首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 0 毫秒
1.
Proteolytic activity was detected in the culture supernatant of a newly isolated, extremely thermophilic bacterium belonging to the genus Thermus, and tentatively named T. caldophilus sp. n. strain GK24. The enzyme activity continued to increase for at least three days after cells reached the stationary phase of growth. Purification of the proteolytic enzyme was tried with ammonium sulfate fractionation, gel filtration, and ion exchange chromatography. The most purified enzyme fraction thus obtained appeared to be homogeneous in a chromatographic analysis, but still had seven bands of proteins on sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Treatment of the protease with denaturing reagents or organic solvents did not alter the chromatographic profile and the purified enzyme sample showed a large sedimentation coefficient of about 11S. The optimal pH of the hydrolytic activity of the enzyme was observed at around 7.8 for casein and 7.2 for N-carbobenzoxy-L-leucyl-L-tyrosinamide (Z-Leu-Tyr-NH2). The enzyme was stable in the pH range of 5 to 11 for 1 day at 4 degrees C or for 1 h at 70 degrees C. The enzyme sample showed a maximal activity at 90 degrees C and had an extreme stability toward treatment by heat and denaturing reagents. The enzyme sample was inactivated almost completely by diisopropyl fluorophosphate (DFP), but not by ethylenediaminetetraacetic acid (EDTA) or ethylene glycol-bis(beta-aminoethyl ether)N,N'-tetraacetic acid (EGTA). From these results, the enzyme seems to be a serine protease, and not to be a metallo-enzyme such as thermolysin. The enzyme also was hydrolytic active toward an ester compound, N-benzoyl-L-tyrosine ethyl ester (BTEE), but not toward N-benzoyl-L-arginine ethyl ester (BAEE).  相似文献   

2.
The allosteric effect of fructose 1,6-bisphosphate (Fru-1,6-P2) on L-lactate dehydrogenase (L-lactate:NAD+ oxidoreductase, EC 1.1.1.27) from Thermus caldophilus GK24 was studied by means of 1H NMR analyses. The conformation of NAD+ as bound to the T. caldophilus enzyme was elucidated by analyses of the transferred nuclear Overhauser effects (TRNOE), in the presence and the absence of the allosteric effector, Fru-1,6-P2. Upon binding of Fru-1,6-P2 to the enzyme, the ribose ring of the adenosine moiety of NAD+ is converted from the C2'-endo form to the C3'-endo form. This C3'-endo form of the adenosine moiety is similar to that of NAD+ as bound to nonallosteric vertebrate enzymes. However, the anti conformation of the adenine-ribose bond of NAD+ as bound to the T. caldophilus enzyme is not affected by the binding of Fru-1,6-P2. In contrast, the syn conformation of the nicotinamide-ribose bond is converted to the anti form on the binding of Fru-1,6-P2, while the ribose ring remains in the C3'-endo form as found in the case of a nonallosteric enzyme. Such a conformational change of enzyme-bound NAD+ as found on TRNOE analysis is essentially involved in the allosteric regulation of the T. caldophilus enzyme by Fru-1,6-P2.  相似文献   

3.
The conserved histidine-188 residue of the L-lactate dehydrogenase of Thermus caldophilus GK 24, which is allosterically activated by fructose 1,6-bisphosphate, has been exchanged to phenylalanine by site-specific mutagenesis. In the mutant enzyme the strong stimulatory effect of fructose 1,6-bisphosphate is abolished. The analysis of the pH dependence of the activity indicates that the positive charge of the conserved His-188 residue is important for the interaction of the enzyme with the allosteric effector.  相似文献   

4.
Heat-stable fructose 1,6-bisphosphate-dependent L-lactate dehydrogenase [EC 1.1.1.27] was purified from an extremely thermophilic bacterium, Thermus aquaticus YT-1. The amino acid composition and NH2-terminal 34 amino acid sequence of the enzyme were determined. Its NH2-terminal sequence shows high homology with those of Thermus caldophilus GK24 (82% identity) and some other bacterial L-lactate dehydrogenases (44-53% identity), indicating the close phylogenic relationship of the two Thermus species. At the same time, the two Thermus L-lactate dehydrogenases were found not to be identical not only chemically but also kinetically and immunologically. Citrate activated the T. aquaticus enzyme in the weak acidic pH region, while fructose 1,6-bisphosphate did in both acidic and neutral pH regions. The maximum activity obtained with citrate at pH 5.0 was about 2.5 times higher than that in the presence of fructose 1,6-bisphosphate at pH 6.7. The enzymes modified with 2,3-butanedione, acetic anhydride and diethyl pyrocarbonate in the presence of both NADH and oxamate were desensitized to fructose 1,6-bisphosphate, and the modified enzymes were active even in the absence of fructose 1,6-bisphosphate. All of the modified enzymes examined were still activated by citrate similarly to the native enzyme. These results suggest that the mechanism of activation by citrate is different from that by fructose 1,6-bisphosphate, and that the citrate-binding site is different from the fructose 1,6-bisphosphate-binding site.  相似文献   

5.
The gene for L-lactate dehydrogenase (LDH) (EC 1.1.1.27) of Thermus caldophilus GK24 was cloned in Escherichia coli using synthetic oligonucleotides as hybridization probes. The nucleotide sequence of the cloned DNA was determined. The primary structure of the LDH was deduced from the nucleotide sequence. The deduced amino acid sequence agreed with the NH2-terminal and COOH-terminal sequences previously reported and the determined amino acid sequences of the peptides obtained from trypsin-digested T. caldophilus LDH. The LDH comprised 310 amino acid residues and its molecular mass was determined to be 32,808. On alignment of the whole amino acid sequences, the T. caldophilus LDH showed about 40% identity with the Bacillus stearothermophilus, Lactobacillus casei and dogfish muscle LDHs. The T. caldophilus LDH gene was expressed with the E. coli lac promoter in E. coli, which resulted in the production of the thermophilic LDH. The gene for the T. caldophilus LDH showed more than 40% identity with those for the human and mouse muscle LDHs on alignment of the whole nucleotide sequences. The G + C content of the coding region for the T. caldophilus LDH was 74.1%, which was higher than that of the chromosomal DNA (67.2%). The G + C contents in the first, second and third positions of the codons used were 77.7%, 48.1% and 95.5% respectively. The high G + C content in the third base caused extremely non-random codon usage in the LDH gene. About half (48.7%) the codons in the LDH gene started with G, and hence there were relatively high contents of Val, Ala, Glu and Gly in the LDH. The contents of Pro, Arg, Ala and Gly, which have high G + C contents in their codons, were also high. Rare codons with U or A as the third base were sometimes used to avoid the TCGA sequence, the recognition site for the restriction endonuclease, TaqI. Two TCGA sequences were found only in the sequence of CTCGAG (XhoI site) in the sequenced region of the T. caldophilus DNA. There were three segments with similar sequences in the two 5' non-coding regions, probably the promoter and ribosome-binding regions, of the genes for the T. caldophilus LDH and the Thermus thermophilus 3-isopropylmalate dehydrogenase.  相似文献   

6.
M Peretz  Y Burstein 《Biochemistry》1989,28(16):6549-6555
The complete amino acid sequence of alcohol dehydrogenase of Thermoanaerobium brockii (TBAD) is presented. The S-carboxymethylated protein was cleaved at methionine residues (with cyanogen bromide) to provide a set of 10 nonoverlapping fragments accounting for 90% of the sequence. These fragments were then overlapped and aligned, and the sequence was completed by using peptides generated by proteolytic cleavage at lysine residues (with Achromobacter protease I). The protein subunit contained 352 amino acid residues corresponding to a molecular weight of 37,652. The sequence showed about 35% identity with that of the prokaryotic Alcaligenes eutrophus alcohol dehydrogenase and about 25% identity with any one of the eukaryotic alcohol/polyol dehydrogenases known today. Of these, only 18 residues (5%) are strictly conserved: 11 Gly, 2 Asp, and 1 each of Cys, His, Glu, Pro, and Val.  相似文献   

7.
8.
Lactobacillus casei allosteric L-lactate dehydrogenase (L-LDH) absolutely requires fructose 1,6-bisphosphate [Fru(1,6)P2] for its catalytic activity under neutral conditions, but exhibits marked catalytic activity in the absence of Fru(1,6)P(2) under acidic conditions through the homotropic activation effect of substrate pyruvate. In this enzyme, a single amino acid replacement, i.e. that of His205 conserved in the Fru(1,6)P(2)-binding site of certain allosteric L-LDHs of lactic acid bacteria with Thr, did not induce a marked loss of the activation effect of Fru(1,6)P(2) or divalent metal ions, which are potent activators that improve the activation function of Fru(1,6)P(2) under neutral conditions. However, this replacement induced a great loss of the Fru(1,6)P(2)-independent activation effect of pyruvate or pyruvate analogs under acidic conditions, consequently indicating an absolute Fru(1,6)P(2) requirement for the enzyme activity. The replacement also induced a significant reduction in the pH-dependent sensitivity of the enzyme to Fru(1,6)P(2), through a slight decrease and increase of the Fru(1,6)P(2) sensitivity under acidic and neutral conditions, respectively, indicating that His205 is also largely involved in the pH-dependent sensitivity of L.casei L-LDH to Fru(1,6)P(2). The role of His205 in the allosteric regulation of the enzyme is discussed on the basis of the known crystal structures of L-LDHs.  相似文献   

9.
Malate dehydrogenase (MDH; EC 1.1.1.37) from the thermophilic green nonsulfur bacterium Chloroflexus aurantiacus was purified by a two-step procedure involving affinity chromatography and gel filtration. The enzyme consists of identical subunits which had molecular weights of approximately 35,000. In its active form at 55 degrees C, it formed tetramers. At lower temperatures, inactive dimers and trimers existed. Antibodies against the purified enzyme were produced, and immunotitration and enzyme-linked immunosorbent assays showed that there was an immunochemical homology between the MDH from C. aurantiacus and MDHs from several other bacteria. The amino acid composition of C. aurantiacus MDH was similar to those of other MDHs. The N-terminal amino acid sequence was enriched with hydrophobic amino acids, which showed a high degree of functional similarity to amino acids at the N-terminal ends of both Escherichia coli and Thermus flavus MDHs. The activity of the native enzyme was inhibited by high concentrations of substrate and had temperature and pH optima consistent with the optimal growth conditions for the organism.  相似文献   

10.
《Gene》1996,171(1):103-106
One of the most important DNA repair systems is the nucleotide (nt) excision repair system. The uvrA gene, which plays an essential role in the prokaryotic excision repair system, was cloned from an extremely thermophilic eubacterium, Thermus thermophilus (Tt) HB8, and its nt sequence was determined. In the amino acid (aa) sequence of Tt UvrA, a characteristic duplicated structure, two nt-binding consensus sequences (Walker's A-type motif) and two zinc finger DNA-binding motifs were found. The aa sequence showed 73% homology with that of Escherichia coli (Ec). These features suggest that Tt has the same excision repair system as Ec. Upon comparison of the Tt and Ec UvrA, some characteristic aa substitutions were found. The numbers of Arg and Pro residues were increased (from 66 to 81 and from 47 to 55, respectively), and the numbers of Asn and Met residues were decreased (from 33 to 18 and from 18 to 11, respectively) in Tt. The Tt uvrA gene was expressed in Ec under control of the lac promoter. Purified UvrA was stable up to 80°C (at neutral pH) and at pH 2–11 (at 25°C)  相似文献   

11.
3-Isopropylmalate dehydrogenase (IPMDH) from the extreme piezophile Shewanella benthica (SbIPMDH) is more pressure-tolerant than that from the atmospheric pressure-adapted Shewanella oneidensis (SoIPMDH). To understand the molecular mechanisms of this pressure tolerance, we analyzed mutated enzymes. The results indicate that only a single mutation at position 266, corresponding to Ala (SbIPMDH) and Ser (SoIPMDH), essentially affects activity under higher-pressure conditions. Structural analyses of SoIPMDH suggests that penetration of three water molecules into the cleft around Ser266 under high-pressure conditions could reduce the activity of the wild-type enzyme; however, no water molecule is observed in the Ala266 mutant.  相似文献   

12.
Four genes, cbbO, cbbY, cbbA, and the pyruvate kinase gene (pyk), were found downstream of ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) genes, cbbLS, from a thermophilic hydrogen-oxidizing bacterium, Hydrogenophilus thermoluteolus (formerly Pseudomonas hydrogenothermophila). cbbO was similar to norD in the denitrification gene cluster, and cbbY was similar to cbbY from other autotrophic bacteria. cbbA encoded fructose 1,6-bisphosphate aldolase (FBP aldolase); however, CbbA was little similar to other CbbA proteins. When CbbA was overexpressed in Escherichia coli, overproduction of CbbA was detected by SDS-PAGE. However, the cell extract had slightly higher activity than a cell extract of E. coli without cbbA. Phylogenetic analysis showed class II FBP aldolase divided into classes IIA and IIB, and that CbbA from H. thermoluteolus was in class IIA. Activities of RubisCO and FBP aldolase were examined under autotrophic, mixotrophic, and heterotrophic conditions. The activities of the two enzymes were regulated independently.  相似文献   

13.
A soluble fructose-1,6-bisphosphate aldolase enzyme has been purified 50.2-fold (2.36%) at the homogeneity from the electric organ of Electrophorus electricus by one step of DEAE-52 anion exchange chromatography followed by Superose-12 gel filtration-FPLC. Like other aldolase enzymes the E. electricus protein is a dimer with two identical subunits of 45 kDa. The N-terminal (20 residues) revealed a high homology with S. aurata (75%, goldfish), R. ratus and M. musculus (mouse, 80%) enzymes.  相似文献   

14.
Antiserum directed against bovine heart mitochondrial NADH dehydrogenase has been used to screen a rat liver cDNA expression library in lambda gt11. The insert cDNA of a positive clone was found to represent the 24-kDa subunit of NADH dehydrogenase by epitope selection using nitrocellulose filter containing the expressed proteins. The amino acid sequence deduced from the nucleotide sequence of the cloned cDNA indicated that the 24-kDa subunit is produced as a precursor with an amino-terminal extension, and that its mature form consists of 217 amino acid residues with a molecular weight of 23,933.  相似文献   

15.
1. Amino acid sequences covering the region between residues 173 and 248 [adopting the numbering system proposed by Lai, Nakai & Chang (1974) Science 183, 1204-1206] were derived for trout (Salmo trutta) muscle aldolase and for ox liver aldolase. A comparable sequence was derived for residues 180-248 of sturgeon (Acipenser transmontanus) muscle aldolase. The close homology with the rabbit muscle enzyme was used to align the peptides of the other aldolases from which the sequences were derived. The results also allowed a partial sequence for the N-terminal 39 residues for the ox liver enzyme to be deduced. 2. In the light of the strong homology evinced for these enzymes, a re-investigation of the amino acid sequence of rabbit muscle aldolase between residues 181 and 185 was undertaken. This indicated the presence of a hitherto unsuspected -Ile-Val-sequence between residues 181 and 182 and the need to invert the sequence -Glu-Val- to -Val-Glx- at positions 184 and 185. 3. Comparison of the available amino acid sequences of these enzymes suggested an early evolutionary divergence of the genes for muscle and liver aldolases. It was also consistent with other evidence that the central region of the primary structure of these enzymes (which includes the active-site lysine-227) forms part of a conserved folding domain in the protein subunit. 4. Detailed evidence for the amino acid sequences proposed has been deposited as Suy Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1978) 169, 5.  相似文献   

16.
The structural gene encoding a mutant Escherichia coli phosphoenolpyruvate carboxylase deficient in regulation by fructose 1,6-bisphosphate (Fru-P2) was isolated from total E. coli PpcI genomic DNA. This mutant gene is located on a 4.4-kilobase SalI DNA fragment which, when ligated to SalI-digested pBR322, resulted in the generation of the plasmid pFS16. Detailed restriction mapping of the wild-type and mutant genes for phosphoenolpyruvate carboxylase revealed the presence of a ClaI restriction site at position 563 of the mutant gene only. This ClaI site is located on a 289 PvuII/DdeI fragment which codes for amino acid residues 174-270 of the phosphoenolpyruvate carboxylase enzyme. When this portion of the mutant gene is present in chimeras of the wild-type and mutant genes, the phosphoenolpyruvate carboxylase produced cannot be activated by Fru-P2. The mutation resulting in the generation of the ClaI site in the mutant gene has also resulted in an amino acid substitution at residue 188; threonine in the wild-type enzyme has been replaced by isoleucine in the mutant enzyme. Comparison of the nucleotide sequence of this 289-base pair PvuII/DdeI region of the mutant gene with its homologous region in the wild-type gene verified that this mutation, which resulted in the generation of the ClaI site, is the only change that has occurred on this 289-base pair fragment of the mutant gene, and thus the amino acid replacement of threonine by isoleucine is the only change that could be linked to the inability of the mutant enzyme to be activated by Fru-P2.  相似文献   

17.
We have developed a chemically defined, minimal growth medium for Thermus thermophilus which is suitable for nutritional studies, isotopic enrichment, and genetic manipulation of the organism. Reliable procedures are described for the large scale purification of cytochrome c552 from the periplasm and for cytochrome c555,549 and cytochrome c1 aa3 from the plasma membrane. In contrast to a previous report (Fee, J. A., Choc, M. G., Findling, K. L., Lorence, R., and Yoshida, T. (1980) Proc. Natl. Acad. Sci. U. S. A. 77, 147-151) which suggested a molecular weight near 200,000, the cytochrome c1aa3 complex was shown by protein and amino acid analyses to have Mr approximately 93,000. Sodium dodecyl sulfate-urea-polyacrylamide gel electrophoresis and reversed phase high performance liquid chromatography, combined with amino acid analyses, revealed the presence of only two proteins in a 1:1 ratio: C-protein has Mr approximately 33,000, binds heme C, and is thought to correspond to cytochrome c1. A-protein has Mr approximately 55,000 and is thought to bind the four redox components (2 heme A and 2 Cu) of cytochrome aa3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号