首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
L Gritz  J Davies 《Gene》1983,25(2-3):179-188
The plasmid-borne gene hph coding for hygromycin B phosphotransferase (HPH) in Escherichia coli has been identified and its nucleotide sequence determined. The hph gene is 1026 nucleotides long, coding for a protein with a predicted Mr of 39 000. The hph gene was placed in a shuttle plasmid vector, downstream from the promoter region of the cyc 1 gene of Saccharomyces cerevisiae, and an hph construction containing a single AUG in the 5' noncoding region allowed direct selection following transformation in yeast and in E. coli. Thus the hph gene can be used in cloning vectors for both pro- and eukaryotes.  相似文献   

3.
R Plater  J A Robinson 《Gene》1992,112(1):117-122
A gene (nonR) conferring tetranactin resistance on the macrotetrolide-sensitive strain, Streptomyces lividans TK64, was isolated during a shotgun cloning experiment, in which chromosomal fragments from Streptomyces griseus were ligated into the vector pIJ699 and then introduced by transformation into S. lividans TK64. The sequence (3326 bp) of the cloned DNA revealed three complete open reading frames (ORFs) and one incomplete ORF encoded on one strand of the DNA. The nonR gene (designated here ORFA) encodes a polypeptide of 279 amino acids (Mr 30610) and contains a putative active site motif, GXSXG, characteristic of serine proteases and esterases. A functional role for the nonR gene product may involve the inactivation of the antibiotic through hydrolysis of one or more ester linkages in the macrotetrolide ring. The deduced product of the incomplete ORFX lying adjacent to ORFA showed 27.9% sequence identity with the C-terminal region of rat mitochondrial enoyl-CoA hydratase, and is possibly a macrotetrolide biosynthetic enzyme.  相似文献   

4.
Two Sau3A fragments of Streptomyces grisues IMRU 3570 were cloned in pBR322 as a vector. One of these clones contained the genetic information needed to complement trpA and trpB mutations in Escherichia coli. The other complements trpA, trpB and trpC mutations in E. coli. Both fragments originated in the same region of the chromosome but the latter is 1 kilobase (kb) longer in the region nearest the tetracycline promoter.  相似文献   

5.
The sequence of a 2.67-kilobase section of the Escherichia coli chromosome that contains the rep gene has been determined. This gene codes for a protein of predicted Mr 72,800, a DNA helicase, which is also a single-stranded DNA-dependent ATPase. The sequenced region contains an open reading frame of the correct length and orientation to encode the Rep protein. A secondary structure for the protein can be formulated from the amino acid sequence. We have compared both the primary and the secondary structures of Rep with other proteins and find the greatest homology between Rep and E. coli helicase II, the product of the uvrD gene.  相似文献   

6.
An str gene cluster containing at least four genes (strR, strA, strB, and strC) involved in streptomycin biosynthesis or streptomycin resistance or both was self-cloned in Streptomyces griseus by using plasmid pOA154. The strA gene was verified to encode streptomycin 6-phosphotransferase, a streptomycin resistance factor in S. griseus, by examining the gene product expressed in Escherichia coli. The other three genes were determined by complementation tests with streptomycin-nonproducing mutants whose biochemical lesions were clearly identified. strR complemented streptomycin-sensitive mutant SM196 which exhibited impaired activity of both streptomycin 6-phosphotransferase and amidinotransferase (one of the streptomycin biosynthetic enzymes) due to a regulatory mutation; strB complemented strain SD141, which was specifically deficient in amidinotransferase; and strC complemented strain SD245, which was deficient in linkage between streptidine 6-phosphate and dihydrostreptose. By deletion analysis of plasmids with appropriate restriction endonucleases, the order of the four genes was determined to be strR-strA-strB-strC. Transformation of S. griseus with plasmids carrying both strR and strB genes enhanced amidinotransferase activity in the transformed cells. Based on the gene dosage effect and the biological characteristics of the mutants complemented by strR and strB, it was concluded that strB encodes amidinotransferase and strR encodes a positive effector required for the full expression of strA and strB genes. Furthermore, it was found that amplification of a specific 0.7-kilobase region of the cloned DNA on a plasmid inhibited streptomycin biosynthesis of the transformants. This DNA region might contain a regulatory apparatus that participates in the control of streptomycin biosynthesis.  相似文献   

7.
J A Gil  H M Kieser  D A Hopwood 《Gene》1985,38(1-3):1-8
A gene (cat) for chloramphenicol (Cm) acetyltransferase (CAT) was cloned from Streptomyces acrimycini into S. lividans 66 on the plasmid vector pIJ61. The cat gene was localized on a 1.7-kb BclI fragment, which probably also carries the cat promoter. This DNA fragment conferred Cm resistance, through CAT activity, on S. lividans, S. coelicolor and S. parvulus, but not on Escherichia coli when inserted in the BamHI site of the tetracycline-resistance(TcR) gene of pBR322. However, when inserted in a particular orientation in this site, spontaneous deletions of 0.7 kb led to CAT activity and Cm resistance. DNA homologous to the 1.7-kb BclI cat fragment was found in most, but not all, of a series of other streptomycetes that have CAT activity. The cat provides a potentially useful screening marker for Streptomyces cloning vectors.  相似文献   

8.
The 2.8 A (1 A = 0.1 nm) resolution structure of the crystalline orthorhombic form of the microbial serine protease Streptomyces griseus protease B (SGPB) has been solved by the method of multiple isomorphous replacement using five heavy-atom derivatives. The geometrical arrangement of the active site quartet, Ser-214, Asp-102, His-57, and Ser-195, is similar to that found for pancreatic alpha-chymotrypsin. SGPB and alpha-chymotrypsin have only 18% identity of primary structure but their tertiary structures are 63% topologically equivalent within a root mean square deviation of 2.07 A. The major tertiary structural differences between the bacterial enzyme SGPB and the pancreatic enzymes is due to the zymogen requirement of the multicellular organisms in order to protect themselves against autolytic degradation. The two pronase enzymes, SGPB and Streptomyces griseus protease A (SGPA), have 61% identity of sequence and their tertiary structures are 85% topologically equivalent within a root mean square deviation of 1.46 A. The active site regions of SGPA and SGPB are similar and their tertiary structures differ only in three minor regions of surface loops.  相似文献   

9.
In Streptomyces griseus the expression of at least one streptomycin biosynthetic gene, strB1 , is dependent on the pathway-specific activator protein StrR. We show here that StrR is a DNA-binding protein which specifically interacts with the strB1 promoter fragment. Footprinting experiments demonstrate that the StrR protein binds to an inverted repeat located upstream of the strB1 promoter. Further StrR-binding sites having the consensus sequence GTTCGActG(N)11CagTcGAAc were identified in the str—sts gene clusters of S. griseus and Streptomyces glaucescens by sequence comparison, gel retardation, and footprinting studies. The genetic and biochemical evidence strongly supports the model of the StrR protein activating the expression of streptomycin biosynthetic genes by interacting with multiple binding sites within the str—sts gene clusters of S. griseus and S. glaucescens .  相似文献   

10.
Abstract Oxaloacetate decarboxylase from Klebsiella pneumoniae is a membrane bound sodium-pumping biotin enzyme. In electron microscopic samples, the enzyme particle appeared rod-like, with a length of about 12.9 nm and a width of about 7.4 nm, and with two submasses. Based on electron microscopic comparison of full-size enzyme molecules and free α-subunits, it is concluded that oxaloacetate decarboxylase contains only one α-subunit per enzyme particle. The α-subunit of the enzyme revealed a subdivision into two domains of different sizes forming a 'cleft'. Electron microscopic affinity labeling with avidin demonstrated that the biotin prosthetic group present on the α-subunit is located in this cleft, close to the complex formed by the β- and γ-subunits. The fact that 'pairs' but no higher specific aggregates could be observed after incubation with avidin, also indicates that only one copy of the α-subunit is present in an oxaloacetate decarboxylase particle.  相似文献   

11.
12.
Determinants of tetracycline resistance have been cloned from two different tetracycline-producing industrial strains of Streptomyces into Streptomyces lividans using the plasmid vector pUT206. Three plasmids, pUT250 and pUT260 with a 9.5 and a 7.5 kb insert respectively of Streptomyces rimosus DNA, and pUT270 with a 14.0 kb insert of Streptomyces aureofaciens DNA, conferring resistance to tetracycline, have been isolated. By in vitro sub-cloning, a similar fragment of 2.45 kb containing the tetracycline resistance gene (tet347) was further localized on these plasmids. The S. rimosus gene has been cloned into Escherichia coli and expressed under the control of lambda pL or Lpp promoters. Differential protein extraction of E. coli cells revealed the presence of an additional membrane-embedded protein in tetracycline-resistant cells. On the basis of available restriction endonuclease maps, the tet347 gene is probably identical to the tetB gene from S. rimosus recently identified by T. Ohnuki and co-workers as responsible for the reduced accumulation of tetracycline. The nucleotide sequence of a 2052 bp DNA fragment containing the TcR structural gene from S. rimosus has been determined. The amino acid sequence of the tet347 protein (Mr35818) deduced from the nucleotide sequence shows a limited but significant homology to other characterized tetracycline transport acting determinants from pathogenic bacteria.  相似文献   

13.
14.
A-factor, 2-(6'-methylheptanoyl)-3R-hydroxymethyl-4-butanolide, is an autoregulator essential for streptomycin production and sporulation in Streptomyces griseus. S. griseus 2247 that requires no A-factor for streptomycin production or sporulation was found to have a defect in the A-factor-binding protein. This observation implied that the A-factor-binding protein in the absence of A-factor repressed the expression of both phenotypes in the wild-type strain. Screening among mutagenized S. griseus colonies for strains producing streptomycin and sporulating in the absence of A-factor yielded three mutants that were also deficient in the A-factor-binding protein. Reversal of the defect in the A-factor-binding protein of these mutants led to the simultaneous loss of streptomycin production and sporulation. These data suggested that the A-factor-binding protein played a role in repressing both streptomycin production and sporulation and that the binding of A-factor to the protein released its repression. Mutants deficient in the A-factor-binding protein began to produce streptomycin and sporulate at an earlier stage of growth than did the wild-type strain. These mutants produced approximately 10 times more streptomycin than did the parental strain. These findings are consistent with the idea that the intracellular concentration of A-factor determines the timing of derepression of the gene(s) whose expression is repressed by the A-factor-binding protein.  相似文献   

15.
Action spectra for photoreactivation (light-induced recovery from ultraviolet radiation injury) of Escherichia coli B/r and Streptomyces griseus ATCC 3326 were determined. The spectral region explored was 365 to 700 mµ. The action spectrum for S. griseus differed from that for E. coli, indicating that the chromophores absorbing reactivating energy in the two species were not the same. Reactivation of S. griseus occurred in the region 365 mµ (the shortest wave length studied) to about 500 mµ, with the most effective wave length lying near 436 mµ. This single sharp peak in the spectrum at 436 mµ suggested the Soret band typical of porphyrins. Reactivation of E. coli occurred in the region 365 to about 470 mµ, with the most active wave length lying near 375 mµ. The single, non-pronounced peak near 375 was probably not due to a Soret band, and the identification of the substance absorbing reactivating light in E. coli is uncertain. In neither species was the region 500 to 700 mµ active. The implications of these action spectra and their differences are discussed.  相似文献   

16.
dTDP-dihydrostreptose synthase from Streptomyces griseus was purfied about 50-fold by removal of protein with polyethyleneimine, (NH4)2SO4 fractionation and gel filtration on Ultrogel AcA44. The synthase preparation was free of dTDP-4-keto-L-rhamnose 3,5-epimerase (dTDP-4-keto-6-deoxy-D-glucose 3,5-epimerase, EC 5.1.3.13) activity. A new enzyme assay using Escherichia coli Y10 as source for the epimerase and dTDP-glucose 4,6-dehydratase (dTDP-glucose 4,6-hydro-lyase, EC 4.2.1.46) was developed. In the presence of excess epimerase the apparent Km for dTDP-4-keto-6-deoxy-D-glucose was determined to be 25 microM. The molecular weight of epimerase and synthase were determined by their elution volumes from a Sephadex G-100 column to be approx. 67,000 and 32,000, respectively. The pH optimum for the epimerase was between 7.5 and 8.5. The intermediate formation of dTDP-4-keto-L-rhamnose in the epimerase reaction could be shown by detection of 6-deoxy-[3H]talose after NaB3H4 reduction. Results which indicate the existence of dTDP-4-keto-6-rhamnose as a free intermediate in the epimerase reaction are reported.  相似文献   

17.
18.
19.
Summary The cluster of streptomycin (SM) production genes in Streptomyces griseus was further analysed by determining the nucleotide sequence of genes strFGHIK. The products of the strF and/or strG genes may be involved in the formation of N-methyl-l-glucosamine, and that of the strH gene in the first glycosylation step condensing streptidine-6-phosphate and dihydrostreptose. The putative Strl protein showed strong similarity to the amino-terminal NAD(P)-binding sites of many dehydrogenases, especially of the glyceraldehyde-3-phosphate dehydrogenases. The product of the strK gene strongly resembles the alkaline phosphatase of Escherichia coli. It was shown that S. griseus excretes an enzyme that specifically cleaves both SM-6-phosphate and — more slowly — SM-3-phosphate during the production phase for SM. The identity of this enzyme with the StrK protein was demonstrated by expression of the strK gene in Streptomyces lividans 66. Further evidence for an involvement of these genes in SM biosynthesis came from the fact that genes homologous to them were found in the equivalent gene cluster of the hydroxy-SM producer Streptomyces glaucescens; these, however, were in part differently organized. The ca. 5 kb DNA segment downstream of strI in S. griseus which contains the strK gene was found to be located in inverse orientation between the homologues of the aphD and strR genes in S. glaucescens.  相似文献   

20.
We have determined the complete amino acid sequence of Mirabilis antiviral protein (MAP). MAP is composed of 250 amino acids having a combined molecular weight of 27,833 and contains 23 lysine residues and 7 arginine residues. The amino acid sequence of MAP has 24% homology with the Ricin D-A chain. To carry out systematic structure-function studies of MAP, we have accomplished the total synthesis of its gene. We designed a synthetic MAP gene containing 12 unique restriction sites that were on the average 65 base pairs apart. Thirty synthetic oligonucleotides were enzymatically joined to form DNA duplexes. These were strategically synthesized to have EcoRI and HindIII cohesive ends and were cloned in pUC19. Nine blocks of the synthetic fragments were assembled in pUC19 to form the MAP gene consisting of 759 base pairs. The correctness of the connecting reactions was confirmed by step-wise sequencing of each assembled fragment as well as the total gene. When expressed under control of the tac promoter in Escherichia coli, the synthetic gene gave a protein similar to the native MAP. This was confirmed by an enzyme-linked immunosorbent assay and Western blotting analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号