首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
KnowledgeEditor is a graphical workbench for biological experts to model biomolecular network graphs. The modeled network data are represented by SRML, and can be published via the internet with the help of plug-in module 'GSCope'. KnowledgeEditor helps us to model and analyze biological pathways based on microarray data. It is possible to analyze the drawn networks by simulating up-down regulatory cascade in molecular interactions. AVAILABILITY: KnowledgeEditor is available at http://gscope.gsc.riken.go.jp/.  相似文献   

2.
In this paper, we present a novel approach Bio-IEDM (biomedical information extraction and data mining) to integrate text mining and predictive modeling to analyze biomolecular network from biomedical literature databases. Our method consists of two phases. In phase 1, we discuss a semisupervised efficient learning approach to automatically extract biological relationships such as protein-protein interaction, protein-gene interaction from the biomedical literature databases to construct the biomolecular network. Our method automatically learns the patterns based on a few user seed tuples and then extracts new tuples from the biomedical literature based on the discovered patterns. The derived biomolecular network forms a large scale-free network graph. In phase 2, we present a novel clustering algorithm to analyze the biomolecular network graph to identify biologically meaningful subnetworks (communities). The clustering algorithm considers the characteristics of the scale-free network graphs and is based on the local density of the vertex and its neighborhood functions that can be used to find more meaningful clusters with different density level. The experimental results indicate our approach is very effective in extracting biological knowledge from a huge collection of biomedical literature. The integration of data mining and information extraction provides a promising direction for analyzing the biomolecular network  相似文献   

3.
弹性是生物分子网络重要且基础的属性之一,一方面弹性赋予生物分子网络抵抗内部噪声与环境干扰并维持其自身基本功能的能力,另一方面,弹性为网络状态的恢复制造了阻力。生物分子网络弹性研究试图回答如下3个问题:a. 生物分子网络弹性的产生机理是什么?b. 弹性影响下生物分子网络的状态如何发生转移?c. 如何预测生物网络状态转换临界点,以防止系统向不理想的状态演化?因此,研究生物分子网络弹性有助于理解生物系统内部运作机理,同时对诸如疾病发生临界点预测、生物系统状态逆转等临床应用具有重要的指导意义。鉴于此,本文主要针对以上生物分子网络弹性领域的3个热点研究问题,在研究方法和生物学应用上进行了系统地综述,并对未来生物分子网络弹性的研究方向进行了展望。  相似文献   

4.
Mammalian SP/KLF transcription factors: bring in the family   总被引:2,自引:0,他引:2  
Suske G  Bruford E  Philipsen S 《Genomics》2005,85(5):551-556
  相似文献   

5.
Much attention has recently been given to the statistical significance of topological features observed in biological networks. Here, we consider residue interaction graphs (RIGs) as network representations of protein structures with residues as nodes and inter-residue interactions as edges. Degree-preserving randomized models have been widely used for this purpose in biomolecular networks. However, such a single summary statistic of a network may not be detailed enough to capture the complex topological characteristics of protein structures and their network counterparts. Here, we investigate a variety of topological properties of RIGs to find a well fitting network null model for them. The RIGs are derived from a structurally diverse protein data set at various distance cut-offs and for different groups of interacting atoms. We compare the network structure of RIGs to several random graph models. We show that 3-dimensional geometric random graphs, that model spatial relationships between objects, provide the best fit to RIGs. We investigate the relationship between the strength of the fit and various protein structural features. We show that the fit depends on protein size, structural class, and thermostability, but not on quaternary structure. We apply our model to the identification of significantly over-represented structural building blocks, i.e., network motifs, in protein structure networks. As expected, choosing geometric graphs as a null model results in the most specific identification of motifs. Our geometric random graph model may facilitate further graph-based studies of protein conformation space and have important implications for protein structure comparison and prediction. The choice of a well-fitting null model is crucial for finding structural motifs that play an important role in protein folding, stability and function. To our knowledge, this is the first study that addresses the challenge of finding an optimized null model for RIGs, by comparing various RIG definitions against a series of network models.  相似文献   

6.
Protein folding and binding can be understood using energy landscape theory. When seeming deviations from the predictions of the funnel hypothesis are found, landscape theory helps us locate the cause. Sometimes the deviation reflects symmetry effects, allowing extra degeneracies to occur. Such effects seem to explain some kinetic anomalies in helical bundles. When binding processes were found to use apparently non-funneled landscapes this was traced to an inadequate understanding of biomolecular forces. The discrepancy allowed the discovery of new water-mediated forces - some of which act between hydrophilic residues. Introducing such forces into the algorithms greatly improves the quality of structure predictions.  相似文献   

7.
MOTIVATION: A large amount of biomolecular network data for multiple species have been generated by high-throughput experimental techniques, including undirected and directed networks such as protein-protein interaction networks, gene regulatory networks and metabolic networks. There are many conserved functionally similar modules and pathways among multiple biomolecular networks in different species; therefore, it is important to analyze the similarity between the biomolecular networks. Network querying approaches aim at efficiently discovering the similar subnetworks among different species. However, many existing methods only partially solve this problem. RESULTS: In this article, a novel approach for network querying problem based on conditional random fields (CRFs) model is presented, which can handle both undirected and directed networks, acyclic and cyclic networks and any number of insertions/deletions. The CRF method is fast and can query pathways in a large network in seconds using a PC. To evaluate the CRF method, extensive computational experiments are conducted on the simulated and real data, and the results are compared with the existing network querying methods. All results show that the CRF method is very useful and efficient to find the conserved functionally similar modules and pathways in multiple biomolecular networks.  相似文献   

8.
Background: In network biology researchers generate biomolecular networks with candidate genes or proteins experimentally-derived from high-throughput data and known biomolecular associations. Current bioinformatics research focuses on characterizing candidate genes/proteins, or nodes, with network characteristics, e.g., betweenness centrality. However, there have been few research reports to characterize and prioritize biomolecular associations (“edges”), which can represent gene regulatory events essential to biological processes.Method: We developed Weighted In-Path Edge Ranking (WIPER), a new computational algorithm which can help evaluate all biomolecular interactions/associations (“edges”) in a network model and generate a rank order of every edge based on their in-path traversal scores and statistical significance test result. To validate whether WIPER worked as we designed, we tested the algorithm on synthetic network models.Results: Our results showed WIPER can reliably discover both critical “well traversed in-path edges”, which are statistically more traversed than normal edges, and “peripheral in-path edges”, which are less traversed than normal edges. Compared with other simple measures such as betweenness centrality, WIPER provides better biological interpretations. In the case study of analyzing postanal pig hearts gene expression, WIPER highlighted new signaling pathways suggestive of cardiomyocyte regeneration and proliferation. In the case study of Alzheimer’s disease genetic disorder association, WIPER reports SRC:APP, AR:APP, APP:FYN, and APP:NES edges (gene-gene associations) both statistically and biologically important from PubMed co-citation.Conclusion: We believe that WIPER will become an essential software tool to help biologists discover and validate essential signaling/regulatory events from high-throughput biology data in the context of biological networks.Availability: The free WIPER API is described at discovery.informatics.uab.edu/wiper/  相似文献   

9.
The rapid accumulation of various network-related data from multiple species and conditions (e.g. disease versus normal) provides unprecedented opportunities to study the function and evolution of biological systems. Comparison of biomolecular networks between species or conditions is a promising approach to understanding the essential mechanisms used by living organisms. Computationally, the basic goal of this network comparison or 'querying' is to uncover identical or similar subnetworks by mapping the queried network (e.g. a pathway or functional module) to another network or network database. Such comparative analysis may reveal biologically or clinically important pathways or regulatory networks. In particular, we argue that user-friendly tools for network querying will greatly enhance our ability to study the fundamental properties of biomolecular networks at a system-wide level.  相似文献   

10.

Background  

The functions of human cells are carried out by biomolecular networks, which include proteins, genes, and regulatory sites within DNA that encode and control protein expression. Models of biomolecular network structure and dynamics can be inferred from high-throughput measurements of gene and protein expression. We build on our previously developed fuzzy logic method for bridging quantitative and qualitative biological data to address the challenges of noisy, low resolution high-throughput measurements, i.e., from gene expression microarrays. We employ an evolutionary search algorithm to accelerate the search for hypothetical fuzzy biomolecular network models consistent with a biological data set. We also develop a method to estimate the probability of a potential network model fitting a set of data by chance. The resulting metric provides an estimate of both model quality and dataset quality, identifying data that are too noisy to identify meaningful correlations between the measured variables.  相似文献   

11.
With advances in structure genomics, it is now recognized that knowledge of structure alone is insufficient to understand and control the mechanisms of biomolecular function. Additional information in the form of dynamics is needed. As demonstrated in a large number of studies, the machinery of proteins and their complexes can be understood to a good approximation by adopting Gaussian (or elastic) network models (GNM) for simplified normal mode analyses. While this approximation lacks chemical details, it provides us with a means for assessing the collective motions of large structures/assemblies and perform a comparative analysis of a series of proteins, thus providing insights into the mechanical aspects of biomolecular dynamics. In this paper, we discuss recent applications of GNM to a series of enzymes as well as large structures such as the HK97 bacteriophage viral capsids. Understanding the dynamics of large protein structures can be computationally challenging. To this end, we introduce a new approach for building a hierarchical, reduced rank representation of the protein topology and consequently the fluctuation dynamics.  相似文献   

12.
Babur O  Colak R  Demir E  Dogrusoz U 《Proteomics》2008,8(11):2196-2198
High-throughput experiments, most significantly DNA microarrays, provide us with system-scale profiles. Connecting these data with existing biological networks poses a formidable challenge to uncover facts about a cell's proteome. Studies and tools with this purpose are limited to networks with simple structure, such as protein-protein interaction graphs, or do not go much beyond than simply displaying values on the network. We have built a microarray data analysis tool, named PATIKAmad, which can be used to associate microarray data with the pathway models in mechanistic detail, and provides facilities for visualization, clustering, querying, and navigation of biological graphs related with loaded microarray experiments. PATIKAmad is freely available to noncommercial users as a new module of PATIKAweb at http://web.patika.org.  相似文献   

13.
Huynen MA  Gabaldón T  Snel B 《FEBS letters》2005,579(8):1839-1845
The availability of genome sequences and functional genomics data from multiple species enables us to compare the composition of biomolecular systems like biochemical pathways and protein complexes between species. Here, we review small- and large-scale, "genomics-based" approaches to biomolecular systems variation. In general, caution is required when comparing the results of bioinformatics analyses of genomes or of functional genomics data between species. Limitations to the sensitivity of sequence analysis tools and the noisy nature of genomics data tend to lead to systematic overestimates of the amount of variation. Nevertheless, the results from detailed manual analyses, and of large-scale analyses that filter out systematic biases, point to a large amount of variation in the composition of biomolecular systems. Such observations challenge our understanding of the function of the systems and their individual components and can potentially facilitate the identification and functional characterization of sub-systems within a system. Mapping the inter-species variation of complex biomolecular systems on a phylogenetic species tree allows one to reconstruct their evolution.  相似文献   

14.

Background  

Biomolecular networks dynamically respond to stimuli and implement cellular function. Understanding these dynamic changes is the key challenge for cell biologists. As biomolecular networks grow in size and complexity, the model of a biomolecular network must become more rigorous to keep track of all the components and their interactions. In general this presents the need for computer simulation to manipulate and understand the biomolecular network model.  相似文献   

15.
BNArray is a systemized tool developed in R. It facilitates the construction of gene regulatory networks from DNA microarray data by using Bayesian network. Significant sub-modules of regulatory networks with high confidence are reconstructed by using our extended sub-network mining algorithm of directed graphs. BNArray can handle microarray datasets with missing data. To evaluate the statistical features of generated Bayesian networks, re-sampling procedures are utilized to yield collections of candidate 1st-order network sets for mining dense coherent sub-networks. AVAILABILITY: The R package and the supplementary documentation are available at http://www.cls.zju.edu.cn/binfo/BNArray/.  相似文献   

16.
Community detection is a classic and very difficult task in complex network analysis. As the increasingly explosion of social media, scaling community detection methods to large networks has attracted considerable recent interests. In this paper, we propose a novel SIMPLifying and Ensembling (SIMPLE) framework for parallel community detection. It employs the random link sampling to simplify the network and obtain basic partitionings on every sampled graphs. Then, the K-means-based Consensus Clustering is used to ensemble a number of basic partitionings to get high-quality community structures. All of phases in SIMPLE, including random sampling, sampled graph partitioning, and consensus clustering, are encapsulated into MapReduce for parallel execution. Experiments on six real-world social networks analyze key parameters and factors inside SIMPLE, and demonstrate both effectiveness and efficiency of the SIMPLE.  相似文献   

17.
MOTIVATION: Beyond methods for a gene-wise annotation and analysis of sequenced genomes new automated methods for functional analysis on a higher level are needed. The identification of realized metabolic pathways provides valuable information on gene expression and regulation. Detection of incomplete pathways helps to improve a constantly evolving genome annotation or discover alternative biochemical pathways. To utilize automated genome analysis on the level of metabolic pathways new methods for the dynamic representation and visualization of pathways are needed. RESULTS: PathFinder is a tool for the dynamic visualization of metabolic pathways based on annotation data. Pathways are represented as directed acyclic graphs, graph layout algorithms accomplish the dynamic drawing and visualization of the metabolic maps. A more detailed analysis of the input data on the level of biochemical pathways helps to identify genes and detect improper parts of annotations. As an Relational Database Management System (RDBMS) based internet application PathFinder reads a list of EC-numbers or a given annotation in EMBL- or Genbank-format and dynamically generates pathway graphs.  相似文献   

18.
MOTIVATION: We focus on the prediction of disulfide bridges in proteins starting from their amino acid sequence and from the knowledge of the disulfide bonding state of each cysteine. The location of disulfide bridges is a structural feature that conveys important information about the protein main chain conformation and can therefore help towards the solution of the folding problem. Existing approaches based on weighted graph matching algorithms do not take advantage of evolutionary information. Recursive neural networks (RNN), on the other hand, can handle in a natural way complex data structures such as graphs whose vertices are labeled by real vectors, allowing us to incorporate multiple alignment profiles in the graphical representation of disulfide connectivity patterns. RESULTS: The core of the method is the use of machine learning tools to rank alternative disulfide connectivity patterns. We develop an ad-hoc RNN architecture for scoring labeled undirected graphs that represent connectivity patterns. In order to compare our algorithm with previous methods, we report experimental results on the SWISS-PROT 39 dataset. We find that using multiple alignment profiles allows us to obtain significant prediction accuracy improvements, clearly demonstrating the important role played by evolutionary information. AVAILABILITY: The Web interface of the predictor is available at http://neural.dsi.unifi.it/cysteines  相似文献   

19.
Understanding the basic forces that determine molecular recognition helps to elucidate mechanisms of biological processes and facilitates discovery of innovative biotechnological methods and materials for therapeutics, diagnostics, and separation science. The ability to measure interaction properties of biological macromolecules quantitatively across a wide range of affinity, size, and purity is a growing need of studies aimed at characterizing biomolecular interactions and the structural elements that drive them. Optical biosensors have provided an increasingly impactful technology for such biomolecular interaction analyses. These biosensors record the binding and dissociation of macromolecules in real time by transducing the accumulation of mass of an analyte molecule at the sensor surface coated with ligand molecule into an optical signal. Interactions of analytes and ligands can be analyzed at a microscale and without the need to label either interactant. Sensors enable the detection of bimolecular interaction as well as multimolecular assembly. Most notably, the method is quantitative and kinetic, enabling determination of both steady-state and dynamic parameters of interaction. This article describes the basic methodology of optical biosensors and presents several examples of its use to investigate such biomolecular systems as cytokine growth factor-receptor recognition, coagulation factor assembly, and virus-cell docking.  相似文献   

20.
Biology presents many examples of planar distribution and structural networks having dense sets of closed loops. An archetype of this form of network organization is the vasculature of dicotyledonous leaves, which showcases a hierarchically-nested architecture containing closed loops at many different levels. Although a number of approaches have been proposed to measure aspects of the structure of such networks, a robust metric to quantify their hierarchical organization is still lacking. We present an algorithmic framework, the hierarchical loop decomposition, that allows mapping loopy networks to binary trees, preserving in the connectivity of the trees the architecture of the original graph. We apply this framework to investigate computer generated graphs, such as artificial models and optimal distribution networks, as well as natural graphs extracted from digitized images of dicotyledonous leaves and vasculature of rat cerebral neocortex. We calculate various metrics based on the asymmetry, the cumulative size distribution and the Strahler bifurcation ratios of the corresponding trees and discuss the relationship of these quantities to the architectural organization of the original graphs. This algorithmic framework decouples the geometric information (exact location of edges and nodes) from the metric topology (connectivity and edge weight) and it ultimately allows us to perform a quantitative statistical comparison between predictions of theoretical models and naturally occurring loopy graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号