首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
蚜虫种群时空分布动态模型   总被引:2,自引:0,他引:2  
李丹  赵惠燕  胡想顺 《生态学报》2010,30(18):4986-4992
种群空间格局是昆虫种群的重要属性,是为害虫防治提供动态信息的重要前提。关于种群空间格局的时空动态,前人曾建立了富立叶模型和有阻尼自由震荡模型,但忽略了生境资源和空间资源的限制,不能很好地描述昆虫种群在自然界摆布状况的动态行为。因此,在前人研究的基础上,根据蚜虫在自然界的聚集扩散行为逐步建立了描述蚜虫种群聚集扩散规律的变幅、变周期时空分布动态模型,即:y=Ae-nt[sin(w0emtt+φ)+b]+c,并应用该模型对麦长管蚜(Sitobion avenae Fabricius)、麦二叉蚜(Schizaphis graminum Rondani)、禾缢管蚜(Rhopalosiphum padi Linnaeus)和玉米蚜(Rhopalosiphum maidis Fitch)的实验数据进行了拟合。结果表明,麦蚜种群和玉米蚜种群呈现出不同的规律,3种麦蚜均为减幅减周期的变化趋势,玉米蚜则表现为减幅增周期的变化趋势。此外,该模型的拟合效果较好(R20.942,SSE2.6)、生物意义明确,不仅可用于描述蚜虫以及蚜虫以外的其他昆虫和螨类种群的时空动态,还可准确描述不同年龄阶段和不同空间位置上种群的动态,具有普遍适用性。应用该模型考察不同种蚜虫在同一作物上的竞争情况和蚜虫与其天敌的空间分布动态,可为害虫的综合防治奠定基础;对不同小麦抗性品种上同一种蚜虫的聚集扩散行为进行刻画、分析,还可为小麦的抗性育种提供参考依据。  相似文献   

2.
3.
The difficulty of integrating multiple theories, data and methods has slowed progress towards making unified inferences of ecological change generalizable across large spatial, temporal and taxonomic scales. However, recent progress towards a theoretical synthesis now provides a guiding framework for organizing and integrating all primary data and methods for spatiotemporal assemblage‐level inference in ecology. In this paper, we describe how recent theoretical developments can provide an organizing paradigm for linking advances in data collection and methodological frameworks across disparate ecological sub‐disciplines and across large spatial and temporal scales. First, we summarize the set of fundamental processes that determine change in multispecies assemblages across spatial and temporal scales by reviewing recent theoretical syntheses of community ecology. Second, we review recent advances in data and methods across the main sub‐disciplines concerned with ecological inference across large spatial, temporal and taxonomic scales, and organize them based on the primary fundamental processes they include, rather than the spatiotemporal scale of their inferences. Finally, we highlight how iteratively focusing on only one fundamental process at a time, but combining all relevant spatiotemporal data and methods, may reduce the conceptual challenges to integration among ecological sub‐disciplines. Moreover, we discuss a number of avenues for decreasing the practical barriers to integration among data and methods. We aim to reconcile the recent convergence of decades of thinking in community ecology and macroecology theory with the rapid progress in spatiotemporal approaches for assemblage‐level inference, at a time where a robust understanding of spatiotemporal change in ecological assemblages is more crucial than ever to conserve biodiversity.  相似文献   

4.
Recent developments of the theory of stochastic matrix modeling have made it possible to estimate general properties of age- and size-structured populations in fluctuating environments. However, applications of the theory to natural populations are still few. The empirical studies which have used stochastic matrix models are reviewed here to examine whether predictions made by the theory can be generally found in wild populations. The organisms studied include terrestrial grasses and herbs, a seaweed, a fish, a reptile, a deer and some marine invertebrates. In all the studies, the stochastic population growth rate (ln λ s ) was no greater than the deterministic population growth rate determined using average vital rates, suggesting that the model based only on average vital rates may overestimate growth rates of populations in fluctuating environments. Factors affecting ln λ s include the magnitude of variation in vital rates, probability distribution of random environments, fluctuation in different types of vital rates, covariances between vital rates, and autocorrelation between successive environments. However, comprehensive rules were hardly found through the comparisons of the empirical studies. Based on shortcomings of previous studies, I address some important subjects which should be examined in future studies.  相似文献   

5.
Coral recruitment describes the addition of new individuals to populations, and it is one of the most fundamental demographic processes contributing to population size. As many coral reefs around the world have experienced large declines in coral cover and abundance, there has been great interest in understanding the factors causing coral recruitment to vary and the conditions under which it can support community resilience. While progress in these areas is being facilitated by technological and scientific advances, one of the best tools to quantify recruitment remains the humble settlement tile, variants of which have been in use for over a century. Here I review the biology and ecology of coral recruits and the recruitment process, largely as resolved through the use of settlement tiles, by: (i) defining how the terms ‘recruit’ and ‘recruitment’ have been used, and explaining why loose terminology has impeded scientific advancement; (ii) describing how coral recruitment is measured and why settlement tiles have value for this purpose; (iii) summarizing previous efforts to review quantitative analyses of coral recruitment; (iv) describing advances from hypothesis-driven studies in determining how refuges, seawater flow, and grazers can modulate coral recruitment; (v) reviewing the biology of small corals (i.e. recruits) to understand better how they respond to environmental conditions; and (vi) updating a quantitative compilation of coral recruitment studies extending from 1974 to present, thus revealing long-term global declines in density of recruits, juxtaposed with apparent resilience to coral bleaching. Finally, I review future directions in the study of coral recruitment, and highlight the need to expand studies to deliver taxonomic resolution, and explain why time series of settlement tile deployments are likely to remain pivotal in quantifying coral recruitment.  相似文献   

6.
A five-year mark–recapture study of dusky rats (Rattus colletti) on the Adelaide River floodplain, within the Australian wet–dry tropics, revealed substantial spatial and temporal variation in demographic characteristics (abundance, condition, and rates of survival, growth, and reproduction) of the rats. Our data suggest that annual variation in the intensity and timing of monsoonal rainfall during the ‘wet-season’ is the main factor driving the demography of the rats. When total rainfall figures are modified to reflect the magnitude and duration of inundation of the floodplain each year, a link is evident between rainfall patterns and the rat population dynamics. Minor spatial variations in elevation (and hence, in the duration of inundation) across the floodplain engender large differences in rat growth rates, condition factors, survival rates, and the duration of reproductive activity each year. Because these rats have very high reproductive rates, small rain-induced differences in the duration of their reproductive season (i.e. number of litters per year) can cause massive differences in subsequent rat abundances. Hence, rat numbers can be predicted from rainfall patterns during the preceding wet-season. Similar links between rainfall, the duration of breeding, and fluctuations in abundance may typify many rodent populations in tropical and arid regions of the world.  相似文献   

7.
8.
9.
Orchids (Orchidaceae) are a family of flowering plants with a high proportion of threatened taxa making them an important focus of plant conservation. Orchid conservation efforts are most effective when informed by reliable demographic research. We utilized transition matrix models to examine the population dynamics and demography within sympatric populations of a species pair of terrestrial round-leaved orchids, Platanthera macrophylla and P. orbiculata. The models were parameterized from a large data set spanning 9 years from field observations of over 1,000 orchids. Life table response experiments (LTRE) were used to identify which life history transitions, and which vital rates within those transitions, most contributed to observed differences between the two species and most contributed to interannual variation within each species. Results from mean transition matrices projected finite rates of population growth that were not significantly different between the two species, with P. macrophylla near the replacement rate and P. orbiculata below it. LTRE revealed that the difference in population growth rates between the two species was mostly due to differences in fecundity (flowering adult to protocorm transition) driven by differences in fruit set and seed germination into protocorm, which were much greater for P. macrophylla. The two primary contributors to interannual variation in population growth rates for both orchids were adult survival and fruit set, respectively. These findings indicate that any environmental disturbances harming adult survival or fecundity will have a disproportionately negative effect on the orchid populations.  相似文献   

10.
11.
The mapping of environment, through variation in individuals' life histories, to dynamics can be complex and often poorly known. Consequently, it is not clear how important it is dynamically. To explore this, I incorporated lessons from an empirical system, a soil mite, into an individual-based model. Individuals compete for resource and allocate this according to eight 'genetic' rules that specify investment in growth or reserves (which influences survival or fecundity), size at maturation and reproductive allocation. Density dependence, therefore, emerges from competition for food, limiting individual's growth and fecundity. We use this model to examine the role that genetic and phenotypically plastic variation plays in dynamics, by fixing phenotypes, by allowing phenotypes to vary plastically and by creating genetic variation between individuals. Variation, and how it arises, influences short- and long-run dynamics in a way comparable in magnitude with halving food supply. In particular, by switching variation on and off, it is possible to identify a range of processes necessary to capture the dynamics of the 'full model'. Exercises like this can help identify key processes and parameters, but a concerted effort is needed across many different systems to search for shared understanding of both process and modelling.  相似文献   

12.
SUMMARY 1. An image analysis technique was developed for the semiautomatic determination of abundance, size distribution and biomass in Daphnia cultures. This allowed detailed observations of growth, demography and biomass accumulation in live populations, avoiding artifacts caused by subsampling and sampling losses.
2. The image analysis method gave fast, non-destructive and reliable individual counts, even in cultures with high density and a large fraction of juveniles.
3. In Daphnia , animal width changes with nutritional status and growth within instar, while length changes only at the moult. Thus, estimation of individual biomass using an ellipsoidal model based on animal width gave improved biomass calculations compared to manual counting, sizing, and length : weight regressions.
4. The power of the image analysis technique for assessing population growth and size structure was demonstrated in two 40-day experiments, with Daphnia magna feeding on the green algae Selenastrum capricornutum in a two-stage chemostat system.  相似文献   

13.
Decomposing variation in population growth into contributions from both ecological and evolutionary processes is of fundamental concern, particularly in a world characterized by rapid responses to anthropogenic threats. Although the impact of ecological change on evolutionary response has long been acknowledged, the converse has predominantly been neglected, especially empirically. By applying a recently published conceptual framework, we assess and contrast the relative importance of phenotypic and environmental variability on annual population growth in five ungulate populations. In four of the five populations, the contribution of phenotypic variability was greater than the contribution of environmental variability, although not significantly so. The similarity in the contributions of environment and phenotype suggests that neither is worthy of neglect. Population growth is a consequence of multiple processes, which strengthens arguments advocating integrated approaches to assess how populations respond to their environments.  相似文献   

14.
Uthicke S  Benzie JA 《Molecular ecology》2003,12(10):2635-2648
The sea cucumber, Holothuria nobilis, has a long-lived planktotrophic larvae, and previous allozyme surveys have suggested that high dispersal is realized. In contrast, recent ecological studies indicate that dispersal is low. To reconcile these data, and to investigate the evolution of this Indo-Pacific species, we screened geographical variation in 559 bp of a mitochondrial gene (COI) in 360 samples from the Australasian region and La Réunion. Sequences from La Réunion differed by > 7% from others and may constitute another species. Haplotype diversity in other samples was high (0.942, SD = 0.007), but haplotypes were closely related (mean nucleotide diversity: 0.0075, SD = 0.0041). AMOVA, pairwise FST values and exact tests did not detect significant population structure. Nested clade analysis showed that one of two main clades was over-represented in west Australia, whereas the other was more common in the northern Great Barrier Reef. Isolation-by-distance was identified as the main determinant of population structure at several clade levels. Contiguous range expansion was inferred for evolutionary older clade levels and this may correspond to a late Pleistocene (88 000-193 000 years ago) population expansion inferred from haplotype mismatch distributions. Thus, the population genetic structures detected are likely to be formed prior to the last ice age, with some indications for high dispersal on shorter time scales.  相似文献   

15.
Knowledge of the ecological and evolutionary causes of dispersal can be crucial in understanding the behaviour of spatially structured populations, and predicting how species respond to environmental change. Despite the focus of much theoretical research, simplistic assumptions regarding the dispersal process are still made. Dispersal is usually regarded as an unconditional process although in many cases fitness gains of dispersal are dependent on environmental factors and individual state. Condition-dependent dispersal strategies will often be superior to unconditional, fixed strategies. In addition, dispersal is often collapsed into a single parameter, despite it being a process composed of three interdependent stages: emigration, inter-patch movement and immigration, each of which may display different condition dependencies. Empirical studies have investigated correlates of these stages, emigration in particular, providing evidence for the prevalence of conditional dispersal strategies. Ill-defined use of the term 'dispersal', for movement across many different spatial scales, further hinders making general conclusions and relating movement correlates to consequences at the population level. Logistical difficulties preclude a detailed study of dispersal for many species, however incorporating unrealistic dispersal assumptions in spatial population models may yield inaccurate and costly predictions. Further studies are necessary to explore the importance of incorporating specific condition-dependent dispersal strategies for evolutionary and population dynamic predictions.  相似文献   

16.
Regular cycles in population abundance are fascinating phenomena, but are they common in natural populations? How are they distributed among taxa? Are there differences between different regions of the world, or along latitudinal gradients? Using the new Global Population Dynamics Database we analysed nearly 700 long (25 + years) time series of animal field populations, looking for large-scale patterns in cycles. Nearly 30% of the time series were cyclic. Cycle incidence varied among taxonomic classes, being most common in mammal and fish populations, but only in fish did cycle incidence vary among orders. Cycles were equally common in European and North American populations, but were more common in Atlantic fish than Pacific fish. The incidence of cycles increased with latitude in mammals only. There was no latitudinal gradient in cycle period, but cycle amplitude declined with latitude in some groups of fish. Even after considering the biases in the data source and expected type I error, population cycles seem common enough to warrant ecological attention.  相似文献   

17.
Metapopulation dynamics: brief history and conceptual domain   总被引:16,自引:0,他引:16  
We review the early development of metapopulation ideas, which culminated in the well-known model by Levins in 1969. We present a survey of metapopulation terminology and outline the kinds of studies that have been conducted on single-species and multispecies metapopulations. Metapopulation studies have important conceptual links with the equilibrium theory of island biogeography and with studies on the dynamics of species living in patchy environments. Metapopulation ideas play an increasingly important role in landscape ecology and conservation biology.  相似文献   

18.
19.
退化沙质草地开垦和围封过程中的土壤颗粒分形特征   总被引:12,自引:0,他引:12  
研究了科尔沁退化沙质草地开垦和围封过程中土壤颗粒分形维数的变化特征,以及分形维数与土壤性状的关系.结果表明,不同开垦和围封年限的土壤颗粒分形维数(0~30cm)介于2.387~2.588之间.随着开垦年限的增加,0~15 cm层土壤颗粒分形维数从2.441降至2.387;围封11年后,0~15 cm层土壤颗粒分形维数增加到2.588.15~30 cm层土壤颗粒分形维数无明显变化.土壤颗粒分形维数是反映土壤质地的一个较好指标,重点反映粘粒含量,其次是粉粒含量.分形维数的变化能够很好地表征退化沙质草地土壤的化学、物理和生物学性状的变化趋势,可以作为评价退化沙质草地土壤性状的一个综合指标.  相似文献   

20.
Pathogens may be important for host population dynamics, as they can be a proximate cause of morbidity and mortality. Infection dynamics, in turn, may be dependent on the underlying condition of hosts. There is a clear potential for synergy between infection and condition: poor condition predisposes to host infections, which further reduce condition and so on. To provide empirical data that support this notion, we measured haematological indicators of infection (neutrophils and monocytes) and condition (red blood cells (RBCs) and lymphocytes) in field voles from three populations sampled monthly for 2 years. Mixed-effect models were developed to evaluate two hypotheses, (i) that individuals with low lymphocyte and/or RBC levels are more prone to show elevated haematological indicators of infection when re-sampled four weeks later, and (ii) that a decline in indicators of condition is likely to follow the development of monocytosis or neutrophilia. We found that individuals with low RBC and lymphocyte counts had increased probabilities of developing monocytosis and higher increments in neutrophils, and that high indices of infection (neutrophilia and monocytosis) were generally followed by a declining tendency in the indicators of condition (RBCs and lymphocytes). The vicious circle that these results describe suggests that while pathogens overall may be more important in wildlife dynamics than has previously been appreciated, specific pathogens are likely to play their part as elements of an interactive web rather than independent entities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号