首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G6PD Konan and G6PD Ube are the most common glucose-6-phosphate dehydrogenase (G6PD) variants found in Japan. To clarify the molecular abnormality of these two variants, the entire coding region was amplified by polymerase chain reaction from genomic DNA (G6PD Konan) or cDNA (G6PD Ube). Direct sequencing revealed that both variants have the same nucleotide substitution (241 C to T) in exon 4, which predicts an Arg to Cys substitution at amino acid 81.  相似文献   

2.
We present three novel mutations in the G6PD gene and discuss the changes they cause in the 3-dimensional structure of the enzyme: 573C-->G substitution that predicts Phe to Leu at position 191 in the C-terminus of helix alphae, 851T-->C mutation which results in the substitution 284Val--> -->Ala in the beta+alpha domain close to the C-terminal part of helix alphaj, and 1175T-->C substitution that predicts Ile to Thr change at position 392.  相似文献   

3.
Over 400 supposedly biochemically and genetically distinct variants of glucose-6-phosphate dehydrogenase (G6PD) have been described in the past. In order to investigate these variants at the DNA sequence level we have now determined the relevant sequences of introns of G6PD and describe a method which allows us to rapidly determine the sequence of the entire coding region of G6PD. This technique was applied to six variants that cause G6PD deficiency to be functionally so severe as to result in nonspherocytic hemolytic anemia. Although the patients were all unrelated, G6PD Marion, Gastonia, and Minnesota each had identical mutations, a G----T at nucleotide (nt) 637 in exon 6 leading to a Val----Leu substitution at amino acid 213. The mutations of Nashville and Anaheim were identical to each other, viz. G----A at nt 1178 in exon 10 producing a Arg----His substitution at amino acid 393. G6PD Loma Linda had a C----A substitution at nt 1089 in exon 10, producing a Asn----Lys change at amino acid 363. The results confirm our earlier results suggesting that the NADP-binding site is in a small region of exon 10 and suggest the possibility that this area is also concerned with the binding of glucose-6-P.  相似文献   

4.
Summary Glucose-6-phosphate dehydrogenase (G6PD) deficiency has previously been reported among both the black and white populations of Costa Rica. All 28 G6PD A — samples were found to be of the common G6PD A-376G/202Atype. A previously described mutation associated with nonspherocytic hemolytic anemia, G6PD Puerto Limón, was found to be due to a GA transition at nucleotide (nt) 1192, causing a glulys substitution. Mutations in this region of the G6PD molecule seem invariably to be associated with chronic hemolytic anemia. G6PD Santamaria had been described previously in two unrelated white subjects. We found that both did, indeed, have the same mutations. In this variant the AG substitution at nt 376 that is characteristic of G6PD A was present, but an AT mutation at nt 542, apparently superimposed on the ancient G6PD A mutation, resulted in an aspval substitution. Thus, the gain of a negative charge at amino acid 126 was counterbalanced by the loss of a charge at amino acid 181, giving rise to a variant with the G6PD A mutation but with normal electrophoretic mobility.  相似文献   

5.
Using a direct PCR sequencing technique, we have identified two DNA base substitutions in 8 different biochemical G6PD variants of Chinese origin. Neither one of these abnormalities has been reported in other ethnic groups. An abnormality (C1) of G to T substitution at cDNA 1376 causing an amino acid change from Arg to Leu has been found in 3 variants. Another abnormality (C2) of G to A substitution at cDNA 1388 causing an amino acid change from Arg to His has been found in 5 variants. Both C1 and C2 are located in exon 12 of the G6PD gene and are only 12 base pairs apart. However, C1 is associated with a significant increase in the deamino-NADP utilization rate, whereas C2 is not. Taken together, our data suggest that C1 and C2 are very common among Chinese with a G6PD deficiency and exon 12 may define an important functional domain of the human G6PD.  相似文献   

6.
Although the electrophoretic mobility of HeLa G6PD is similar to that of the common Negro variant G6PD A+, several reports have suggested slight differences between HeLa G6PD and G6PD A+. This study, carried out using the pure homogeneous B+, A+, and HeLa G6PD, showed that (1) the electrophoretic mobility of HeLa G6PD is identical to that of G6PD A+, (2) the enzymatic properties and thermostability of HeLa G6PD are indistinguishable from those of G6PD A+, and (3) the peptide map of the tryptic digest of HeLa G6PD is identical to that of G6PD A+, with one peptide spot of HeLa G6PD different from the corresponding spot of G6PD B+. These results indicate that the structure of HeLa G6PD is identical to that of G6PD A+, and that the amino acid substitution in HeLa G6PD is from one asparagine residue in the wild-type G6PD B+ to an aspartic acid residue in HeLa G6PD.This research was supported by research grant GM 15253 from the National Institutes of Health.  相似文献   

7.
Glucose-6-phosphate dehydrogenase (G6PD; E.C.1.1.1.49) deficiency is the most common human enzymopathy; more than 300 different biochemical variants of the enzyme have been described. In many parts of the world the Mediterranean type of G6PD deficiency is prevalent. However, G6PD Mediterranean has come to be regarded as a generic term applied to similar G6PD mutations thought, however, to represent a somewhat heterogeneous group. A C----T mutation at nucleotide 563 of G6PD Mediterranean has been identified by Vulliamy et al., and the same mutation has been found by De Vita et al. in G6PD Mediterranean, G6PD Sassari, and G6PD Cagliari. The latter subjects had an additional mutation, at nucleotide 1311, that did not produce a coding change. We have examined genomic DNA of five patients--four of Spanish origin and one of Jewish origin--having enzymatically documented G6PD Mediterranean. All had both the mutation at nucleotide 563 and that at nucleotide 1311. A sixth sample, resembling G6PD Mediterranean kinetically but with a slightly rapid electrophoretic mobility, was designated G6PD Andalus and was found to have a different mutation, a G----A transition at nucleotide 1361, producing an arginine-to-histidine substitution. These studies suggest that G6PD Mediterranean is, after all, relatively homogeneous.  相似文献   

8.
A series of G6-amino derivatives of a lipophilic vancomycin analogue was prepared. Antibacterial activity of the analogues was inversely proportional to the degree of substitution of the G6-nitrogen. The fully substituted (quaternary) analogues were essentially inactive against vanA phenotype VREF strains but retained substantial activity against other bacteria, a profile reminiscent of teicoplanin.  相似文献   

9.
The X-chromosome-linked glucose-6-phosphate dehydrogenase (G6PD) A(+) is a common variant found in about 20% of blacks. The amino acid substitution of Asp in the variant G6PD A(+) for Asn in the normal G6PD B(+) was previously found (A. Yoshida, 1967, Proc. Natl. Acad. Sci. USA 57: 835), but the exact substitution position has not been identified. By screening a DNA library prepared from genomic DNA of a G6PD A(+) male subject, we obtained a genomic clone that contained the mutation site. Characterization of the clone revealed that AT----GC transition occurred in the variant A(+) gene, thus producing the amino acid substitution Asn----Asp at the 142nd position from the NH2 terminus of the enzyme. The nucleotide change created an additional FokI cleavage site in the variant A(+) gene; thus, the FokI fragment type of the variant subjects differed from that of normal B(+) subjects in Southern blot hybridization analysis.  相似文献   

10.
Although a large number of naturally occurring activating mutations of the human LH receptor (hLHR) and human TSH receptor (hTSHR) have been identified, only one activating mutation of the human FSH receptor (hFSHR) has been found. Furthermore, mutations of several residues within the i3/transmembrane domain (TM) 6 region of the hFSHR that were done based upon known constitutively activating mutations of the human LHR were found to have no effect on hFSHR signaling. One of the hFSHR mutations examined in this context was the substitution of a highly conserved aspartate (D581) in TM6 with glycine. We show herein that although the basal activity of the rat FSHR (rFSHR) is similar to the hFSHR, mutation of the comparable residue (D580) in the rFSHR causes marked constitutive activation. Taking advantage of the high degree of amino acid identity between the rat and human FSHRs, we have used chimeras and point substitutions to determine the precise residues that suppress or permit constitutive activity by the D580/581G mutation. Thus, the simultaneous substitution of M576 in TM6 and H615 in TM7 of the hFSHR with the cognate rFSHR residues (threonine and tyrosine, respectively) now renders the hFSHR(D581G) mutant constitutively active. Conversely, the substitution of Y614 of the rFSHR with the cognate hFSHR residue (histidine) fully suppresses the constitutive activity of the rFSHR (D580G) mutant. Computer models of the human and rat FSHRs and mutants thereof were created based upon the crystal structure of rhodopsin. These models suggest that differences in hydrophobic interactions between TMs 6 and 7 of the rat and human FSHRs may account for the ability of TM6 of the rat, but not human, FSHR to adopt an active conformation as a result of the D580/581G mutation.  相似文献   

11.
Liu C  Baumann H 《Carbohydrate research》2005,340(14):2229-2235
This paper investigates the nucleophilic substitution (S(N)) reactions of tosylcellulose with butylamine and pyridine, respectively. The S(N) reactions of tosylcellulose 1 (DS(Total) 2.02; DS(C-6) 1.0) with butylamine carried out at 25, 50, 75 and 100 degrees C in both dimethyl sulfoxide (DMSO) and pure butylamine showed that the regioselectivity of substitution at C-6 of cellulose is temperature dependent: the highest regioselectivity at C-6 can be reached at 25 and 50 degrees C; substitution at C-2 also occurred at 75 and 100 degrees C. The substitution speed in pure butylamine is greater than that in the presence of DMSO. A complete and regioselective substitution at C-6 with a DS of 1.0 was obtained under the conditions of 50 degrees C, 40 h in butylamine. The substitution reactions of 1 with pyridine carried out at 25, 50, 75 and 100 degrees C for 24h in DMSO did not occur. In contrast to this the S(N) reactions done in pure pyridine showed that a temperature- and steric-dependent, regioselective substitution took place at C-6 at temperatures from 25 to 145 degrees C. The highest regioselectivity and completeness at C-6 can be obtained at 100 degrees C for 90 h, whereas at 145 degrees C substitution also occurs at C-2. The results were proved by 1H NMR and 13C NMR spectroscopy.  相似文献   

12.
蒋玮莹  杜传书 《遗传学报》1998,25(4):301-307
首次将9种人工定点诱变的G6PD基因转化至G6PD缺陷的大肠杆菌HB351(DE3)中表达,并对突变酶的生物学功能进行研究。初步证实G6PD基因m1376 G to T(Arg 459keu),1388 G to A(Arg 463 His)突变可降低酶活性并引起酶动力学改变。这可能与取代氨基酸的化学结构、所带电荷的性质及极性有关。这两个部位的精氨酸在酶与NADP~ 的结合过程中亦起到重要作用。赖氨酸取代精氨酸对酶与NADP~ 的结合影响不大。引入无义突变,证实G6PD第459位以后的氨基酸对酶活性有重要影响。  相似文献   

13.
Escherichia coli strains expressing the mutant beta159-sliding clamp protein (containing both a G66E and a G174A substitution) are temperature sensitive for growth and display altered DNA polymerase (pol) usage. We selected for suppressors of the dnaN159 allele able to grow at 42 degrees C, and identified four intragenic suppressor alleles. One of these alleles (dnaN780) contained only the G66E substitution, while a second (dnaN781) contained only the G174A substitution. Genetic characterization of isogenic E. coli strains expressing these alleles indicated that certain phenotypes were dependent upon only the G174A substitution, while others required both the G66E and G174A substitutions. In order to understand the individual contributions of the G66E and the G174A substitution to the dnaN159 phenotypes, we utilized biochemical approaches to characterize the purified mutant beta159 (G66E and G174A), beta780 (G66E) and beta781 (G174A) clamp proteins. The G66E substitution conferred a more pronounced effect on pol IV replication than it did pol II or pol III, while the G174A substitution conferred a greater effect on pol III and pol IV than it did pol II. Taken together, these findings indicate that pol II, pol III and pol IV interact with distinct, albeit overlapping surfaces of the beta clamp.  相似文献   

14.
15.
Carboxylesterase (EII') from Arthrobacter sp. KI72 has 88% homology to 6-aminohexanoate-dimer hydrolase (EII) and possesses ca. 0.5% of the level of 6-aminohexanoate-linear dimer (Ald)-hydrolytic activity of EII. To study relationship between Ald-hydrolytic and esterolytic activities, random mutations were introduced into the gene for Hyb-24 (an EII/EII' hybrid with the majority of the sequence deriving for EII' and possessing an EII'-like level of Ald-hydrolytic activity). Either a G181D or a D370Y substitution in Hyb-24 increased the Ald-hydrolytic activity ca. 10-fold, and a G181D/D370Y double substitution increased activity ca. 100-fold. On the basis of kinetic studies and the three-dimensional structure of the enzyme, we suggest that binding of Ald is improved by these mutations. D370Y increased esterolytic activity for glycerylbutyrate ca. 30-50-fold, whereas G181D decreased the activity to 30% of the parental enzyme.  相似文献   

16.
17.
We report the characterization at the molecular level of a mutant glucose-6-phosphate dehydrogenase (G6PD) gene in a Greek boy who presented with a chronic non-spherocytic haemolytic anaemia. In order to identify the mutation from a small amount of patient material, we adopted an approach which by-passes the need to construct a library by using the polymerase chain reaction. The entire coding region was amplified in eight sections, with genomic DNA as template. The DNA fragments were then cloned in an M13 vector and sequenced. The only difference from the sequence of normal G6PD was a T----G substitution at nucleotide position 648 in exon 7, which predicts a substitution of leucine for phenylalanine at amino acid position 216. This mutation creates a new recognition site for the restriction nuclease BalI. We confirmed the presence of the mutation in the DNA of the patient's mother, who was found to be heterozygous for the new BalI site. This is the first transversion among the point mutations thus far reported in the human G6PD gene.  相似文献   

18.
More then 80 variants of glucose-6-phosphate dehydrogenase (G6PD) are associated with chronic non-spherocytic haemolytic anaemia (CNSHA); however, the molecular basis of this association is not fully understood. We have used the polymerase chain reaction and nucleotide sequence analysis to characterize a new G6PD variant, which we designate as G6PD Bari, in a G6PD-deficient boy affected by CNSHA. A single mutation leading to an amino-acid substitution was detected in the G6PD coding region, viz. a CT transition at position 1187 predicting leucine at residue 396 in the enzyme; proline is invariably present in evolutionary distant G6PD molecules at this position. Inheritance in the patient's family was demonstrated by the polymerase chain reaction followed by diagnostic restriction enzyme analysis. The CT transition responsible for G6PD Bari maps close to several other mutations previously identified in G6PD variants associated with CNSHA.  相似文献   

19.
Structural effect of the anticancer agent 6-thioguanine on duplex DNA   总被引:2,自引:2,他引:0  
The incorporation of 6-thioguanine (S6G) into DNA is an essential step in the cytotoxic activity of thiopurines. However, the structural effects of this substitution on duplex DNA have not been fully characterized. Here, we present the solution structures of DNA duplexes containing S6G opposite thymine (S6G·T) and opposite cytosine (S6G·C), solved by high-resolution NMR spectroscopy and restrained molecular dynamics. The data indicate that both duplexes adopt right-handed helical conformations with all Watson–Crick hydrogen bonding in place. The S6G·T structures exhibit a wobble-type base pairing at the lesion site, with thymine shifted toward the major groove and S6G displaced toward the minor groove. Aside from the lesion site, the helices, including the flanking base pairs, are not highly perturbed by the presence of the lesion. Surprisingly, thermal dependence experiments suggest greater stability in the S6G-T mismatch than the S6G-C base pair.  相似文献   

20.
Melanocortin 1-receptor (MC1R) is one of the major genes that controls chicken plumage colour. In this study, we investigated the sequence and haplotype distribution of the MC1R gene in native Japanese chickens, along with non-Japanese chicken breeds. In total, 732 and 155 chickens from 30 Japanese and eight non-Japanese breeds respectively were used. Three synonymous and 11 non-synonymous nucleotide substitutions were detected, resulting in 15 haplotypes (H0–H14). Of these, three were newly found haplotypes (H9, H13 and H14), of which one (H9) was composed of known substitutions C69T, T212C, G274A and G636A. The second one (H13) possessed newly found non-synonymous substitution C919G, apart from the known substitutions C69T, G178A, G274A, G636A and T637C. The third one (H14) comprised a newly discovered substitution C919G in addition to the known C69T, G274A and G409A substitutions. The homozygote for this new haplotype exhibited wt like plumage despite the presence of G274A. In addition to discovering a new nucleotide substitution (C919G) and three new haplotypes, we defined the plumage colour of the bird that was homozygous for the A644C substitution (H5 haplotype) as wheaten-like for the first time; although the substitution has been already reported, its effect was not revealed. Besides detecting the new plumage colour, we also confirmed that the A427G and G274A substitutions contribute in expressing brownish and black plumage colour respectively, as reported by the previous studies. Moreover, we confirmed that the buttercup allele does not express black plumage despite possessing a G274A substitution, under the suppression effect of A644C. In contrast, the birds homozygous for the birchen allele presented solid black plumage, which was contradictory to the previous reports. In conclusion, we revealed a large diversity in the MC1R gene of native Japanese chicken breeds, along with the discovery of a new non-synonymous nucleotide substitution (C919G) and three novel haplotypes (H9, H13 and H14).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号