: 1, (E)TPXWM/LM/L; 2, W/YXWM/ LYE; 3, DWXDW; and 4, (Ar)WDGQ(Ar). Peptides representing these motifs compete with each other for a shared binding site that overlaps the polysaccharide binding site. Motifs 1 and 2 confer high affinity binding, and PA1, which displays a motif 1 peptide with the sequence LQYTPSWMLV, binds to 2H1 with aKdof 295 nM. Analysis of the interaction between the 2H1 binding peptides and 24 structurally related anti-polysaccharide antibodies reveals a complex pattern of reactivity that strongly suggests binding to or close to the complementary determining regions. Furthermore, those antibodies that have been shown to have different specificity, and in some cases different protective potential, do not bind any of the peptides selected by the protective 2H1 antibody. This study shows that peptide mimotopes for a complex microbial polysaccharide can be identified by screening phage peptide libraries and demonstrates the usefulness of such peptides in analyzing closely related interactive sites of proteins in general and of antibodies in particular.  相似文献   

19.
The protozoan parasite Entamoeba histolytica, which is responsible for intestinal amebiasis and amebic liver abscess, is causing significant morbidity and mortality worldwide. Proteophosphoglycans (PPGs, also known as lipophosphoglycans, LPGs, or lipopeptidophosphoglycans, LPPGs) are major surface components of E. histolytica. Passive immunization with a monoclonal antibody (EH5) directed against the PPGs protected severe combined immune-deficient mice from amebic liver abscess. The structure of the PPGs is very complex and only known in part. To find peptide mimics of E. histolytica PPG antigens, we had screened phage-displayed random peptide libraries with the antibody EH5. We identified various peptide mimics of E. histolytica PPGs, all sharing a consensus sequence Gly-Thr-His-Pro-X-Leu. Several of the phage clones induced a significant, specific IgG response against membrane antigens of E. histolytica after immunization of mice with whole phage particles. In the present work, in order to avoid the use of phage particles for immunization, we coupled two selected chemically synthesized peptides to keyhole limpet hemocyanin (KLH). The two KLH-conjugated peptides were immunogenic in mice and induced the production of high titers of anti-peptide antibodies, and one of the two peptides was also able to induce significant titers of antibodies against E. histolytica PPGs. Our results demonstrate that the KLH-conjugated peptides are able to mimic the EH5 epitope without the M13 phage sequences flanking the peptide inserts and independent of the structural framework of the phage.  相似文献   

20.
Phage presentation   总被引:1,自引:0,他引:1  
There has recently been great interest in the use of the filamentous bacteriophage fd as a vehicle for the display of peptides and proteins. Phage libraries displaying random peptides up to 38 amino acids in length can be used (i) to select for ligands able to bind specific target molecules; (ii) to mimic non-proteinaceous ligands; and (iii) as a tool to map epitopes recognized by antibodies. The display of proteins or their functional domains provides a system for the analysis of structure-function relationships, and the potential to generate proteins with altered binding characteristics or novel catalytic properties. The display of short immunogenic determinants on fusion phage may provide a basis for the development of novel peptide vaccines, whilst the expression of libraries of antibody fragments may provide a method to by-pass hybridoma technology in the generation of monoclonal antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号