首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Soliton formation has been proposed as an explanation for anomalously sharp resonances observed in DNA microwave absorption. We give an elementary, physical explanation of why line narrowing occurs for Boussinesq solitons. We consider real atoms bound by realistic chemical bonds and show that even under the assumption of the most favorable possible conditions, the soliton narrowing mechanism is a maximum correction of only a few percent. At each step of the argument, the simple calculations we show are either exact-in the sense of following the Boussinesq equation-or err on the side of emphasizing the soliton lifetime enhancement. Thus our results serve as an upper bound to any enhancement effects.  相似文献   

2.
3.
The frequency-dependent, resonance-type biological effects of electromagnetic radiation on a-helical protein macromolecules were treated in terms of Davydov soliton (DS) theory. We studied DS over the temperature range from 0 to 350 K. An important characteristic of the autolocalized state is the bond energy, which defines the soliton stability. As the DSs are stable, only a small probability exists of their energy dissipation into heat providing for the high efficiency of energy and charge transduction in bio-systems. However, under the influence of electromagnetic radiation (EMR), the DS decay (photodissociation) probability increases. This approach allows for the qualitative explanation of the resonant effects of low-intensity microwaves on living organisms found in a number of experiments. The dependence of resonance frequency on temperature was obtained this way. The direct charge transfer along the protein molecule may result from the capture of an extra electron by the moving acoustic soliton (electrosoliton). Decay of the electrosoliton under the influence of EMR (photodisintegration) is also examined.  相似文献   

4.
Ab-initio SCF calculations have been performed on the anion radical derived from α-hydroxytetronic acid as a model for the ascorbic anion radical, and its interaction with glyoxal. The results show that the anion radical can act as an effective electrondonor to glyoxal, and provide an explanation for the enhancement of charge transfer in amine/dicarbonyl systems by ascorbate.  相似文献   

5.
Damen WG 《Current biology : CB》2004,14(14):R557-R559
Recent work has revealed a double segmental periodicity of gene expression in the centipede, a potential molecular explanation for the observation that this arthropod always has an odd number of trunk segments. Is this an oddity of centipedes, or might it mean that double segmental pair-rule patterning dates back to the Ur-arthropod?  相似文献   

6.
Snu13p is a bifunctional yeast protein involved in both messenger RNA splicing as well as ribosomal RNA maturation. Snu13p initiates assembly of ribonucleoprotein particles by interacting with a conserved RNA motif called kink turn. Unlike its archaeal homolog, L7Ae, Snu13p displays differential specificity for functionally distinct kink turns. Thus, the structures of Snu13p at different functional states, including those alone and bound with RNAs, are required to understand how the protein differentially interacts with kink turns. Although the structure of the human homolog of Snu13p bound with a spliceosomal RNA is known, there has not been a report of a structure of free Snu13p. This has hindered our ability to understand the structural basis for Snu13p's substrate specificity. We report a crystal structure of free Snu13p at 1.9A and a detailed structural comparison with its homologs. We show that free Snu13p has nearly an identical conformation as that of its human homolog bound with RNA. Interestingly, both eukaryotic proteins exhibit notable structural differences in their central beta-sheets as compared to their archaeal homolog, L7Ae. The observed structural differences offer a possible explanation to the observed difference in RNA specificity between Snu13p and L7Ae.  相似文献   

7.
8.
It is well accepted that the steady-state isometric force following active stretching of a muscle is greater than the steady-state isometric force obtained in a purely isometric contraction at the same length. This property of skeletal muscle has been called residual force enhancement (FE). Despite decades of research the mechanisms responsible for FE have remained largely unknown. Based on previous studies showing increases in FE in fibers in which cross-bridges were biased towards weakly bound states, we hypothesized that FE might be associated with a stretch-induced facilitation of transitioning from weakly to strongly bound cross-bridges. In order to test this hypothesis, single fibers (n=11) from the lumbrical muscles of frog (Rana pipiens) were used to determine FE at temperatures of 7 and 20 degrees C. At the cold temperature, cross-bridges are biased towards weakly bound states, therefore we expected FE to be greater at 7 degrees C compared to 20 degrees C. The average FE was significantly greater at 7 degrees C (11.5+/-1.1%) than at 20 degrees C (7.8+/-1.0%), as expected. The enhancement of force/stiffness was also significantly greater at the low (13.3+/-1.4%) compared to the high temperature (5.6+/-1.7%), indicating an increased conversion from weakly to strongly bound cross-bridges at the low temperature. We conclude from the results of this study that muscle preparations that are biased towards weakly bound cross-bridge states show increased FE for given stretch conditions, thereby supporting the idea that FE might be caused, in part, by a stretch-induced facilitation of the conversion of weakly to strongly bound cross-bridges.  相似文献   

9.
10.
LRP130 (also known as LRPPRC) is an RNA-binding protein that is a constituent of postsplicing nuclear RNP complexes associated with mature mRNA. It belongs to a growing family of pentatricopeptide repeat (PPR) motif-containing proteins, several of which have been implicated in organellar RNA metabolism. We show here that only a fraction of LRP130 proteins are in nuclei and are directly bound in vivo to at least some of the same RNA molecules as the nucleocytoplasmic shuttle protein hnRNP A1. The majority of LRP130 proteins are located within mitochondria, where they are directly bound to polyadenylated RNAs in vivo. In vitro, LRP130 binds preferentially to polypyrimidines. This RNA-binding activity maps to a domain in its C-terminal region that does not contain any previously described RNA-binding motifs and that contains only 2 of the 11 predicted PPR motifs. Therefore, LRP130 is a novel type of RNA-binding protein that associates with both nuclear and mitochondrial mRNAs and as such is a potential candidate for coordinating nuclear and mitochondrial gene expression. These findings provide the first identification of a mammalian protein directly bound to mitochondrial RNA in vivo and provide a possible molecular explanation for the recently described association of mutations in LRP130 with cytochrome c oxidase deficiency in humans.  相似文献   

11.
The penultimate stem-loop of 16S ribosomal RNA (rRNA), helix 44, plays a central role in ribosome function. Using time-resolved dimethyl sulfate (DMS) probing, we have analyzed time-dependent modifications that occur at specific bases in this helix near the decoding region, resulting from the binding of elongation factor G (EF-G) in various forms. When EF-G-GTP is bound to 70S ribosomes, bases A1492 and A1493 are immediately protected, while other bases in the region show either no change or enhanced modification. When apo-EF-G is bound to 70S ribosomes and GTP is added, substantial transient time-dependent enhancement occurs at bases A1492 and A1493, with somewhat less enhancement occurring at base A1483, all in the first 45 ms. When mRNA and deacylated tRNAs are bound to the 70S ribosome and EF-G-GTP is added, bases A1492 and A1493 again show substantial and continued enhancement, while bases A1408, A1413, and A1418 all show time-dependent protection. These results provide primary, real-time evidence that EF-G induces direct or indirect structural changes in this region as EF-G is bound and as GTP is hydrolyzed.  相似文献   

12.
A recent study described an allosteric effect in which the binding of a protein to DNA is influenced by another protein bound nearby. The effect shows a periodicity of ∼10 basepairs and decays with increasing protein-protein distance. As a mechanistic explanation, the authors reported a similar periodic, decaying pattern of the correlation coefficient between major groove widths inferred from a shorter molecular dynamics simulation. Here we show that in a state-of-the-art, microsecond-long simulation of the same DNA sequence, the periodicity of the correlation coefficient is not observed. To study the problem further, we extend an earlier mechanical model of DNA allostery based on constrained minimization of effective quadratic deformation energy of the DNA. We demonstrate that, if the constraints mimicking the bound proteins are properly applied, the periodicity in the binding energy is indeed recovered.  相似文献   

13.
HIV particles are detected extracellularly in lymphoid tissues, a major reservoir of the virus. We previously reported that a polymerized form of fibronectin (FN), superfibronectin (sFN), as well as a fragment of FN, III1-C, enhanced infection of primary CD4(+) T cells by HIV-1IIIB. We now show that sFN enhances infection of primary CD4(+) T cells by both R5 and X4 strains of HIV-1. Using HIV pseudotyped with different envelope glycoproteins (gp120) and HOS cells transfected with various chemokine receptors alone or in combination with the CD4 molecule, we show that sFN-mediated enhancement requires the CD4 receptor and does not alter the specificity of gp120 for different chemokine receptors. Because the III1-C fragment also resulted in enhancement, we asked whether proteolysis of FN generated fragments capable of enhancing HIV infection. We found that progressive proteolysis of FN by chymotrypsin correlates with an enhancement of HIV infection in both primary CD4(+) T cells and the IG5 reporter cell line. Furthermore, incubation of HIV with sFN significantly prolonged infectivity at 37 degrees C compared with dimeric FN or BSA. In conclusion, these results indicate that polymerized (matrix) or degraded (inflammation-associated), but not dimeric (plasma), FN are capable of enhancing infection by HIV-1, independent of the coreceptor specificity of the strains. Moreover, virions bound to matrix FN maintain infectivity for longer periods of time than do virions in suspension. This study suggests that matrix proteins and their conformational status may play a role in the pathogenesis of HIV.  相似文献   

14.
Mathy N  Bénard L  Pellegrini O  Daou R  Wen T  Condon C 《Cell》2007,129(4):681-692
Although the primary mechanism of eukaryotic messenger RNA decay is exoribonucleolytic degradation in the 5'-to-3' orientation, it has been widely accepted that Bacteria can only degrade RNAs with the opposite polarity, i.e. 3' to 5'. Here we show that maturation of the 5' side of Bacillus subtilis 16S ribosomal RNA occurs via a 5'-to-3' exonucleolytic pathway, catalyzed by the widely distributed essential ribonuclease RNase J1. The presence of a 5'-to-3' exoribonuclease activity in B. subtilis suggested an explanation for the phenomenon whereby mRNAs in this organism are stabilized for great distances downstream of "roadblocks" such as stalled ribosomes or stable secondary structures, whereas upstream sequences are never detected. We show that a 30S ribosomal subunit bound to a Shine Dalgarno-like element (Stab-SD) in the cryIIIA mRNA blocks exonucleolytic progression of RNase J1, accounting for the stabilizing effect of this element in vivo.  相似文献   

15.
The Wnt pathway inhibitors DKK1 and sclerostin (SOST) are important therapeutic targets in diseases involving bone loss or damage. It has been appreciated that Wnt coreceptors LRP5/6 are also important, as human missense mutations that result in bone overgrowth (bone mineral density, or BMD, mutations) cluster to the E1 propeller domain of LRP5. Here, we report a crystal structure of LRP6 E1 bound to an antibody, revealing that the E1 domain is a peptide recognition module. Remarkably, the consensus E1 binding sequence is a close match to a conserved tripeptide motif present in all Wnt inhibitors that bind LRP5/6. We show that this motif is important for DKK1 and SOST binding to LRP6 and for inhibitory function, providing a detailed structural explanation for the effect of the BMD mutations.  相似文献   

16.
Modulating the efficiency of translation plays an important role in a wide variety of cellular processes and is often mediated by trans-acting factors that interact with cis-acting sequences within the mRNA. Here we show that a cis-acting element, the Hsp83 degradation element (HDE), within the 3'-untranslated region of the Drosophila Hsp83 mRNA functions as a translational enhancer. We show that this element is bound by a multiprotein complex, and we identify components using a novel affinity-based method called tandem RNA affinity purification tagging. Three proteins (DDP1, Hrp48, and poly(A)-binding protein) are components of the HDE-binding complex and function in translational enhancement. Our data support a model whereby the HDE is composed of several cis-acting subelements that represent binding sites for trans-acting factors, and the combined action of these trans-acting factors underlies the ability of the HDE to stimulate translation.  相似文献   

17.
Costly signalling theory has become a common explanation for honest communication when interests conflict. In this paper, we provide an alternative explanation for partially honest communication that does not require significant signal costs. We show that this alternative is at least as plausible as traditional costly signalling, and we suggest a number of experiments that might be used to distinguish the two theories.  相似文献   

18.
The second generation Mining Minima method yields binding affinities accurate to within 0.8 kcal/mol for the associations of alpha-, beta-, and gamma-cyclodextrin with benzene, resorcinol, flurbiprofen, naproxen, and nabumetone. These calculations require hours to a day on a commodity computer. The calculations also indicate that the changes in configurational entropy upon binding oppose association by as much as 24 kcal/mol and result primarily from a narrowing of energy wells in the bound versus the free state, rather than from a drop in the number of distinct low-energy conformations on binding. Also, the configurational entropy is found to vary substantially among the bound conformations of a given cyclodextrin-guest complex. This result suggests that the configurational entropy must be accounted for to reliably rank docked conformations in both host-guest and ligand-protein complexes. In close analogy with the common experimental observation of entropy-enthalpy compensation, the computed entropy changes show a near-linear relationship with the changes in mean potential plus solvation energy.  相似文献   

19.
Amyloid fibrils are associated with sulfated glycosaminoglycans in the extracellular matrix. The presence of sulfated glycosaminoglycans is known to promote amyloid formation in vitro and in vivo, with the sulfate groups playing a role in this process. In order to understand the role that sulfate plays in amyloid formation, we have studied the effect of salts from the Hofmeister series on the protein structure, stability and amyloid formation of an amyloidogenic light chain protein, AL-12. We have been able to show for the first time a direct correlation between protein stability and amyloid formation enhancement by salts from the Hofmeister series, where SO42− conferred the most protein stability and enhancement of amyloid formation. Our study emphasizes the importance of the effect of ions in the protein bound water properties and downplays the role of specific interactions between the protein and ions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号