首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amylin, the major peptide component of the islet amyloid commonly found in the pancreases of patients with type 2 (non-insulin-dependent) diabetes mellitus (NIDDM), is a recently discovered islet polypeptide. This peptide has many structural and functional features suggesting that it is a novel hormone, which may control carbohydrate metabolism in partnership with insulin and other glucoregulatory factors. Amylin is synthesised in, and probably secreted from, the beta-cells of the islets of Langerhans, where it has recently been immunolocalised to secretory granules. DNA cloning studies indicate that in the human and the rat, amylin is generated from a precursor, preproamylin, which displays a typical signal peptide followed by a small prohormone-like sequence containing the amylin sequence. The presence of the signal peptide suggests that amylin is secreted and plays a physiological role. Amylin is probably generated by proteolytic processing similar to that for proinsulin and other islet prohormones. The human amylin gene encodes the complete polypeptide precursor in two exons which are separated by an intron of approx. 5 kb, and is located on chromosome 12. Amylin is a potent modulator of glycogen synthesis and glucose uptake in skeletal muscle, and is capable of inducing an insulin-resistant state in this tissue in vitro, and perhaps also in the liver in vivo. In normal metabolism, amylin could act in concert with insulin as a signal for the body to switch the site of carbohydrate disposal from glycogen to longer-term stores in adipose tissue, by making skeletal muscle relatively insulin-resistant, whilst at the same time leaving rates of insulin-stimulated carbohydrate metabolism in adipose tissue unaltered. Several lines of evidence now implicate elevated amylin levels in the pathogenic mechanisms underlying NIDDM, and suggest to us that the obesity which frequently accompanies this syndrome is a result of, rather than a risk factor for, NIDDM. Following the beta-cell destruction which occurs in type 1 (insulin-dependent) diabetes mellitus (IDDM), it is probable that amylin secretion disappears in addition to that of insulin. As patients with insulin-treated IDDM frequently experience problems with hypoglycaemia, and as amylin acts to modulate the action of insulin in various tissues, it is possible that amylin deficiency may contribute to morbidity in insulin-treated IDDM, perhaps through the loss of a natural damping mechanism which guards against hypoglycaemia under conditions of normal physiology.  相似文献   

2.
Amylin, an islet amyloid peptide secreted by the pancreatic beta cell, has been proposed as a humoral regulator of islet insulin secretion. Four separate preparations of amylin were tested for effects on hormone secretion in both freshly isolated and cultured rat islets and in HIT-T15, hamster insulinoma cells. With all three experimental models, exposure to human amylin acid and human and rat amylin at concentrations as high as 100 nM had no significant effect on rates of insulin or glucagon secretion. These observations suggest that amylin, even at concentrations appreciably higher than those measured in peripheral plasma, is not a significant humoral regulator of islet hormone secretion.  相似文献   

3.
GSK3 involvement in amylin signaling in isolated rat soleus muscle   总被引:1,自引:0,他引:1  
Abaffy T  Cooper GJ 《Peptides》2004,25(12):2119-2125
Amylin can evoke insulin resistance by antagonizing insulin in a non-competitive manner. Here, we investigated the glycogenolytic effect of amylin in isolated skeletal muscle and compared it to the effects of a calcitonin gene-related peptide (CGRP). Amylin alone had no statistically significant effect on glucose transport. However, amylin decreased insulin-stimulated glucose transport by about 30%. The involvement of cAMP could not be detected at the concentrations shown to promote glycogenolysis. Previously, it has been shown that increased glycogen synthase kinase 3 (GSK3) activity plays a role in insulin resistance. Here, the ratio of GSK3 :β isoforms in rat soleus was found to be 1.2:1. We found that amylin increased GSK3 activity, which in turn led to increased phosphorylation of glycogen synthase and decreased glycogen synthesis de novo.  相似文献   

4.
J F Flood  J E Morley 《Peptides》1992,13(3):577-580
Amylin is a peptide hormone secreted from the beta cells of the pancreatic islets. Amylin was administered peripherally or centrally following weak or strong training on footshock avoidance conditioning in a T-maze. Under conditions of weak training, amylin improved memory retention in a dose-dependent manner. Under conditions of strong training, it impaired retention over the same dose range. Central administration of amylin in mice given strong training impaired retention but had no effect on the retention of mice given weak training. These findings suggest that the mechanisms of action by which amylin altered memory processing are different for peripheral and central administration. Peripherally secreted amylin may play a role in the amnesia seen in diabetes and the memory enhancement following glucose administration.  相似文献   

5.
Amylin, a peptide hormone from pancreatic beta-cells, is reported to inhibit insulin secretion in vitro and in vivo and to inhibit nutrient-stimulated glucagon secretion in vivo. However, it has been reported not to affect arginine-stimulated glucagon secretion in vitro. To resolve if the latter resulted from inactive peptide (a problem in the early literature), those experiments were repeated here with well-characterized peptide and found to be valid. In isolated perfused rat pancreas preparations, coperfusion with 1 nM amylin had no effect on arginine-, carbachol-, or vasoactive intestinal peptide-stimulated glucagon secretion. Amylin also had no effect on glucagon output stimulated by decreasing glucose concentration from 11 to 3.2 mM or on glucagon suppression caused by increasing glucose from 3.2 to 7 mM. Amylin at 100 nM had no effect in isolated islets in which glucagon secretion was stimulated by exposure to 10 mM arginine, even though glucagon secretion in the same preparation was inhibited by somatostatin. In anesthetized rats, amylin coinfusion had no effect on glucagon secretion stimulated by insulin-induced hypoglycemia. To reconcile reports of glucagon inhibition with the absence of effect in the experiments just described, anesthetized rats coinfused with rat amylin or with saline were exposed sequentially to intravenous L-arginine (during a euglycemic clamp) and then to hypoglycemia. Amylin inhibited arginine-induced, but not hypoglycemia-induced, glucagon secretion in the same animal. In conclusion, we newly identify a selective glucagonostatic effect of amylin that appears to be extrinsic to the isolated pancreas and may be centrally mediated.  相似文献   

6.
Amylin decreases food intake in mice.   总被引:1,自引:0,他引:1  
J E Morley  J F Flood 《Peptides》1991,12(4):865-869
The isolation of amylin from pancreatic islets has stimulated interest in its potential role in the pathogenesis of type II diabetes mellitus and in its possible physiological roles. Amylin administered intraperitoneally decreased food intake in non-food-deprived and food-deprived diabetic and nondiabetic mice. Amylin also decreased feeding induced by insulin administration without significantly affecting blood glucose levels. Amylin also decreased food intake following intracerebroventricular administration. It is possible that amylin plays a physiological role in appetite regulation and may play a pathophysiological role in the altered appetites seen in some persons with type II diabetes mellitus.  相似文献   

7.
Amylin is a 37-amino acid polypeptide co-secreted with insulin from the pancreatic beta-cells. It complements insulin's stimulation of the rate of glucose disappearance (Rd) by slowing the rate of glucose appearance (Ra) through several mechanisms, including an inhibition of mealtime glucagon secretion and a slowing of gastric emptying. To determine if endogenous amylin tonically inhibits these processes, we studied the effects of the amylin receptor blocker AC187 upon glucagon secretion during euglycemic, hyperinsulinemic clamps in Sprague-Dawley (HSD) rats, upon gastric emptying in HSD rats, and upon gastric emptying and plasma glucose profile in hyperamylinemic, and genetically obese, Lister Albany/NIH rats during a glucose challenge. Amylin blockade increased glucagon concentration, accelerated gastric emptying of liquids, and resulted in an exaggerated post-challenge glycemia. These data collectively indicate a physiologic role for amylin in glucose homeostasis via mechanisms that include regulation of glucagon secretion and gastric emptying.  相似文献   

8.
Amylin and adrenomedullin are related peptides with some homology to both calcitonin and calcitonin gene-related peptide (CGRP). All these peptides have in common a 6-amino acid ring structure at the amino-terminus created by a disulfide bond. In addition, the carboxy-termini are amidated. Both amylin and adrenomedullin have recently been found to stimulate the proliferation of osteoblasts in vitro, and to increase indices of bone formation in vivo when administered either locally or systemically. Both amylin and adrenomedullin have also been found to act on chondrocytes (Cornish et al., submitted for publication), stimulating their proliferation in culture and increasing tibial growth plate thickness when administered systemically to adult mice. Studies of structure-activity relationships have demonstrated that osteotropic effects of amylin and adrenomedullin can be retained in peptide fragments of the molecules. The full-length peptide of amylin has known effects on fuel metabolism, and systemic administration of amylin is also associated with increased fat mass. However, the octapeptide fragment of the molecule, amylin-(1-8), is osteotropic and yet has no activity on fuel metabolism. Similar fragments of adrenomedullin have also been defined, which retain activity on bone but lack the parent peptide's vasodilator properties. Both amylin-(1-8) and adrenomedullin-(27-52) act as anabolic agents on bone, increasing bone strength when administered systemically. Thus, these small peptides, or analogues of it, are potential candidates as anabolic therapies for osteoporosis. Both amylin and adrenomedullin may have effects on bone metabolism. Amylin is secreted following eating and may direct calcium and protein absorbed from the meal into new bone synthesis. Amylin circulates in high concentrations in obese individuals, and might contribute to the association between bone mass and fat mass. Our recent findings demonstrating the co-expression of adrenomedullin and adrenomedullin receptors in osteoblasts, along with the findings that the peptide and its receptor are easily detectable during rodent embryogenesis, suggest that this peptide is a local regulator of bone growth. Thus, the findings reviewed in this paper illustrate that amylin and adrenomedullin may be relevant to the normal regulation of bone mass and to the design of agents for the treatment of osteoporosis.  相似文献   

9.
Type II diabetes increases the risk for cognitive decline via multiple traits. Amylin is a pancreatic hormone that has amyloidogenic and cytotoxic properties similar to the amyloid-β peptide. The amylin hormone is overexpressed in individuals with pre-diabetic insulin resistance or obesity leading to amylin oligomerization and deposition in pancreatic islets. Amylin oligomerization was implicated in the apoptosis of the insulin-producing β-cells. Recent studies showed that brain tissue from diabetic patients with cerebrovascular dementia or Alzheimer’s disease contains significant deposits of oligomerized amylin. It has also been reported that the brain amylin deposition reduced exploratory drive, recognition memory and vestibulomotor function in a rat model that overexpresses human amylin in the pancreas. These novel findings are reviewed here and the hypothesis that type II diabetes is linked with cognitive decline by amylin accumulation in the brain is proposed. Deciphering the impact of hyperamylinemia on the brain is critical for both etiology and treatment of dementia.  相似文献   

10.
Cosecretion of amylin and insulin from isolated rat pancreas   总被引:2,自引:0,他引:2  
H C Fehmann  V Weber  R G?ke  B G?ke  R Arnold 《FEBS letters》1990,262(2):279-281
Amylin, a 37 amino acid C-terminal amidated peptide is an integral part of secretory granules of pancreatic beta-cells. Utilizing a specific radioimmunoassay system we demonstrate in the present study a cosecretion of amylin and insulin from the isolated rat pancreas. The secretion pattern of both peptides during glucose or glucose plus arginine stimulation is identical. The molar ratio of amylin amounts to 10% of that of insulin. The biological significance of amylin is still unknown, but a paracrine/endocrine role in glucose homeostasis is speculated.  相似文献   

11.
Amylin, a 37-amino acid polypeptide, is the main component of amyloid deposits in the islets of Langerhans, and has been identified in the B-cell secretory granules. We have investigated the effect of rat amylin on the insulin and glucagon release by the isolated, perfused rat pancreas. Amylin infusion at 750 nM, markedly reduced unstimulated insulin release (ca. 50%, P less than 0.025), whereas it did not modify glucagon output. At the same concentration, amylin also blocked the insulin response to 9 mM glucose (ca. 80%, P less than 0.025) without affecting the suppressor effect of glucose on glucagon release. The inhibitory effect of amylin on glucose-induced insulin secretion was confirmed by lowering the amylin concentration (500 nM) and increasing the glucose stimulus (11 mM); again, no effect of amylin on glucagon release was observed. Finally, amylin, at 500 nM, reduced the insulin response to 3.5 mM arginine (ca. 40%, P less than 0.025) without modifying the secretion of glucagon elicited by this amino acid. It can be concluded that, in the rat pancreas, the inhibitory effect of homologous amylin on unstimulated insulin secretion, as well as on the insulin responses to metabolic substrates (glucose and arginine), favours the concept of this novel peptide as a potential diabetogenic agent.  相似文献   

12.
Amylin has been co-secreted from pancreatic islet beta-cells in constant proportion with insulin in some studies. We measured basal and glucose-stimulated amylin and insulin secretion from isolated perfused pancreases of normal and diabetic fatty Zucker rats. Glucose concentrations in the perfusion buffer were increased then decreased in small steps to mimic physiologic changes occurring after a meal. The absolute rate of amylin secretion and the molar ratio of amylin to insulin secreted from diabetic pancreases increased dramatically when infused glucose concentrations fell. Similar changes also occurred in normal pancreases, although the absolute change in amylin secretion was smaller. These studies provide the first evidence that (i) there is a mechanism within the pancreas whereby independent secretion of amylin and insulin can occur; (ii) the molar ratio of amylin to insulin secreted from both normal and diabetic pancreases can vary over a wide range; and (iii) there are important differences in the kinetics of amylin and insulin secretion or their coupling to stimulation by glucose between the isolated pancreases of normal rats and those with genetically transmitted insulin resistance and diabetes mellitus.  相似文献   

13.
14.
Although the novel pancreatic peptide amylin has been shown to induce insulin resistance and decrease glucose uptake, the mechanism of amylin's actions is unknown. The following study evaluated the effect of amylin on glycogen metabolism in isolated soleus muscles in the presence and absence of insulin (200 microU/ml). Total glycogen, glycogen phosphorylase and glycogen synthases activities, and cAMP levels were measured. Total glycogen levels were significantly decreased by amylin (100 nM) in fed or fasted muscles under conditions of insulin stimulation. Amylin (100 nM) activated glycogen phosphorylase by as much as 100% and decreased glycogen synthase activity by over 60%, depending on the metabolic state of the muscles. These effects where comparable to those of the beta adrenergic agonist isoproterenol. A lower concentration of amylin (1 nM) did not significantly affect glycogen levels, glycogen phosphorylase, or glycogen synthase activity. Cyclic AMP levels were increased two-fold by isoproterenol but were unaffected by amylin. In conclusion, amylin induces glycogenolysis by decreasing glycogen synthesis and increasing breakdown. The effect of amylin on enzyme activity is consistent with a phosphorylation-dependent mechanism. It is likely that these events are mediated via a cAMP independent protein kinase.  相似文献   

15.
Amylin is a 37 amino-acid peptide secreted from the pancreatic beta-cells. It has actions on carbohydrate metabolism in vivo, including elevation of blood glucose. In this study, the hyperglycemic effect of intravenous bolus injections of amylin was compared with similar injections of glucagon in 20-hour fasted rats lightly anesthetized with halothane. Administered doses ranged from 0.01 micrograms to 1000 micrograms (about 7 pmol/kg--750 nmol/kg for amylin and 8 pmol/kg--800 pmol/kg for glucagon). Control animals received an equal volume of saline. A single intravenous injection of amylin or glucagon led to an increase of plasma glucose levels, which peaked approximately at 1 hour after treatment. The calculated ED50 for amylin was 1.48 nmol whereas that for glucagon was 7.46 nmol; the maximum glucose increment was 4.3 mM for amylin, and 2.9 mM for glucagon. These results show that amylin is a more potent and more effective hyperglycemic agent than glucagon under these experimental conditions.  相似文献   

16.
The effect of synthetic rat amylin (10,100,1000 pmol/l) on glucose (10 mmol/) and arginine (10 mmol/l) -stimulated islet hormone release from the isolated perfused rat pancreas and on amylase release from isolated pancreatic acini was investigated. Amylin stimulated the insulin release during the first (+76%) and the second secretion period (+42%) at 1 nmol/l. The first phase of the glucagon release was inhibited concentration dependently by amylin and completely suppressed during the second phase. Amylin diminished the somatostatin release in a concentration dependent manner. This effect was more pronounced at the first than the second secretion period (1 nmol amylin: 1 phase: -60%, 2.phase: -22%). Amylin was without any effect on basal and CCK stimulated amylase release from isolated rat pancreatic acini. Our data suggest amylin, a secretory product of pancreatic B-cells, as a peptide with approximately strong paracrine effects within the Langerhans islet. Therefore, amylin might be involved in the regulation of glucose homeostasis.  相似文献   

17.
Degradation of amylin by insulin-degrading enzyme   总被引:2,自引:0,他引:2  
A pathological feature of Type 2 diabetes is deposits in the pancreatic islets primarily composed of amylin (islet amyloid polypeptide). Although much attention has been paid to the expression and secretion of amylin, little is known about the enzymes involved in amylin turnover. Recent reports suggest that insulin-degrading enzyme (IDE) may have specificity for amyloidogenic proteins, and therefore we sought to determine whether amylin is an IDE substrate. Amylin-degrading activity co-purified with IDE from rat muscle through several chromatographic steps. Metalloproteinase inhibitors inactivated amylin-degrading activity with a pattern consistent with the enzymatic properties of IDE, whereas inhibitors of acid and serine proteases, calpains, and the proteasome were ineffective. Amylin degradation was inhibited by insulin in a dose-dependent manner, whereas insulin degradation was inhibited by amylin. Other substrates of IDE such as atrial natriuretic peptide and glucagon also competitively inhibited amylin degradation. Radiolabeled amylin and insulin were both covalently cross-linked to a protein of 110 kDa, and the binding was competitively inhibited by either unlabeled insulin or amylin. Finally, a monoclonal anti-IDE antibody immunoprecipitated both insulin- and amylin-degrading activities. The data strongly suggest that IDE is an amylin-degrading enzyme and plays an important role in the clearance of amylin and the prevention of islet amyloid formation.  相似文献   

18.
The peptide amylin (previously termed Diabetes Associated Peptide) has recently been isolated and characterised from the amyloid of the pancreatic islets of Langerhans from human type 2 diabetics [1]. Amylin shows about 46% identity in amino acid sequence on comparison with the calcitonin gene-related peptides (CGRPs) and also shows some similarity to insulin [1]. Recent studies have also shown that both amylin and CGRP are potent inhibitors of insulin-stimulated glycogen synthesis in skeletal muscle in vitro [2,3]. Hormones may be arranged into families, therefore a degree of order exists even though hormone-mediated effects are complex [4]. The polypeptides insulin, insulin-like growth factors (IGFs) and relaxins have been grouped into such a family with similarities both at the protein-structural and genetic levels [4,5]. We now demonstrate that this insulin-related family, along with amylin and the CGRPs, are members of a peptide superfamily defined by structural similarity in the region corresponding to the A-chain of insulin. In order to distinguish this grouping of small biologically active peptides from the previous one, we have designated it the amylin superfamily. All the members of the previously defined insulin family have a region homologous to the insulin B-chain. Insulin, the IGFs, the relaxins, the CGRPs and amylin are all involved in carbohydrate metabolism and therefore these peptides are functionally as well as structurally related. This grouping of peptides may have important implications for the study of human metabolic disease.  相似文献   

19.
Amylin is the major component of the amyloid found in the pancreases of noninsulin-dependent diabetics (type 2 diabetes). It is a 37 amino acid polypeptide and has been shown to have 46% sequence identity with the neuropeptide alpha-calcitonin gene-related peptide (alpha-CGRP). Both amylin and alpha-CGRP are known to be potent inhibitors of glycogen synthesis in stripped rat soleus muscle. Secondary structure prediction and tertiary structure model-building show the two polypeptides to have an alpha-helix/beta-strand motif similar to that observed in the insulin B-chain. The results have been supported by CD spectroscopy, although there is no sequence similarity between insulin and amylin/alpha-CGRP. Aggregation states have been predicted based on the dimeric and hexameric arrangements seen in porcine insulin. Rat and hamster amylin have a changed sequence motif in the beta-strand which results in lack of amyloid formation and type 2 diabetes. This, we propose, is caused by disruption of hydrogen bonding which prevents the formation of the dimer.  相似文献   

20.
Does neuropeptide Y contribute to the anorectic action of amylin?   总被引:2,自引:0,他引:2  
Morris MJ  Nguyen T 《Peptides》2001,22(3):541-546
Neuropeptide Y (NPY) is a potent feeding stimulant acting at the level of the hypothalamus. Amylin, a peptide co-released with insulin from pancreatic beta cells, inhibits feeding following peripheral or central administration. However, the mechanism by which amylin exerts its anorectic effect is controversial. This study investigated the acute effect of amylin on food intake induced by NPY, and the effect of chronic amylin administration on food intake and body weight in male Sprague Dawley rats previously implanted with intracerebroventricular (icv) cannulae. Rats received 1 nmol NPY, followed by amylin (0.05, 0.1, 0.5 nmol) or 2 microl saline. Increasing doses of amylin resulted in a dose-dependent inhibition of NPY-induced feeding by 31%, 74% and 99%, respectively (P < 0.05). To determine the chronic effects of i.c.v. amylin administration on feeding, rats received 0.5 nmol amylin or saline daily, 30 min before dark phase, over 6 days. Amylin significantly reduced food intake at 1, 4, 16 and 24 hours; after 6 days, amylin-treated rats showed a significant reduction in body weight, having lost 17.3 +/- 6.1 g, while control animals gained 7.7 +/- 5.1 g (P < 0.05). Brain NPY concentrations were not elevated, despite the reduced food intake, suggesting amylin may regulate NPY production or release. Thus, amylin potently inhibits NPY-induced feeding and attenuates normal 24 hour food intake, leading to weight loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号