首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
 粘细菌是研究多细胞结构形态发生机制的良好模型.FruA是粘细菌发育所必需的一种 关键性转录因子, 调节一系列发育相关基因的表达,本文研究FruA对自身基因是否存在反馈调节从而导致发育后期fruA表达水平的下调.以野生型粘细菌模式菌株DK1622为基础构建fruA基因敲除突变株DK1622ΔfruA,再将fruA-lacZ转录融合载体pMF1A整合入fruA突变株染色体attB, 获得重组菌株DK1622ΔfruA/pMF1A,通过检测β-半乳糖苷酶活性来确认FruA对自身基因的表达水平是否有影响. 结果表明fruA调控序列完整的fruA-lacZ转录融合体β-半乳糖苷酶活性在DK1622/pMF1A和DK1622ΔfruA/pMF1A之间无明显差异, 即fruA表达产物作为一种转录因子对自身基因的转录没有调节作用,黏细菌发育后期fruA表达水平的下降存在其它调节机制.  相似文献   

3.
Myxococcus xanthus uses extracellular signals during development to regulate gene expression. C-signaling regulates the expression of many genes induced after 6 h into development. FruA is a protein that is necessary for cells to respond to C-signaling, but expression of the fruA gene does not depend on C-signaling. Yet the fruA promoter region has a C box and a 5-bp element, similar to the promoter regions of several C-signal-dependent genes, where these sequences are crucial. Here, we show that the C box and 5-bp elements are important for expression of fruA, demonstrating for the first time that these sequences play a role in the expression of a gene that does not depend on C-signaling and is required for M. xanthus development.  相似文献   

4.
5.
6.
7.
毛晓华  丁蕾 《微生物学报》2000,40(2):121-125
FruA是粘细菌(Myxococcus xanthus)发育所必需的转录因子,影响着一系列发育特异性基因的表达,在大肠杆菌中表达了带组氨酸标记的FruA,并用镍离子层析进行快速分离纯化。凝胶阻滞试验提示FruA对靶基因的调控可能需要其它因子的参与。  相似文献   

8.
Protein S is an abundant spore coat protein produced during fruiting body formation (development) of the bacterium Myxococcus xanthus. We have cloned the DNA which codes for protein S and have found that this DNA hybridizes to three protein S RNA species from developmental cells but does not hybridize to RNA from vegetative cells. The half-life of protein S RNA was found to be unusually long, about 38 minutes, which, at least in part, accounts for the high level of protein S synthesis observed during development. Hybridization of restriction fragments from cloned M. xanthus DNA to the developmental RNAs enabled us to show that M. xanthus has two directly repeated genes for protein S (gene 1 and gene 2) which are separated by about 10(3) base-pairs on the bacterial chromosome. To study the expression of the protein S genes in M. xanthus, eight M. xanthus strains were isolated with Tn5 insertions at various positions in the DNA which codes for protein S. The strains which contained insertions in gene 1 or between gene 1 and gene 2 synthesized all three protein S RNA species and exhibited normal levels of protein S on spores. In contrast, M. xanthus strains exhibited normal levels of protein S on spores. In contrast, M. xanthus strains with insertions in gene 2 had no detectable protein S on spores and lacked protein S RNA. Thus, gene 2 is responsible for most if not all of the production of protein S during M. xanthus development. M. xanthus strains containing insertions in gene 1, gene 2 or both genes, were found to aggregate and sporulate normally even though strains bearing insertions in gene 2 contained no detectable protein S. We examined the expression of gene 1 in more detail by constructing a fusion between the lacZ gene of Escherichia coli and the N-terminal portion of protein S gene 1 of M. xanthus. The expression of beta-galactosidase activity in an M. xanthus strain containing the gene fusion was shown to be under developmental control. This result suggests that gene 1 is also expressed during development although apparently at a much lower level than gene 2.  相似文献   

9.
10.
The csgA gene produces an intercellular signal during fruiting body formation of the myxobacterium Myxococcus xanthus. Sporulating pseudorevertants were isolated to allow us to understand the mechanism by which CsgA is perceived by cells and used to regulate developmental gene expression. Two strains, LS559 and LS560, which have closely linked transposon insertions, soc-559 (formerly csp-559) and soc-560 (formerly csp-560), respectively, regained all the developmental behaviors lost by the csgA mutation including the ability to ripple, form fruiting bodies, and sporulate. The sequence analysis of the socA locus revealed that there are three putative protein-coding regions, designated socA1, socA2, and socA3. The deduced amino acid sequence of socA1 exhibits characteristics of the short-chain alcohol dehydrogenase family. The deduced amino acid sequence of socA2 shares 48% identity with the frdD gene product of the frd operon in Proteus vulgaris which anchors fumarate reductase to the membrane. The deduced amino acid sequence of socA3 does not show homology to any known proteins. Genotypic complementation, Northern (RNA) blotting, DNA sequence analysis, and the pattern of gene expression all suggest that these three genes are polycistronic. Since the socA mutations effectively bypass CsgA, the question of why csgA is maintained in M. xanthus was examined by studying the long-term stability of socA spores. Unlike the wild type, socA mutant spores germinated on starvation agar. Transmission electron micrographs of spore thin sections revealed that germination is not due to an obvious structural deficiency of the socA spores. These results suggest that the ability of socA myxospores to survive long periods under unfavorable environmental conditions is severely comprised. Therefore, soxA appears to be essential for the development of M. xanthus.  相似文献   

11.
12.
13.
14.
The dsp locus contains genes involved in the subunit synthesis and/or assembly of fibrils that radiate outward from the Myxococcus xanthus cell surface and attach to other cells. The csgA gene encodes an extracellular protein morphogen which is essential for fruiting body development. The question of whether fibrils are involved in the transmission of CsgA to adjacent cells was investigated in three ways. First, the dsp and csgA mutants were mixed in a ratio of 1:1 and allowed to develop; fruiting bodies containing spores derived from the csgA mutant were formed, suggesting efficient CsgA transfer. Second, the csgA mutation affected expression of many developmentally regulated genes differently from the way dsp affected their expression. Third, the expression of one developmentally regulated gene, which was partially expressed in csgA and dsp backgrounds, was almost completely inhibited in the presence of both mutations, suggesting that its promoter is regulated independently by two distinct stimuli, one that is csgA dependent and one that is dsp dependent. Together these results argue that fibrils are not necessary for cell-to-cell transmission or perception of CsgA, and their precise function remains unknown.  相似文献   

15.
The developmentally regulated gene dofA, identified from pulse-labeling experiments by two-dimensional gel electrophoresis, and its homologue, dofB, were cloned and characterized in Myxococcus xanthus. Deletion of dofA and dofB did not affect the vegetative growth and development of M. xanthus. dofA was specifically expressed during development, while dofB expression was observed during vegetative growth and development. The dofA-lacZ fusion was introduced into a fruA mutant and A, B, C, D, and E extracellular signal mutants. The pattern of dofA expression in the C signal mutant was similar to that of the wild-type strain, while dofA expression was not detected in the fruA mutant. These results are consistent with those of the pulse-labeling experiments. dofA expression was reduced in A and E signal mutants, whereas dofA expression was delayed in B and D signal mutants. The patterns of expression of the dofA gene in the fruA mutant and the five signal mutants are strikingly similar to that of the tps gene, which encodes protein S, a major component of the outer surface of the myxospore; this result suggests that the dofA and tps genes are similarly regulated. The involvement of a highly GC-rich inverted repeat sequence (underlined), CGGCCCCCGATTCGTCGGGGGCCG, in developmentally regulated dofA expression is suggested.  相似文献   

16.
17.
18.
19.
Protein S, the most abundant protein synthesized during development of the fruiting bacterium Myxococcus xanthus, is coded by two highly homologous genes called protein S gene 1 (ops) and protein S gene 2 (tps). The expression of these genes was studied with fusions of the protein S genes to the lacZ gene of Escherichia coli. The gene fusions were constructed so that expression of beta-galactosidase activity was dependent on protein S gene regulatory sequences. Both the gene 1-lacZ fusion and the gene 2-lacZ fusion were expressed exclusively during fruiting body formation (development) in M. xanthus. However, distinct patterns of induction of fusion protein activity were observed for the two genes. Gene 2 fusion activity was detected early during development on an agar surface and could also be observed during nutritional downshift in dispersed liquid culture. Gene 1 fusion activity was not detected until much later in development and was not observed after downshift in liquid culture. The time of induction of gene 1 fusion activity was correlated with the onset of sporulation, and most of the activity was spore associated. This gene fusion was expressed during glycerol-induced sporulation when gene 2 fusion activity could not be detected. The protein S genes appear to be members of distinct regulatory classes of developmental genes in M. xanthus.  相似文献   

20.
Myxococcus xanthus cells aggregate and develop into multicellular fruiting bodies in response to starvation. A new M. xanthus locus, designated dif for defective in fruiting, was identified by the characterization of a mutant defective in fruiting body formation. Molecular cloning, DNA sequencing and sequence analysis indicate that the dif locus encodes a new set of chemotaxis homologues of the bacterial chemotaxis proteins MCPs (methyl-accepting chemotaxis proteins), CheW, CheY and CheA. The dif genes are distinct genetically and functionally from the previously identified M. xanthus frz chemotaxis genes, suggesting that multiple chemotaxis-like systems are required for the developmental process of M. xanthus fruiting body formation. Genetic analysis and phenotypical characterization indicate that the M. xanthus dif locus is required for social (S) motility. This is the first report of a M. xanthus chemotaxis-like signal transduction pathway that could regulate or co-ordinate the movement of M. xanthus cells to bring about S motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号