首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background  

Immobilization of Trigonopsis variabilis D-amino acid oxidase (TvDAO) on solid support is the key to a reasonably stable performance of this enzyme in the industrial process for the conversion of cephalosporin C as well as in other biocatalytic applications.  相似文献   

2.
Fusion proteins of d-amino acid oxidase from Trigonopsis variabilis (TvDAAO) with Vitreoscilla Hemoglobin (VHb) and (His)6-tag were constructed and expressed in recombinant Escherichia coli. A fusing-position effect was revealed that (His)6-tag’s N-terminal fusion with TvDAAO (HDAAO) reduced the specific activity by ~29%, while the C-terminal fusion (DAAOH) remained unreduced. The N-terminal fusion of VHb with TvDAAO and DAAOH significantly improved their activity. As in a 5 l fermentor, the activity of the triple fusion VHb-TvDAAO-(His)6 (VDAAOH) reached 2.53 U/mg dry cell at 9 h, ~58% increase than that of DAAOH together with ~40% biomass increase, confirming the positive effect of VHb expression on cell level. After purification, the UV–visible and fluorescence spectrum of DAAOH and VDAAOH were characterized. Enzyme kinetics studies further indicated that VDAAOH behaved a higher K cat, but a weaker substrate affinity of K m relative to DAAOH, revealing two distinct impacts of VHb-coupling with TvDAAO on protein level.  相似文献   

3.
The thermal stability of a highly purified preparation of D-amino acid oxidase from Trigonopsis variabilis (TvDAO), which does not show microheterogeneity due to the partial oxidation of Cys-108, was studied based on dependence of temperature (20–60°C) and protein concentration (5–100 µmol L?1). The time courses of loss of enzyme activity in 100 mmol L?1 potassium phosphate buffer, pH 8.0, are well described by a formal kinetic mechanism in which two parallel denaturation processes, partial thermal unfolding and dissociation of the FAD cofactor, combine to yield the overall inactivation rate. Estimates from global fitting of the data revealed that the first-order rate constant of the unfolding reaction (ka) increased 104-fold in response to an increase in temperature from 20 to 60°C. The rate constants of FAD release (kb) and binding (k?b) as well as the irreversible aggregation of the apo-enzyme (kagg) were less sensitive to changes in temperature, their activation energy (Ea) being about 52 kJ mol?1 in comparison with an Ea value of 185 kJ mol?1 for ka. The rate-determining step of TvDAO inactivation switched from FAD dissociation to unfolding at high temperatures. The model adequately described the effect of protein concentration on inactivation kinetics. Its predictions regarding the extent of FAD release and aggregation during thermal denaturation were confirmed by experiments. TvDAO is shown to contain two highly reactive cysteines per protein subunit whose modification with 5,5′-dithio-bis (2-nitrobenzoic acid) was accompanied by inactivation. Dithiothreitol (1 mmol L?1) enhanced up to 10-fold the recovery of enzyme activity during ion exchange chromatography of technical-grade TvDAO. However, it did not stabilize TvDAO at all temperatures and protein concentrations, suggesting that deactivation of cysteines was not responsible for thermal denaturation.  相似文献   

4.

Background  

In recent years, it has been gradually realized that bacterial inclusion bodies (IBs) could be biologically active. In particular, several proteins including green fluorescent protein, β-galactosidase, β-lactamase, alkaline phosphatase, D-amino acid oxidase, polyphosphate kinase 3, maltodextrin phosphorylase, and sialic acid aldolase have been successfully produced as active IBs when fused to an appropriate partner such as the foot-and-mouth disease virus capsid protein VP1, or the human β-amyloid peptide Aβ42(F19D). As active IBs may have many attractive advantages in enzyme production and industrial applications, it is of considerable interest to explore them further.  相似文献   

5.
High-level expression of d-amino acid oxidase (DAO) has been reported in Pichia pastoris by integrating the DAO gene under the control of the alcohol oxidase promoter (PAOX1). However, the time taken to reach peak product concentration is usually long (∼43 h), and cultivation requires tight regulation of methanol feeding. In this paper, we describe the expression of His-tagged DAO (HDAO) in P. pastoris using the glyceraldehydes-3-phosphate dehydrogenase promoter (PGAP). The maximal level of HDAO expression using the PGAP integrant is attained in 13 h and is equal to that obtained using the PAOX1 integrant in 43 h. We also explored the possibility of secreting HDAO in P. pastoris. In-frame fusion of Saccharomyces cerevisiae α-factor secretion signal under a PGAP or PAOX1 resulted in low-level secretion of active HDAO, which was not of practical use. The intracellularly expressed HDAO under PGAP was purified by agar-based affinity support and then immobilized on Amberzyme oxirane resin. The immobilized HDAO, with specific activity of 75 U g−1 (wet weight), could be recycled more than 14 times without significant loss of activity. The data suggest that intracellular production of HDAO under PGAP, followed by affinity purification and immobilization on oxirane resin, may serve as an effective process for the manufacture of immobilized DAO for industrial application.  相似文献   

6.

Background  

Increasing attention has been focused on inulin and levan-type oligosaccharides, including fructosyl-xylosides and other fructosides due to their nutraceutical properties. Bacillus subtilis levansucrase (LS) catalyzes the synthesis of levan from sucrose, but it may also transfer the fructosyl moiety from sucrose to acceptor molecules included in the reaction medium. To study transfructosylation reactions with highly active and robust derivatives, cross-linked enzyme aggregates (CLEAs) were prepared from wild LS and two mutants. CLEAs combine the catalytic features of pure protein preparations in terms of specific activity with the mechanical behavior of industrial biocatalysts.  相似文献   

7.

Background  

Mannans are one of the key polymers in hemicellulose, a major component of lignocellulose. The Mannan endo-1,4-β-mannosidase or 1,4-β- D -mannanase (EC 3.2.1.78), commonly named β-mannanase, is an enzyme that can catalyze random hydrolysis of β-1,4-mannosidic linkages in the main chain of mannans, glucomannans and galactomannans. The enzyme has found a number of applications in different industries, including food, feed, pharmaceutical, pulp/paper industries, as well as gas well stimulation and pretreatment of lignocellulosic biomass for the production of second generation biofuel. Bacillus licheniformis is a Gram-positive endospore-forming microorganism that is generally non-pathogenic and has been used extensively for large-scale industrial production of various enzymes; however, there has been no previous report on the cloning and expression of mannan endo-1,4-β-mannosidase gene (manB) from B. licheniformis.  相似文献   

8.
9.
Bacillus coagulans has been of great commercial interest over the past decade owing to its strong ability of producing optical pure l-lactic acid from both hexose and pentose sugars including l-arabinose with high yield, titer and productivity under thermophilic conditions. The l-arabinose isomerase (L-AI) from Bacillus coagulans was heterologously over-expressed in Escherichia coli. The open reading frame of the L-AI has 1,422 nucleotides encoding a protein with 474 amino acid residues. The recombinant L-AI was purified to homogeneity by one-step His-tag affinity chromatography. The molecular mass of the enzyme was estimated to be 56 kDa by SDS-PAGE. The enzyme was most active at 70°C and pH 7.0. The metal ion Mn2+ was shown to be the best activator for enzymatic activity and thermostability. The enzyme showed higher activity at acidic pH than at alkaline pH. The kinetic studies showed that the K m, V max and k cat/K m for the conversion of l-arabinose were 106 mM, 84 U/mg and 34.5 mM−1min−1, respectively. The equilibrium ratio of l-arabinose to l-ribulose was 78:22 under optimal conditions. l-ribulose (97 g/L) was obtained from 500 g/l of l-arabinose catalyzed by the enzyme (8.3 U/mL) under the optimal conditions within 1.5 h, giving at a substrate conversion of 19.4% and a production rate of 65 g L−1 h−1.  相似文献   

10.
d-Aspartate oxidase (DDO) and d-amino acid oxidase (DAO) are flavin adenine dinucleotide-containing flavoproteins that catalyze the oxidative deamination of d-amino acids. Unlike DAO, which acts on several neutral and basic d-amino acids, DDO is highly specific for acidic d-amino acids. Based on molecular modeling and simulated annealing docking analyses, a recombinant mouse DDO carrying two substitutions (Arg-216 to Leu and Arg-237 to Tyr) was generated (R216L-R237Y variant). This variant and two previously constructed single-point mutants of mouse DDO (R216L and R237Y variants) were characterized to investigate the role of Arg-216 and Arg-237 in the substrate specificity of mouse DDO. The R216L-R237Y and R216L variants acquired a broad specificity for several neutral and basic d-amino acids, and showed a considerable decrease in activity against acidic d-amino acids. The R237Y variant, however, did not show any additional specificity for neutral or basic d-amino acids and its activity against acidic d-amino acids was greatly reduced. The kinetic properties of these variants indicated that the Arg-216 residue is important for the catalytic activity and substrate specificity of mouse DDO. However, Arg-237 is, apparently, only marginally involved in substrate recognition, but is important for catalytic activity. Notably, the substrate specificity of the R216L-R237Y variant differed significantly from that of the R216L variant, suggesting that Arg-237 has subsidiary effects on substrate specificity. Additional experiments using several DDO and DAO inhibitors also suggested the involvement of Arg-216 in the substrate specificity and catalytic activity of mouse DDO and that Arg-237 is possibly involved in substrate recognition by this enzyme. Collectively, these results indicate that Arg-216 and Arg-237 play crucial and subsidiary role(s), respectively, in the substrate specificity of mouse DDO.  相似文献   

11.
The oxidative deamination of methylated putrescine by a diamine oxidase activity (DAO) is an important step in the biosynthesis of nicotine in tobacco and tropane alkaloids in several Solanaceous plants. A polyclonal rabbit antiserum was previously developed to a purported purified DAO enzyme from Nicotiana tabacum. The antiserum bound to a single 53 kDa protein and immunoprecipitated 80 of DAO activity from tobacco root extracts. In an effort to obtain DAO cDNAs, this antiserum was used to screen a tobacco cDNA expression library and three distinct immunoreactive cDNA clones were isolated. These cDNAs encoded predicted proteins that were either identical or nearly identical to predicted S-adenosylhomocysteine hydrolase (SAHH) from two Nicotiana species. Thus, the rabbit antiserum was not specific to DAO, even though it immunodepleted the majority of DAO activity from root extracts. Alternative hypotheses to explain the DAO immunodepletion results (such as poisoning of DAO activity or that SAHH is a bifunctional enzyme) were tested and ruled out. Therefore, we hypothesize that SAHH associates with DAO as part of a larger multienzyme complex that may function in planta as a nicotine metabolic channel.  相似文献   

12.
A putative N-acyl-d-glucosamine 2-epimerase from Caldicellulosiruptor saccharolyticus was cloned and expressed in Escherichia coli. The recombinant enzyme was identified as a cellobiose 2-epimerase by the analysis of the activity for substrates, acid-hydrolyzed products, and amino acid sequence. The cellobiose 2-epimerase was purified with a specific activity of 35 nmol min–1 mg–1 for d-glucose with a 47-kDa monomer. The epimerization activity for d-glucose was maximal at pH 7.5 and 75°C. The half-lives of the enzyme at 60°C, 65°C, 70°C, 75°C, and 80°C were 142, 71, 35, 18, and 4.6 h, respectively. The enzyme catalyzed the epimerization reactions of the aldoses harboring hydroxyl groups oriented in the right-hand configuration at the C2 position and the left-hand configuration at the C3 position, such as d-glucose, d-xylose, l-altrose, l-idose, and l-arabinose, to their C2 epimers, such as d-mannose, d-lyxose, l-allose, l-gulose, and l-ribose, respectively. The enzyme catalyzed also the isomerization reactions. The enzyme exhibited the highest activity for mannose among monosaccharides. Thus, mannose at 75 g l–1 and fructose at 47.5 g l–1 were produced from 500 g l–1 glucose at pH 7.5 and 75°C over 3 h by the enzyme.  相似文献   

13.
Rubrivivax benzoatilyticus JA2 utilizes l-tryptophan as the sole source of nitrogen for growth, and it has a doubling time of ~11 h (compared to 8 h with ammonium chloride). With cell free extracts in the presence of 2-oxoglutarate, indole-3-pyruvic acid, indole-3-acetaldehyde, indole-3-acetic acid, isatin, benzaldehyde, gallic acid and pyrogallol were identified using high performance liquid chromatography (HPLC) and liquid chromatography–mass spectroscopy (LC–MS) analysis. The conversion of l-tryptophan into indole 3-pyruvic acid and glutamate by an enzyme aminotransferase was confirmed and the catabolism of indole-3-pyruvic acid via side chain oxidation followed by ring oxidation, gallic acid and pyrogallol were confirmed as metabolites. In addition, the proposed pathway sequential conversion of indole-3-pyruvic acid to the end product of pyrogallol was identified, including an enzymatic step that would convert isatin to benzaldehyde by an enzyme yet to be identified. At this stage of the study, the enzyme tryptophan aminotransferase in R. benzoatilyticus JA2 was demonstrated.  相似文献   

14.
Trigonopsis variabilis D ‐amino acid oxidase (TvDAAO) is an enzyme used in the industrial bioconversion of cephalosporin C (CPC) into 7‐aminocephalosporanic acid, a crucial biosynthetic nucleus for a wide spectrum of semi‐synthetic cephem antibiotics. Using homology modeling and site‐directed mutagenesis, we have previously shown that the TvDAAO variant F54Y possesses improved catalytic activity and thermostability. To further explore its industrial application, the conditions for immobilization of the enzyme were examined in the present investigation. The results showed that entrapment in a calcium alginate (Ca‐alginate) matrix using 2% alginate, 500 mM CaCl2, and 15 min stabilization appeared to be optimal for the immobilization of F54Y. The entrapped enzyme allowed complete CPC conversion. The entrapped enzyme also showed good operational stability and retained at least 90% of its original activity after 20 reaction cycles. To conclude, the entrapment of F54Y in Ca‐alginate appeared to be a simple and efficient biocatalysis system with potential application in the antibiotics industry.  相似文献   

15.
d-Xylulose-forming d-arabitol dehydrogenase (aArDH) is a key enzyme in the bio-conversion of d-arabitol to xylitol. In this study, we cloned the NAD-dependent d-xylulose-forming d-arabitol dehydrogenase gene from an acetic acid bacterium, Acetobacter suboxydans sp. The enzyme was purified from A. suboxydans sp. and was heterogeneously expressed in Escherichia coli. The native or recombinant enzyme was preferred NAD(H) to NADP(H) as coenzyme. The active recombinant aArDH expressed in E. coli is a homodimer, whereas the native aArDH in A. suboxydans is a homotetramer. On SDS–PAGE, the recombinant and native aArDH give one protein band at the position corresponding to 28 kDa. The optimum pH of polyol oxidation and ketone reduction is found to be pH 8.5 and 5.5 respectively. The highest reaction rate is observed when d-arabitol is used as the substrate (K m = 4.5 mM) and the product is determined to be d-xylulose by HPLC analysis.  相似文献   

16.
A non-characterized gene, previously proposed as the d-tagatose-3-epimerase gene from Rhodobacter sphaeroides, was cloned and expressed in Escherichia coli. Its molecular mass was estimated to be 64 kDa with two identical subunits. The enzyme specificity was highest with d-fructose and decreased for other substrates in the order: d-tagatose, d-psicose, d-ribulose, d-xylulose and d-sorbose. Its activity was maximal at pH 9 and 40°C while being enhanced by Mn2+. At pH 9 and 40°C, 118 g d-psicose l−1 was produced from 700 g d-fructose l−1 after 3 h. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Ribose-5-phosphate isomerase from Clostridium thermocellum converted d-psicose to d-allose, which may be useful as a pharmaceutical compound, with no by-product. The 12 active-site residues, which were obtained by molecular modeling on the basis of the solved three-dimensional structure of the enzyme, were substituted individually with Ala. Among the 12 Ala-substituted mutants, only the R132A mutant exhibited an increase in d-psicose isomerization activity. The R132E mutant showed the highest activity when the residue at position 132 was substituted with Ala, Gln, Ile, Lys, Glu, or Asp. The maximal activity of the wild-type and R132E mutant enzymes for d-psicose was observed at pH 7.5 and 80°C. The half-lives of the wild-type enzyme at 60°C, 65°C, 70°C, 75°C, and 80°C were 11, 7.0, 4.2, 1.5, and 0.6 h, respectively, whereas those of the R132E mutant enzymes were 13, 8.2, 5.1, 3.1, and 0.9 h, respectively. The specific activity and catalytic efficiency (k cat/K m) of the R132E mutant for d-psicose were 1.4- and 1.5-fold higher than those of the wild-type enzyme, respectively. When the same amount of enzyme was used, the conversion yield of d-psicose to d-allose was 32% for the R132E mutant enzyme and 25% for the wild-type enzyme after 80 min.  相似文献   

18.
A putative ribose-5-phosphate isomerase (RpiB) from Streptococcus pneumoniae was purified with a specific activity of 26.7 U mg−1 by Hi-Trap Q HP anion exchange and Sephacryl S-300 HR 16/60 gel filtration chromatographies. The native enzyme existed as a 96-kDa tetramer with activity maxima at pH 7.5 and 35°C. The RpiB exhibited isomerization activity with l-lyxose, l-talose, d-gulose, d-ribose, l-mannose, d-allose, l-xylulose, l-tagatose, d-sorbose, d-ribulose, l-fructose, and d-psicose and exhibited particularly high activity with l-form monosaccharides such as l-lyxose, l-xylulose, l-talose, and l-tagatose. With l-xylulose (500 g l−1) and l-talose (500 g l−1) substrates, the optimum concentrations of RpiB were 300 and 600 U ml−1, respectively. The enzyme converted 500 g l−1 l-xylulose to 350 g l−1 l-lyxose after 3 h, and yielded 450 g l−1 l-tagatose from 500 g l−1 l-talose after 5 h. These results suggest that RpiB from S. pneumoniae can be employed as a potential producer of l-form monosaccharides.  相似文献   

19.
Thermoplasma acidophilum utilizes l-rhamnose as a sole carbon source. To determine the metabolic pathway of l-rhamnose in Archaea, we identified and characterized l-rhamnose dehydrogenase (RhaD) in T. acidophilum. Ta0747P gene, which encodes the putative T. acidophilum RhaD (Ta_RhaD) enzyme belonging to the short-chain dehydrogenase/reductase family, was expressed in E. coli as an active enzyme catalyzing the oxidation of l-rhamnose to l-rhamnono-1,4-lactone. Analysis of catalytic properties revealed that Ta_RhaD oxidized l-rhamnose, l-lyxose, and l-mannose using only NADP+ as a cofactor, which is different from NAD+/NADP+-specific bacterial RhaDs and NAD+-specific eukaryal RhaDs. Ta_RhaD showed the highest activity toward l-rhamnose at 60 °C and pH 7. The K m and k cat values were 0.46 mM, 1,341.3 min−1 for l-rhamnose and 0.1 mM, 1,027.2 min−1 for NADP+, respectively. Phylogenetic analysis indicated that branched lineages of archaeal RhaD are quite distinct from those of Bacteria and Eukarya. This is the first report on the identification and characterization of NADP+-specific RhaD.  相似文献   

20.
d-Amino acid oxidase from Rhodosporidium toruloides was immobilized onto glutaraldehyde-activated magnetic nanoparticles. Approximately four enzyme molecules were attached to one magnetic nanoparticle when the weight ratio of the enzyme to the support was 0.12. After immobilization, the T m was increased from 45°C of the free form to 55°C. In the presence of 20 mM H2O2, the immobilized form retained 93% of its activity after 5 h while the free form was completely inactivated after 3.5 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号