首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigated the effect of thyroxine against neuronal damage caused by ischemia in the rat. Neuronal damage was evaluated in the hippocampal CA1 subfield 7 days after a 10 min forebrain ischemia. Thyroxine was administered to animals divided in three groups: 15 min prior to ischemia (group 1), immediately after ischemia (group 2), and both before and after ischemia (group 3). The treatment of rats with a single dose of thyroxine given pre- or postischemia failed to prevent the loss of CA1 pyramidal cells. In contrast, repetitive administration of thyroxine before and after ischemia reduced the damage of the CA1 pyramidal cells. The mechanisms possibly underlying this neuroprotective effect are discussed.  相似文献   

2.
Synchronization of activity of anatomically distributed groups of neurons represents a fundamental event in the processing of information in the brain. While this phenomenon is believed to result from dynamic interactions within the neuronal circuitry, how exactly populations of neurons become synchronized remains largely to be clarified. We propose that astrocytes are directly involved in the generation of neuronal synchrony in the hippocampus. By using a combination of experimental approaches in hippocampal slice preparations, including patch-clamp recordings and confocal microscopy calcium imaging, we studied the effect on CA1 pyramidal neurons of glutamate released from astrocytes upon various stimuli that trigger Ca2+ elevations in these glial cells, including Schaffer collateral stimulation. We found that astrocytic glutamate evokes synchronous, slow inward currents (SICs) and Ca2+ elevations in CA1 pyramidal neurons by acting preferentially, if not exclusively, on extrasynaptic NMDA receptors. Due to desensitization, AMPA receptors were not activated by astrocytic glutamate unless cyclothiazide was present. In the virtual absence of extracellular Mg2+, glutamate released from astrocytes was found to evoke, in paired recordings, highly synchronous SICs from two CA1 pyramidal neurons and, in Ca2+ imaging experiments, Ca2+ elevations that occurred synchronously in domains composed of 2-12 CA1 neurons. In the presence of extracellular Mg2+ (1 mM), synchronous SICs in two neurons as well as synchronous Ca2+ elevations in neuronal domains were still observed, although with a reduced frequency. Our results reveal a functional link between astrocytic glutamate and extrasynaptic NMDA receptors that contributes to the overall dynamics of neuronal synchrony. Our observations also raise a series of questions on possible roles of this astrocyte-to-neuron signaling in pathological changes in the hippocampus such as excitotoxic neuronal damage or the generation of epileptiform activity.  相似文献   

3.
Neurophysiological changes of hippocampal neurons were compared before and after transient forebrain ischemia using intracellular recording and staining techniques in vivo. Ischemic depolarization (ID) was used as an indication of severe ischemia. Under halothane anesthesia, approximately 13 min of ID consistently produced severe neuronal damage in the CA1 region of rat hippocampus, while CA3 pyramidal neurons and dentate granule cells remained intact. After such severe ischemia, approximately 60% of the CA1 neurons exhibited a synaptic potentiation. The excitability of these neurons progressively decreased following reperfusion. Approximately 30% of the CA1 neurons showed a synaptic depression following ischemia. The excitability of these neurons transiently decreased following reperfusion. After ischemia of the same severity, both synaptic transmission and excitability of CA3 and granule cells transiently depressed. These data suggest that ischemia-induced synaptic potentiation may be associated with the pathogenesis of neuronal damage following ischemia, and that the synaptic depression may have protective effects on hippocampal neurons after ischemic insult.  相似文献   

4.
目的和方法:应用胎鼠皮层细胞原代培养,建立神经元的体外“缺血/再灌注”模型,观察神经元缺血/再灌注后DNA链的损伤。应用PANT和TUNEL染色分别检测缺血/再灌注后DNA单链和双链损伤。结果:神经元缺糖缺氧2h引起极少量细胞死亡,4h引起少于30%的细胞死亡,而6-8h的缺糖缺氧引起的细胞死亡数量达到80%以上,6h缺糖缺氧再灌注10-18h,细胞死亡达高峰,而在8h缺糖缺氧再灌注2h细胞死亡已经达高峰。在缺糖缺氧2,4,6,8h灌注5min,PANT阳性细胞分别达30%,50%,80%,90%。而在同样的情况下,TUNEL染色阳性细胞数没有明显增加。结论:体外神经元缺糖缺氧再灌注早期即出现DNA链的损伤,且以单链损伤为主。  相似文献   

5.
Grewer C  Gameiro A  Zhang Z  Tao Z  Braams S  Rauen T 《IUBMB life》2008,60(9):609-619
Glutamate transporters remove the excitatory neurotransmitter glutamate from the extracellular space after neurotransmission is complete, by taking glutamate up into neurons and glia cells. As thermodynamic machines, these transporters can also run in reverse, releasing glutamate into the extracellular space. Because glutamate is excitotoxic, this transporter-mediated release is detrimental to the health of neurons and axons, and it, thus, contributes to the brain damage that typically follows a stroke. This review highlights current ideas about the molecular mechanisms underlying glutamate uptake and glutamate reverse transport. It also discusses the implications of transporter-mediated glutamate release for cellular function under physiological and patho-physiological conditions.  相似文献   

6.
During recovery after a transient global cerebral ischemia (TGCI), rat electrocorticogram (ECoG) shows epochs of synchronized activity (SA) alternating with epochs of low amplitude background activity (BA). The aim of this study was to compare the changes in these electrical activities during a 30-min recovery period that followed either a noninjuring (3 minutes, N=10) or an injuring (10 minutes, N=10) TGCI. During TGCI there was a 3 fold reduction in amplitudes of both SA and BA but no changes in frequency. During reperfusion following a 3 minutes TGCI, the amplitudes of both SA and BA recovered to about 70%. During the reperfusion that followed a 10 minutes TGCI, BA showed no recovery, whereas SA recovered to about 40%. During the 30 min reperfusion, there was a timedependent decrease in the frequency of SA, but independent on the duration of TGCI. In contrast, the frequency of the BA did not change during reperfusion. Our data indicate that following cerebral ischemia the recovery of SA can take place independently of BA. The lack of recovery in BA may indicate early subcortical neuronal damage.  相似文献   

7.
Resveratrol (3,5,4'-trihydroxystilbene) is a natural polyphenol which is rich in grape seeds and skin. Several studies have revealed that resveratrol possesses neuroprotective effects. In the case of global brain ischemia, there are few reports regarding the protective effect of resveratrol. Therefore, the influence of resveratrol on neuronal damage after transient global brain ischemia remains to be clarified. In the current study, C57BL/6 black mice were subjected to 20 min of transient global brain ischemia and followed by 72 h of reperfusion. Resveratrol (20 or 40 mg/kg, once daily, dissolved in 0.5% carboxymethylcellulose) was administered orally for 7 days before ischemia and daily until the mice were euthanized. The effect of lower or higher dose of resveratrol on neuronal damage, matrix metalloproteinase (MMP) activity and in situ DNA fragmentation (TUNEL) assay in the hippocampus after global ischemia was examined. Neuronal damages were remarkable in CA1 and CA2 pyramidal cell layers after global ischemia. In resveratrol-treated mice (40 mg/kg), neuronal damage was significantly reduced compared with vehicle-treated mice. Mice treated with resveratrol showed reduced MMP-9 activity. Resveratrol also inhibited TUNEL staining. These data suggest that resveratrol, a natural polyphenol, reduces hippocampal neuronal cell damage following transient global ischemia by reducing MMP-9 activity.  相似文献   

8.
Previously we have reported that oxidative stress induced by hydrogen peroxide exacerbates the effect of an Na+ load in isolated nerve terminals, with a consequence of an ATP depletion, [Ca2+]i and [Na+]i deregulation, and collapse of mitochondrial membrane potential. In the present study, the release of glutamate in response to a combined effect of an [Na+] load and oxidative stress was measured in isolated nerve terminals over an incubation for 15 min. Exposure to hydrogen peroxide (100 micro m) had no effect on the release of glutamate, but significantly enhanced the Ca2+-independent glutamate release induced by a small [Na+] load achieved with 10 micro m veratridine. The effect of a larger Na+ load induced by 40 micro m veratridine was not further increased by hydrogen peroxide; in contrast the external Ca2+-dependent glutamate release was completely eliminated by the oxidant under this condition. The effects of oxidative stress superimposed on a Na+ load are consistent with at least two factors: (i) a relatively modest Na+ load induced by veratridine is augmented by H2O2 giving rise to an increased Ca2+-independent release of glutamate (ii) oxidative stress in combination with a larger Na+ load causes severe ATP depletion limiting the Ca2+-dependent vesicular glutamate release. Given the concurrent presence of an Na+ load and oxidative stress in ischemia/reperfusion these results indicate that the extent of the Na+ load developing during the ischemic period could determine the release of glutamate induced by an oxidative stress during reperfusion.  相似文献   

9.
10.
We report on the expression of ionotropic glutamate receptor subunits in primary neuronal cultures from rat cortex, hippocampus and cerebellum and of metabotropic glutamate (mGlu) receptor subtypes in these neuronal cultures as well as in cortical astroglial cultures. We found that the NMDA receptor (NR) subunits NR1, NR2A and NR2B were expressed in all three cultures. Each of the three cultures showed also expression of the four AMPA receptor subunits. Although RT-PCR detected mRNA of all kainate (KA) subunits in the three cultures, western blot showed only expression of Glu6 and KA2 receptor subunits. The expression analysis of mGlu receptors indicated the presence of all mGlu receptor subtype mRNAs in the three neuronal cultures, except for mGlu2 receptor mRNA, which was not detected in the cortical and cerebellar culture. mGlu1a/alpha, -2/3 and -5 receptor proteins were present in all three cultures, whereas mGlu4a and mGlu8a receptor proteins were not detected. Astroglial cultures were grown in either serum-containing or chemically defined medium. Only mGlu5 receptor protein was found in astroglial cultures grown in serum-containing medium. When astrocytes were cultured in chemically defined medium, mGlu3, -5 and -8 receptor mRNAs were detected, but at the protein level, still only mGlu5 receptor was found.  相似文献   

11.
In ischemia, cardiac sympathetic nerve endings (cSNE) release excessive amounts of norepinephrine (NE) via the nonexocytotic Na(+)-dependent NE transporter (NET). NET, normally responsible for NE reuptake into cSNE, reverses in myocardial ischemia, releasing pathological amounts of NE. This carrier-mediated NE release can be triggered by elevated intracellular Na(+) levels in the axoplasm. The fact that ischemia activates the intracellular pH regulatory Na(+)/H(+) exchanger (NHE) in cSNE is pivotal in increasing intraneuronal Na(+) and thus activating carrier-mediated NE release. Angiotensin (ANG) II levels are also significantly elevated in the ischemic heart. However, the effects of ANG II on cSNE, which express the ANG II receptor, AT(1)R, are poorly understood. We hypothesized that ANG II-induced AT(1)R activation in cSNE may be positively coupled to NHE activity and thereby facilitate the pathological release of NE associated with myocardial ischemia. We tested this hypothesis in a cSNE model, human neuroblastoma cells stably transfected with rat recombinant AT(1A) receptor (SH-SY5Y-AT(1A)). SH-SY5Y-AT(1A) constitutively expresses amiloride-sensitive NHE and the NET. NHE activity was assayed in BCECF-loaded SH-SY5Y-AT(1A) as the rate of the Na(+)-dependent alkalinization in response to an acute acidosis. ANG II activation of AT(1)R markedly increased NHE activity in SH-SY5Y-AT(1A) via a Ca(2+)-dependent pathway and promoted carrier-mediated NE release. In addition, in guinea pig cSNE expressing native AT(1)R, ANG II elicited carrier-mediated NE release. In SH-SY5Y-AT(1A) and cSNE, amiloride inhibited the ANG II-mediated release of NE. Our results provide a link between AT(1)R and NHE in cSNE, which can exacerbate carrier-mediated NE release during protracted myocardial ischemia.  相似文献   

12.
13.
Glutamate release promotes growth of malignant gliomas   总被引:18,自引:0,他引:18  
Glutamate neurotoxicity has been implicated in stroke, head trauma, multiple sclerosis and neurodegenerative diseases. Although recent data show that cultured glioma cells secrete glutamate, the growth potential of brain tumors has not yet been linked to an excitotoxic mechanism. Using bioluminescence detection of glutamate release from freshly prepared brain slices, we show that implanted glioma cells continue to secrete glutamate. Moreover, gliomas with high glutamate release have a distinct growth advantage in host brain that is not present in vitro. Treatment with the NMDA receptor antagonists MK801 or memantine slowed the growth of glutamate-secreting tumors in situ, suggesting that activation of NMDA receptors facilitates tumor expansion. These findings support a new approach for therapy of brain tumors, based upon antagonizing glutamate secretion or its target receptors.  相似文献   

14.
目的:研究脑缺血/再灌注(I/R)损伤后瘦素受体(OB-R)表达的变化情况.方法:雄性成年Wistar大鼠20只,随机分成4组:假手术24 h、72 h对照组及I/R 24 h、72 h实验组.线栓法制备大鼠局灶性脑皮质I/R损伤模型,在脑I/R后相应时间点分别处死大鼠,采用免疫组织化学、免疫电镜方法观察大脑皮质OB-R的表达,在光镜及电镜下观察神经元损伤改变.结果:左顶叶皮质锥体细胞、血管内皮、脉络丛发现有OB-R阳性表达;与假手术对照组相比,I/R 24 h(I/R早期)锥体细胞OB-R免疫反应阳性细胞表达减少(P<0.05),I/R 72 h(I/R晚期)锥体细胞OB-R免疫反应阳性细胞减少更明显(P<0.001);光镜及电镜对缺血中心区神经元的观察均显示I/R晚期的神经元损伤明显重于早期.结论:脑I/R损伤后早期神经元损害和迟发性神经元损害均伴随有OB-R的表达减少,且迟发性神经元损害表达减少更明显,因此在脑梗塞的防治中有必要对瘦素及其OB-R的作用进一步研究.  相似文献   

15.
Li SY  Yang D  Yeung CM  Yu WY  Chang RC  So KF  Wong D  Lo AC 《PloS one》2011,6(1):e16380
Neuronal cell death, glial cell activation, retinal swelling and oxidative injury are complications in retinal ischemia/reperfusion (I/R) injuries. Lycium barbarum polysaccharides (LBP), extracts from the wolfberries, are good for "eye health" according to Chinese medicine. The aim of our present study is to explore the use of LBP in retinal I/R injury. Retinal I/R injury was induced by surgical occlusion of the internal carotid artery. Prior to induction of ischemia, mice were treated orally with either vehicle (PBS) or LBP (1 mg/kg) once a day for 1 week. Paraffin-embedded retinal sections were prepared. Viable cells were counted; apoptosis was assessed using TUNEL assay. Expression levels of glial fibrillary acidic protein (GFAP), aquaporin-4 (AQP4), poly(ADP-ribose) (PAR) and nitrotyrosine (NT) were investigated by immunohistochemistry. The integrity of blood-retinal barrier (BRB) was examined by IgG extravasations. Apoptosis and decreased viable cell count were found in the ganglion cell layer (GCL) and the inner nuclear layer (INL) of the vehicle-treated I/R retina. Additionally, increased retinal thickness, GFAP activation, AQP4 up-regulation, IgG extravasations and PAR expression levels were observed in the vehicle-treated I/R retina. Many of these changes were diminished or abolished in the LBP-treated I/R retina. Pre-treatment with LBP for 1 week effectively protected the retina from neuronal death, apoptosis, glial cell activation, aquaporin water channel up-regulation, disruption of BRB and oxidative stress. The present study suggests that LBP may have a neuroprotective role to play in ocular diseases for which I/R is a feature.  相似文献   

16.
BMY-14802, a selective sigma ligand currently under investigation as an atypical antipsychotic agent, was tested for potential anti-ischemic activity. BMY-14802 (10, 30 and 50 mg/kg) did not produce any stereotyped behavior, ataxia or seizures. When gerbils were pretreated with 10, 30 or 50 mg/kg of BMY-14802 30 min prior to bilateral occlusion of carotid arteries for 5 min, BMY-14802 significantly protected against ischemia-induced neuronal loss in the hippocampus. Thus, BMY-14802 may also be useful as an anti-ischemic agent that does not produce psychotomimetic effects.  相似文献   

17.
The relationship between the amount of exercise-induced muscle damage and the release of creatine kinase (CK), aspartate aminotransferase (AST), and lactate dehydrogenase (LD) was studied. Gender differences in enzyme release and histological damage were also studied. Serial pre- and postexercise blood samples were drawn from untrained male and female catheterized Wistar rats that ran 1.5 or 2.5 h on a treadmill (incline 10 degrees). Three days postexercise, muscle damage was quantified morphometrically in five different hindlimb and forearm muscles. The 1.5 and 2.5 h of exercise elicited histological damage only in the soleus muscle. Significant plasma CK, AST, and LD elevations were found immediately postexercise both in male and female rats. However, the enzyme release was significantly greater in males than in females. Part of this could be explained by differences in clearance rates between males and females. No gender difference in amount of histological damage was found. The actual volume of histological muscle damage was significantly less than the calculated muscle damage based on enzyme release. An increase in the exercise duration from 1.5 to 2.5 h resulted in a disproportional increase in both histological muscle damage and muscle enzyme release. From the present study it is concluded that muscle enzyme release is not clearly reflected in histological muscle damage.  相似文献   

18.
19.
Astrocytes release glutamate (Glu) by the mobilisation of intracellular concentrations of Ca++. The rationale of the present work was to test whether Glu and its agonists, known to affect intracellular Ca++ content via the activation of metabotropic and ionotropic receptors, could modulate the astrocytic release of excitatory aminoacids. NMR experiments showed that Glu released uniformly labelled [13C] Glu in the incubation medium of rat astrocytes in primary cultures. Further experiments confirmed this finding and showed that the incubation of these cells with agonists and antagonists of Glu ionotropic and metabotropic receptors, produced a different modulation of Glu and aspartate release. The observed activations of the various receptors suggest a complex modulation of the release of the excitatory aminoacids. Such a release of is interpreted in terms of metabolic microzonation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号