首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The floristic composition and diversity of tropical dry deciduous and gallery forests were studied in Chacocente Wildlife Refuge, located on the Pacific coast in Nicaragua during 1994 and 2000. Density, dominance and frequency as well as species and family important values were computed to characterize the floristic composition. A variety of diversity measures were also calculated to examine heterogeneity in each forest community. A total of 29 families, 49 genera and 59 species were represented in 2 ha dry deciduous forest. In the gallery forest, the number of families, genera and species recorded in 2000 inventory was 33, 48 and 58, respectively and slightly higher than the 1994 inventory. The number of stems ⩽ 10 cm dbh varied from 451 to 489 per hectare in the deciduous forest, and from 283 to 298 per hectare in the gallery forest. The basal area was much larger for species in the gallery than dry deciduous forest. Fabaceae, sub family Papilionoideae, was the most specious family in the deciduous forest while Meliaceae was the dominant family in the gallery forest. Similarity in species composition and abundance between deciduous and gallery forests was low. In terms of species diversity, the gallery forest was found more diverse than the deciduous forest using Fisher's diversity index. Both forest communities were characterized by a typical inverse J shape. Therefore, emphasis should be given to the protection of rare species, i.e. as the forests are still under continued human pressure, an immediate action should be taken to conserve the remaining flora.  相似文献   

4.
Habitat Fragmentation and Burying Beetle Abundance and Success   总被引:4,自引:2,他引:2  
Four species of burying beetle (Nicrophorus marginatus F., N. tomentosus Weber, N. orbicollis Say and N. defodiens Mannerheim) are attracted to small, fresh mouse carcasses in northern Michigan. The number of burying beetles and their success (burial of a carcass) were greater in woodlands than in edge or field habitats. Species diversity was least in open fields as assessed by two different indices of diversity. Nicrophorus marginatus was the only species captured in large fields (<25ha). This species was never trapped in small fields (>5ha) suggesting that a minimum habitat size might be necessary to maintain local populations. In contrast to previous studies which employed pitfall traps baited with a large quantity of carrion, N. tomentosus was caught exclusively in woodlands at single mouse carcasses. In Connecticut woodlands, burying beetle success, assayed as the proportion of carcasses buried and held for 7 days, was significantly greater in larger as compared to smaller woodlands. The limited success of burying beetles in smaller woodlands was due, in part, to a higher rate of scavenging by vertebrates.  相似文献   

5.
Although tropical wet forests are generally more diverse than dry forests for many faunal groups, few studies have compared bat diversity among dry forests. I compared ground level phyllostomid bat community structure between two tropical dry forests with different precipitation regimes. Parque National Palo Verde in northwestern Costa Rica represents one of the wettest tropical dry forests (rainfall 1.5 m/yr), whereas the Chamela‐Cuixmala Biosphere Reserve on the Pacific coast of central Mexico represents one of the driest (750 mm/yr). Mist net sampling was conducted at the two study sites to compare changes in ground level phyllostomid bat community structure between regions and seasons. Palo Verde was more diverse than Chamela and phyllostomid species showed low similarity between sites (Classic Jaccard = 0.263). The distinct phyllostomid communities observed at these two dry forest sites demonstrates that variants of tropical dry forest can be sufficiently different in structure and composition to affect phyllostomid communities. At both dry forest sites, abundance of the two most common foraging guilds (frugivores and nectarivores) differed between seasons, with greatest numbers of individuals captured coinciding with highest chiropterophilic resource abundance.  相似文献   

6.
The effect of habitat fragmentation on the structure of orchid bee communities was analyzed by the investigation of the existence of a spatial structure in the richness and abundance of Euglossini species and by determining the relationship between these data and environmental factors. The surveys were carried out in four different forest fragments and one university campus. Richness, abundance, and diversity of species were analyzed in relation to abiotic (size of the area, extent of the perimeter, perimeter/area ratio, and shape index) and biotic characteristics (vegetation index of the fragment and of the matrix of each of the locations studied). We observed a highly significant positive correlation between the diversity index and the vegetation index of the fragment, landscape and shape index. Our analysis demonstrated that the observed variation could be explained mainly by the vegetation index and the size of the fragment. Variations in relative abundance showed a tendency toward an aggregated spatial distribution between the fragments studied, as well as between the sampling stations within the same habitat, demonstrating the existence of a spatial structure on a small scale in the populations of Euglossini. This distribution will determine the composition of species that coexist in the area after fragmentation. These data help in understanding the differences and similarities in the structure of communities of Euglossini resulting from forest fragmentation.  相似文献   

7.
Habitat fragmentation strongly affects species distribution and abundance. However, mechanisms underlying fragmentation effects often remain unresolved. Potential mechanisms are (1) reduced dispersal of a species or (2) altered species interactions in fragmented landscapes. We studied if abundance of the spider-hunting and cavity-nesting wasp Trypoxylon figulus Linnaeus (Hymenoptera: Crabronidae) is affected by fragmentation, and then tested for any effect of larval food (bottom up regulation) and parasitism (top down regulation). Trap nests of T. figulus were studied in 30 agricultural landscapes of the Swiss Plateau. The sites varied in the level of isolation from forest (adjacent, in the open landscape but connected, isolated) and in the amount of woody habitat (from 4 % to 74 %). We recorded wasp abundance (number of occupied reed tubes), determined parasitism of brood cells and analysed the diversity and abundance of spiders that were deposited as larval food. Abundances of T. figulus were negatively related to forest cover in the landscape. In addition, T. figulus abundances were highest at forest edges, reduced by 33.1% in connected sites and by 79.4% in isolated sites. The mean number of spiders per brood cell was lowest in isolated sites. Nevertheless, structural equation modelling revealed that this did not directly determine wasp abundance. Parasitism was neither related to the amount of woody habitat nor to isolation and did not change with host density. Therefore, our study showed that the abundance of T. figulus cannot be fully explained by the studied trophic interactions. Further factors, such as dispersal and habitat preference, seem to play a role in the population dynamics of this widespread secondary carnivore in agricultural landscapes.  相似文献   

8.
The impacts of forest fragmentation on the pteridophyte communities of the Una region of Bahia, Brazil, were investigated by comparing species richness and ensemble diversity among areas of large forest fragments (>900 ha), small forest fragments (<100 ha), and landscape matrix. We inventoried the pteridophytes below 1 m in height in interiors of small fragments, interiors of large fragments (control areas), edges of fragments, edges of continuous forest, capoeiras (initial stages of forest regeneration) and cabrucas (cocoa plantations). All ferns were collected following the plot method (plots of 120×10 m, each). Sampling units were established in the six main ecotypes of the Una region. These units were allocated within three sampling blocks of 5 per 5 km, which were chosen in order to include the largest forest patches that still remain. Results suggest that fragmentation has a negative impact on species richness at the matrix and the edges of forest remnants. A similar negative matrix end edge effect is reported for diversity of those sites measured by the α Log-series Index. However, small forest fragments have pteridophyte species richness and diversity rates similar to large ones so they should be considered of utmost importance to the conservation of forest-related species in the region.  相似文献   

9.

Background

Tropical forest species are among the most sensitive to changing climatic conditions, and the forest they inhabit helps to buffer their microclimate from the variable climatic conditions outside the forest. However, habitat fragmentation and edge effects exposes vegetation to outside microclimatic conditions, thereby reducing the ability of the forest to buffer climatic variation. In this paper, we ask what proportion of forest in a fragmented ecosystem is impacted by altered microclimate conditions driven by edge effects, and extrapolate these results to the whole Atlantic Forest biome, one of the most disturbed biodiversity hotspots. To address these questions, we collected above and below ground temperature for a full year using temperature sensors placed in forest fragments of different sizes, and at different distances from the forest edge.

Principal Findings

In the Atlantic forests of Brazil, we found that the buffering effect of forests reduced maximum outside temperatures by one third or more at ground level within a forest, with the buffering effect being stronger below-ground than one metre above-ground. The temperature buffering effect of forests was, however, reduced near forest edges with the edge effect extending up to 20 m inside the forest. The heavily fragmented nature of the Brazilian Atlantic forest means that 12% of the remaining biome experiences altered microclimate conditions.

Conclusions

Our results add further information about the extent of edge effects in the Atlantic Forest, and we suggest that maintaining a low perimeter-to-area ratio may be a judicious method for minimizing the amount of forest area that experiences altered microclimatic conditions in this ecosystem.  相似文献   

10.
Hunting can change abundances of vertebrate seed predators and seed dispersers, causing species‐specific changes in seed dispersal and seed predation and altering seedling communities. What are the consequences of these changes for the adult plant community in the next generation and beyond? Here, I derive equations showing how reduced seed dispersal reduces plant reproduction by intensifying kin competition, increasing vulnerability to natural enemies, and reducing the proportion of seeds passing through disperser guts. I parameterize these equations with available empirical data to estimate the likely effects on next‐generation abundances. I then consider the indirect effects and longer‐term feedbacks of changed seed or adult abundances on reproductive rates due to density‐dependent interactions with natural enemies and mutualists, as well as niche differentiation with competitors, and discuss their likely qualitative effects. The factors limiting seed disperser and seed predator populations in natural and hunted forests emerge as critical for determining the long‐term effects of hunting on rates of seed dispersal and seed predation. For example, where seed dispersers are held to a constant abundance by hunters, decreases in the availability of their preferred food plants are expected to lead to increased per‐seed dispersal probabilities, potentially to the point of compensating for the initial disperser decline. I close by discussing the likely reversibility of hunting‐induced changes in tropical forests and key questions and directions for future research.  相似文献   

11.
Simulating the Long-term Response of Tropical Wet Forests to Fragmentation   总被引:1,自引:0,他引:1  
In the coming decades, a large fraction of the world's tropical forests will be fragmented into remnants surrounded by secondary vegetation, land-use areas, or roads. It is important to develop integrative tools to monitor the evolution of these fragmented ecosystems. We used the individual-oriented and process-based forest growth simulator FORMIND2.0 to investigate the spatial and temporal effects on standing biomass and functional diversity of various intensities and patterns of fragmentation within a forest landscape. The simulator was calibrated for an old-growth wet forest in French Guiana, South America. We found that the standing biomass of forest remnants was reduced significantly compared to a similar area of nonfragmented forest. When fewer but larger remnants were created rather than many small ones, the total loss in biomass and the increase in the abundance of early-successional species were significantly reduced, confirming that edge effects dominate the functioning of forest remnants. We also performed simulations of secondary succession after the landscape had been abandoned. The simulated recovery time in those secondary forests depends on both the size of cleared area and the spatial pattern of the remnant forests. Received 30 January 2002; accepted 16 July 2002.  相似文献   

12.
Predators significantly affect ecosystem functions, but our understanding of to what extent findings can be transferred from experiments and low‐diversity systems to highly diverse, natural ecosystems is limited. With a particular threat of biodiversity loss at higher trophic levels, however, knowledge of spatial and temporal patterns in predator assemblages and their interrelations with lower trophic levels is essential for assessing effects of trophic interactions and advancing biodiversity conservation in these ecosystems. We analyzed spatial and temporal variability of spider assemblages in tree species‐rich subtropical forests in China, across 27 study plots varying in woody plant diversity and stand age. Despite effects of woody plant richness on spider assemblage structure, neither habitat specificity nor temporal variability of spider richness and abundance were influenced. Rather, variability increased with forest age, probably related to successional changes in spider assemblages. Our results indicate that woody plant richness and theory predicting increasing predator diversity with increasing plant diversity do not necessarily play a major role for spatial and temporal dynamics of predator assemblages in such plant species‐rich forests. Diversity effects on biotic or abiotic habitat conditions might be less pronounced across our gradient from medium to high plant diversity than in previously studied less diverse systems, and bottom‐up effects might level out at high plant diversity. Instead, our study highlights the importance of overall (diversity‐independent) environmental heterogeneity in shaping spider assemblages and, as indicated by a high species turnover between plots, as a crucial factor for biodiversity conservation at a regional scale in these subtropical forests.  相似文献   

13.
选取浙江千岛湖东南湖区的10个岛屿和1个半岛,详细研究了苔藓植物组成及生境片断化对其多样性的影响。研究结果表明:该区域有苔藓植物37科71属129种,其中浙江新记录3种。群落类型主要包括土生群落、石生群落和树生群落。苔藓植物区系以东亚成分为主,其次为北温带成分和热带亚洲分布,分别占总种数的39.45%、20.18%和18.35%,说明该地区苔藓植物区系具有典型的东亚特征。岛屿面积对苔藓植物分布影响结果显示:不受岛屿面积影响的苔藓植物有29种,受岛屿面积影响的苔藓植物有58种;各岛屿苔藓植物物种数与岛屿累加面积存在明显正相关。  相似文献   

14.
Cladocera Diversity,Abundance and Habitat in a Western Thailand Stream   总被引:1,自引:0,他引:1  
Longitudinal and temporal distribution was determined for 40 species of cladocerans at sites between the headwaters and mouth of Khayeng Stream, a relatively pristine waterway in western Thailand. Cladocerans were confined mostly to lentic areas and abundance between April and September was highest in September, largely a consequence of a floodplain that developed near the mouth. Species richness was related directly to cladoceran abundance. Cladocerans were dominated numerically by three species, Ceriodaphnia cornuta, Diaphanosoma excisum, and D. sarsi. Most species were accommodated within four assemblages. Conductivity, water velocity, pH and temperature were important to species distribution, particularly velocity and conductivity. The most common assemblage was also the most speciose and occurred in moderate total abundance. The second assemblage was also speciose but low in total abundance. Species abundance in groups 1 and 2 tended to be positively related to conductivity and negatively, but weakly, related to pH and temperature. The third assemblage consisted of a single species and occurred in water of low conductivity while the fourth assemblage contained few species and low in overall abundance.  相似文献   

15.
Tropical forest floor characteristics such as depth and nutrient concentrations are highly heterogeneous even over small spatial scales and it is unclear how these differences contribute to patchiness in forest floor arthropod abundance and diversity. In a lowland tropical forest in Panama we experimentally increased litter standing crop by removing litter from five plots (L−) and adding it to five other plots (L+); we had five control plots. After 32 mo of treatments we investigated how arthropod abundance and diversity were related to differences in forest floor physical (mass, depth, water content) and chemical properties (pH, nutrient concentrations). Forest floor mass and total arthropod abundance were greater in L+ plots compared with controls. There were no treatment differences in nutrient concentrations, pH or water content of the organic horizons. Over all plots, the mass of the fermentation horizon (Oe) was greater than the litter horizon (Oi); arthropod diversity and biomass were also greater in the Oe horizon but nutrient concentrations tended to be higher in the Oi horizon. Arthropod abundance was best explained by forest floor mass, while arthropod diversity was best explained by phosphorus, calcium and sodium concentrations in the Oi horizon and by phosphorus concentrations in the Oe horizon. Differences in arthropod community composition between treatments and horizons correlated with phosphorus concentration and dry mass of the forest floor. We conclude that at a local scale, arthropod abundance is related to forest floor mass (habitat space), while arthropod diversity is related to forest floor nutrient concentrations (habitat quality).  相似文献   

16.
The objective of this study was to test for general effects of patch size, patch isolation, disturbance frequency, and patch life span, on density and diversity of organisms. We sampled predominantly herbivorous insects in 31 alfalfa fields that varied in size, isolation, frequency of disturbance by cutting, and age (number of years planted in alfalfa). Effects on insect relative density and diversity were examined at three taxonomic levels: all insects, eight separate orders, and six legume-specialist weevil species. We found that (a) more isolated alfalfa fields had higher overall insect richness, (b) fields with higher disturbance frequency had lower overall insect richness, and (c) fields of intermediate age had highest insect richness. In some cases these patterns were reflected at lower taxonomic levels, but in many cases they were not. These results are important because they indicate that, although we cannot simultaneously tailor a landscape for each of thousands of species, we may be able to produce desired effects at a more general level. Received 8 August 1997; accepted 2 January 1998.  相似文献   

17.
Habitat loss and fragmentation can have severe negative and irreversible effects on biodiversity. We investigated the effects of forest fragmentation on frog diversity in Singapore because of its high rates of deforestation and the demonstration that frogs are some of the most sensitive species to habitat degradation. We surveyed frog species in 12 forest fragments varying from 11 to 935 ha. We compared differences in species richness, abundance, and Shannon's index in relation to forest fragment size, connectivity (distance between fragments), and breeding habitat heterogeneity. A total of 20 species from 12 genera and five families were encountered in 12 fragments. Larger fragments and those closer to larger fragments had higher species richness. Abundance, however, was not correlated with forest area or connectivity, but we found fewer individual frogs in the larger fragments. We also found that breeding habitat heterogeneity best explained frog species diversity and abundance in forest fragments. Fragments with a high diversity of breeding habitats had more species. We found no evidence to suggest that abundance and diversity are strongly correlated, particularly in disturbed areas, but that breeding habitat heterogeneity is an under-appreciated factor that should be considered when prioritizing areas for anuran conservation. Enriching breeding habitat heterogeneity, creating corridors between fragments, and reforesting degraded areas are some of the most beneficial strategies for preserving urban frog biodiversity.  相似文献   

18.
The structural complexity of habitats and the distance from the dispersion source are considered important determinants of species diversity. The fractal dimensions of substrates are a strong alternative measure for quantifying the structural complexity. In this paper, we tested the hypothesis that structural complexity and distance from a dispersion source affect the density and diversity of macro‐invertebrates on submersed macrophytes. To test this hypothesis, we used artificial substrates with different fractal dimensions, which were incubated at different distances from a dispersion source (a stand of macrophytes) in a Neotropical floodplain lake. The relationship between the structural complexity of macrophytes and the density and diversity of invertebrates attached to artificial substrates was positive and significant. On the other hand, distance from the dispersion source negatively affected both the density and diversity of the attached invertebrates. For Oligochaeta, however, there was a significant effect of structural complexity for the artificial plants positioned further away, but it was not significant in the plants positioned closer to the dispersion source. Thus, the effects of complexity depended on the distance from the dispersion source, at least for this specific group of macro‐invertebrates. These results suggest that both structural complexity and distance from the dispersion source should be considered together to explain the diversity of invertebrates in river–floodplain systems. In addition, our results show that there is great potential for using fractal dimensions as a tool to quantify structural complexity in aquatic habitats, especially at the small spatial scales perceived by macro‐invertebrates. Abstract in Portuguese is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

19.
20.
Patterns of rodent species abundance and diversity were examined over a 5 months period in two areas of a Kenyan relict tropical rainforest. The two areas are subjected to different administrations which lead to various levels of anthropogenic disturbance: one can be considered relatively disturbed and one relatively undisturbed. Anthropogenic disturbance causes a reduction in woody stem density between 0 and 1.5 m and reduced understory tree canopy cover. Rodent abundance was estimated using the program CAPTURE and compared with the number of individuals actually captured. Density was estimated with three different methods, two of these utilised a boundary strip to estimate effective size of the area trapped. Density resulted in being relatively high in both areas, so population might have been at a peak. Species richness was higher in the disturbed forest, while species diversity and evenness was higher in the undisturbed forest. We suggest that in the disturbed forest the increase in number of species might be due to sporadical entrance in the forest by non-forest species, while the decrease in diversity might be due to the decrease of lower strata vegetation that occurs in the disturbed forest, hence this factor might affect species equitability. Bibliographic data supports this hypothesis as rodent species diversity and ground vegetation cover have been found to be correlated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号