首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial metabolic capacity and DNA replication have both been shown to affect oocyte quality, but it is unclear which one is more critical. In this study, immature oocytes were treated with FCCP or ddC to independently inhibit the respective mitochondrial metabolic capacity or DNA replication of oocytes during in vitro maturation. To differentiate their roles, we evaluated various parameters related to oocyte maturation (germinal vesicle break down and nuclear maturation), quality (spindle formation, chromosome alignment, and mitochondrial distribution pattern), fertilization capability, and subsequent embryo developmental competence (blastocyst formation and cell number of blastocyst). Inhibition of mitochondrial metabolic capacity with FCCP resulted in a reduced percent of oocytes with nuclear maturation; normal spindle formation and chromosome alignment; evenly distributed mitochondria; and an ability to form blastocysts. Inhibition of mtDNA replication with ddC has no detectable effect on oocyte maturation and mitochondrial distribution, although high-dose ddC increased the percent of oocytes showing abnormal spindle formation and chromosome alignment. ddC did, however, reduce blastocyst formation significantly. Neither FCCP nor ddC exposure had an effect on the rate of fertilization. These findings suggest that the effects associated with lower mitochondrial DNA copy number do not coincide with the effects seen with reduced mitochondrial metabolic activity in oocytes. Inhibiting mitochondrial metabolic activity during oocyte maturation has a negative impact on oocyte maturation and subsequent embryo developmental competence. A reduction in mitochondrial DNA copy number, on the other hand, mainly affects embryonic development potential, but has little effect on oocyte maturation and in vitro fertilization.  相似文献   

2.
3.
4.
Little is known about mitochondrial DNA (mtDNA) replication during oocyte maturation and its regulation by extracellular factors. The present study determined the effects of supplementation of maturation medium with porcine follicular fluid (pFF; 0, 10%, 20%, and 30%) on mtDNA copy number and oocyte maturation in experiment 1; the effects on epidermal growth factor (EGF; 10 ng/mL), neuregulin 1 (NRG1; 20 ng/mL), and NRG1 + insulin-like growth factor 1 (IGF1; 100 ng/mL + NRG1 20 ng/mL), on mtDNA copy number, oocyte maturation, and embryo development after parthenogenic activation in experiment 2; and effects on embryo development after in vitro fertilization in experiment 3. Overall, mtDNA copy number increased from germinal vesicle (GV) to metaphase II (MII) stage oocytes after in vitro maturation (GV: 167 634.6 ± 20 740.4 vs. MII: 275 131.9 ± 9 758.4 in experiment 1; P < 0.05; GV: 185 004.7 ± 20 089.3 vs. MII: 239 392.8 ± 10 345.3 in experiment 2; P < 0.05; Least Squares Means ± SEM). Supplementation of IVM medium with pFF inhibited mtDNA replication (266 789.9 ± 11 790.4 vs. 318 510.1 ± 20 377.4; P < 0.05) and oocyte meiotic maturation (67.3 ± 0.7% vs. 73.2 ± 1.2%, for the pFF supplemented and zero pFF control, respectively; P < 0.01). Compared with the control, addition of growth factors enhanced oocyte maturation. Furthermore, supplementation of NRG1 stimulated mitochondrial replication, increased mtDNA copies in MII oocytes than in GV oocytes, and increased percentage of blastocysts in both parthenogenetic and in vitro fertilized embryos. In this study, mitochondrial biogenesis in oocytes was stimulated during in vitro maturation. Oocyte mtDNA copy number was associated with developmental competence. Supplementation of maturation medium with NRG1 increased mtDNA copy number, and thus provides a means to improve oocyte quality and developmental competence in pigs.  相似文献   

5.
The role of mitochondria as a nexus of developmental regulation in mammalian oogenesis and early embryogenesis is emerging from basic research in model species and from clinical studies in infertility treatments that require in vitro fertilization and embryo culture. Here, mitochondrial bioenergetic activities and roles in calcium homeostasis, regulation of cytoplasmic redox state, and signal transduction are discussed with respect to outcome in general, and as possible etiologies of chromosomal defects, maturation and fertilization failure in human oocytes, and as causative factors in early human embryo demise. At present, the ability of mitochondria to balance ATP supply and demand is considered the most critical factor with respect to fertilization competence for the oocyte and developmental competence for the embryo. mtDNA copy number, the timing of mtDNA replication during oocyte maturation, and the numerical size of the mitochondrial complement in the oocyte are evaluated with respect to their relative contribution to the establishment of developmental competence. Rather than net cytoplasmic bioenergetic capacity, the notion of functional compartmentalization of mitochondria is presented as a means by which ATP may be differentially supplied and localized within the cytoplasm by virtue of stage-specific changes in mitochondrial density and potential (ΔΨm). Abnormal patterns of calcium release and sequestration detected at fertilization in the human appear to have coincident effects on levels of mitochondrial ATP generation. These aberrations are not uncommon in oocytes obtained after ovarian hyperstimulation for in vitro fertilization. The possibility that defects in mitochondrial calcium regulation or bioenergetic homeostasis could have negative downstream development consequences, including imprinting disorders, is discussed in the context of signaling pathways and cytoplasmic redox state.  相似文献   

6.
7.
8.
The aim of this study was to evaluate the effectiveness and toxicity of single and double application of the brilliant cresyl blue (BCB) test on the selection of porcine oocytes as an indirect measure of oocyte growth for in vitro fertilization (IVF) and nuclear transfer. In the first experiment, oocytes were exposed to BCB before and after maturation culture and classified according to their cytoplasmic coloration: blue coloration and colorless. The classified oocytes were fertilized with spermatozoa and then cultured for 7 days. The percentages of maturation to metaphase II in blue oocytes at the start of maturation culture were higher than those of colorless oocytes (68.7-70.1% versus 0.8-3.6%, P < 0.05). However, double application of BCB test before and after maturation culture had a toxic effect on fertilization and embryonic development. No significant differences in the blastocyst formation were found between blue oocytes without double application of BCB test and control oocytes without any application of BCB test, whereas the total cell number per blastocyst from the blue oocytes was higher than that from the control oocytes (48.0 versus 34.2, P < 0.05). In the second experiment, oocytes were exposed to the BCB test before or after maturation culture, and then the matured oocytes were activated to evaluate the ability of parthenogenetic development. The proportion of blastocyst formation of blue oocytes classified after maturation culture was lower than that of blue oocytes classified before maturation culture (10.0% versus 27.0%, P < 0.05). Therefore, double application of the BCB test before and after maturation culture impaired fertilization and embryonic development, whereas a single application before maturation culture was efficient to select oocytes for IVF and nuclear transfer.  相似文献   

9.
During the periovulatory period, the induction of prostaglandin G/H synthase-2 (PTGS2) expression in cumulus cells and associated prostaglandin E2 (PGE2) production are implicated in the terminal differentiation of the cumulus-oocyte complex. During the present study, the effects of the PTGS2/PGE2 pathway on the developmental competence of bovine oocytes were investigated using an in vitro model of maturation, fertilization, and early embryonic development. The specific inhibition of PTGS2 activity with NS-398 during in vitro maturation (IVM) significantly restricted mitogen-activated protein kinase (MAPK) activation in oocytes at the germinal vesicle breakdown stage and reduced both cumulus expansion and the maturation rate after 22 h of culture. In addition, significantly higher rates of abnormal meiotic spindle organization were observed after 26 h of culture. Periconceptional PTGS2 inhibition did not affect fertilization but significantly reduced the speed of embryo development. Embryo output rates were significantly decreased on Day 6 postfertilization but not on Day 7. However, total blastomere number was significantly lower in embryos obtained after PTGS2 inhibition. The addition of PGE2 to IVM and in vitro fertilization cultures containing NS-398 overrode oocyte maturation and early embryonic developmental defects. Protein and mRNA expression for the prostaglandin E receptor PTGER2 were found in oocytes, whereas the PTGER2, PTGER3, and PTGER4 subtypes were expressed in cumulus cells. This study is the first to report the involvement of PGE2 in oocyte MAPK activation during the maturation process. Taken together, these results indicate that PGE2-mediated interactions between somatic and germ cells during the periconceptional period promote both in vitro oocyte maturation and preimplantation embryonic development in cattle.  相似文献   

10.
Vitrification induces mitochondrial dysfunction in warmed oocytes, and degeneration and biogenesis of mitochondria are crucial for maintaining oocyte quality. The present study addresses a hypothesis that treatment of vitrified-warmed oocytes with resveratrol could improve the viability of oocytes by activating mitochondrial biosynthesis. Cumulus oocyte complexes (COCs) collected from gilt ovaries were vitrified, warmed, and cultured in a medium containing vehicle or 1 μM resveratrol. Resveratrol treatment improved survival, maturation, and mitochondrial membrane potential of vitrified-warmed oocytes, but did not improve the development into blastocysts after parthenogenetic activation. Resveratrol treatment increased mitochondrial synthesis, as determined by the expression levels of TOMM20 and mitochondrial DNA copy number, in vitrified-warmed oocytes, but not in non-vitrified oocytes. In addition, the effect of resveratrol treatment on mitochondrial synthesis was reduced by EX527, a SIRT1 inhibitor. Resveratrol treatment of vitrified-warmed oocytes increased the expression levels of genes involved in mitochondrial synthesis (TFAM, POLG, and PGC1α) and increased nuclear translocation of NRF2. Furthermore, vitrification induced mitophagy, as confirmed by a reduction in TOMM20 expression and decreased p62 aggregation, whereas resveratrol treatment did not affect these mitophagic features. In conclusion, vitrification induced mitochondrial clearance in oocytes, whereas activation of SIRT1 by resveratrol treatment facilitated the recovery of vitrified-warmed oocytes through the activation of mitochondrial synthesis.  相似文献   

11.
The potential role of endogenous triglyceride in bovine oocyte maturation and preimplantation development has been investigated. Bovine immature oocytes were recovered from abattoir-derived ovaries, matured and fertilised in vitro and the zygotes grown to the blastocyst stage in SOFaaBSA. Methyl palmoxirate (MP) blocks the oxidation of fatty acids by inhibiting mitochondrial carnitine palmitoyltransferase A. The development of zygotes exposed to MP during oocyte maturation, and of zygotes exposed to MP during embryo culture has been assessed in terms of oxygen consumption by oocytes and embryos during a 4-6 hr incubation period in the presence of MP and as blastocyst formation and cell number. Immature oocytes exposed to MP during maturation had reduced capacity to form blastocysts after fertilisation; the same effect was apparent, but to a lesser extent, in zygotes exposed to MP during embryo development. Oxygen consumption values of oocytes and blastocysts in the absence of exogenous substrates were similar to those in control medium containing nutrients. MP-inhibited oxygen consumption of immature oocytes, mature oocytes, cleavage stages embryos and blastocysts by 64, 45, 12 and 13%, respectively. The data are consistent with a role for triglyceride as a key energy source during bovine oocyte maturation and potentially, during preimplantation embryo development.  相似文献   

12.
Despite the well-known benefits of omega-3 (n-3) polyunsaturated fatty acid (PUFA) supplementation on human health, relatively little is known about the effect of n-3 PUFA intake on fertility. More specifically, the aim of this study was to determine how oocyte and preimplantation embryo development might be influenced by n-3 PUFA supply and to understand the possible mechanisms underlying these effects. Adult female mice were fed a control diet or a diet relatively high in the long-chain n-3 PUFAs for 4 wk, and ovulated oocytes or zygotes were collected after gonadotropin stimulation. Oocytes were examined for mitochondrial parameters (active mitochondrial distribution, mitochondrial calcium and membrane potential) and oxidative stress, and embryo developmental ability was assessed at the blastocyst stage following 1) in vitro fertilization (IVF) or 2) culture of in vivo-derived zygotes. This study demonstrated that exposure of the oocyte during maturation in the ovary to an environment high in n-3 PUFA resulted in altered mitochondrial distribution and calcium levels and increased production of reactive oxygen species. Despite normal fertilization and development in vitro following IVF, the exposure of oocytes to an environment high in n-3 PUFA during in vivo fertilization adversely affected the morphological appearance of the embryo and decreased developmental ability to the blastocyst stage. This study suggests that high maternal dietary n-3 PUFA exposure periconception reduces normal embryo development in the mouse and is associated with perturbed mitochondrial metabolism, raising questions regarding supplementation with n-3 PUFAs during this period of time.  相似文献   

13.
Cell surface antigenic changes associated with differentiation of the rat oocyte and early embryo have been demonstrated with a monoclonal antibody (anti-OA-1). Antigen is first detectable coincident with initiation of oocyte growth, is a constant feature of all growing oocytes and displays a redistribution during meiotic maturation. Following fertilization, antigen is detectable on the surface of the embryo through the four-cell stage. This first monospecific marker for the rat oocyte and embryo should prove useful in probing structure/function relationships in oocyte growth, meiotic maturation fertilization, and/or early embryonic development.  相似文献   

14.
The structure and function of the mammalian oocyte and preimplantation embryo coverings are described in this review. The integrity of embryonic coverings is the main prerequisite for the success of such technology as preimplantation embryo freezing and, especially, for successful rederivation. On the other hand, results of in vitro fertilization and, sometimes, the results of embryo freezing are improved after perforation of the oocyte/embryonic coverings. Modern reproductive technologies focusing on oocyte/embryonic coverings, such as preimplantation embryo freezing/cryopreservation, in vitro fertilization, intracytoplasmic sperm injection, assisted hatching, immunocontraception, and rederivation, are reviewed. Application of these technologies to different mammalian species is discussed with a special emphasis on the oocytes/preimplantation embryos coverings.  相似文献   

15.
Wu YG  Liu Y  Zhou P  Lan GC  Han D  Miao DQ  Tan JH 《Cell research》2007,17(8):722-731
Selecting oocytes that are most likely to develop is crucial for in vitro fertilization and animal cloning. Brilliant cresyl blue (BCB) staining has been used for oocyte selection in large animals, but its wider utility needs further evaluation. Mouse oocytes were divided into those stained (BCB+) and those unstained (BCB-) according to their ooplasm BCB coloration. Chromatin configurations, cumulus cell apoptosis, cytoplasmic maturity and developmental competence were compared between the BCB+ and BCB- oocytes. The effects of oocyte diameter, sexual maturity and gonadotropin stimulation on the competence of BCB+ oocytes were also analyzed. In the large- and medium-size groups, BCB+ oocytes were larger and showed more surrounded nucleoli (SN) chromatin configurations and higher frequencies of early atresia, and they also gained better cytoplasmic maturity (determined as the intracellular GSH level and pattern of mitochondrial distribution) and higher developmental potential after in vitro maturation (IVM) than the BCB-oocytes. Adult mice produced more BCB+ oocytes with higher competence than the prepubertal mice when not primed with PMSG. PMSG priming increased both proportion and developmental potency of BCB+ oocytes. The BCB+ oocytes in the large-size group showed more SN chromatin configurations, better cytoplasmic maturity and higher developmental potential than their counterparts in the medium-size group. It is concluded that BCB staining can be used as an efficient method for oocyte selection, but that the competence of the BCB+ oocytes may vary with oocyte diameter, animal sexual maturity and gonadotropin stimulation. Taken together, the series of criteria described here would allow for better choices in selecting oocytes for better development.  相似文献   

16.
17.
The objective of this study was to investigate the effects of oocyte selection using brilliant cresyl blue (BCB) and culture density during individual in vitro maturation (IVM) on porcine oocyte maturity and subsequent embryo development using a chemically defined medium. Cumulus-oocyte complexes (COCs) were classified as BCB-positive or BCB-negative after exposure to a BCB solution for 90 min. The classified COCs were matured in a group (15 COCs per 100-μL droplet) or individually (1 COC per 1-, 2.5-, 5-, or 10-μL droplet). Meiotic competence, intraoocyte glutathione concentration, and developmental competence after intracytoplasmic sperm injection were monitored. The BCB selected oocytes competent for nuclear and cytoplasmic maturation. Furthermore, meiotic competence for oocytes matured individually in a 5-μL droplet was superior (P < 0.05) to that of oocytes matured in a 1-μL droplet. Also, the culture density in a 5-μL droplet during IVM resulted in a higher (P < 0.05) rate of cleaved embryos than that in a 1-μL droplet and produced a similar rate of blastocysts compared with that of a group culture system. Conversely, BCB selection did not improve cleavage and blastocyst formation. In conclusion, it was possible to predict porcine oocytes competent for maturation using oocyte selection with BCB. Moreover, a 5-μL droplet during the individual IVM culture was most suitable for oocyte maturation and subsequent embryo development, although every culture density used in this study supported development up to the blastocyst stage.  相似文献   

18.
Mitochondria is a powerhouse organelle involved in ATP synthesis, calcium signaling, reactive oxygen species (ROS) by oxidative stress production, cell cycle arrest via apoptosis and sex steroid hormones biosynthesis. Improvement of sperm parameters such as motility, capacitation, acrosome reaction, and oocyte interaction, involve regulation of ROS levels by the mitochondria. In human, the relation between the quantitative level of mitochondrial DNA (mtDNA), oocyte cytoplasm maturation and fertilization potential, is not clear. It has been hypothesized that oocytes without sufficient wild type mtDNA and therefore able to generate ATP, would not normally be ovulated. This is reflected in the low numbers of mtDNA observed in degenerate oocytes obtained through super ovulation protocols during assisted reproductive technology programs. Different theories place mitochondria in a central role of oxidative damage to cells and tissues related to infertility declining and aging. Mitochondria-dependent apoptosis seems to be responsible for the pre and post-natal decline in germ cells, embryo development, implantation failure, and miscarriages.  相似文献   

19.
20.
Interspecies somatic cell nuclear transfer (iSCNT) involves the transfer of a nucleus or cell from one species into the cytoplasm of an enucleated oocyte from another. Once activated, reconstructed oocytes can be cultured in vitro to blastocyst, the final stage of preimplantation development. However, they often arrest during the early stages of preimplantation development; fail to reprogramme the somatic nucleus; and eliminate the accompanying donor cell's mitochondrial DNA (mtDNA) in favour of the recipient oocyte's genetically more divergent population. This last point has consequences for the production of ATP by the electron transfer chain, which is encoded by nuclear and mtDNA. Using a murine-porcine interspecies model, we investigated the importance of nuclear-cytoplasmic compatibility on successful development. Initially, we transferred murine fetal fibroblasts into enucleated porcine oocytes, which resulted in extremely low blastocyst rates (0.48%); and failure to replicate nuclear DNA and express Oct-4, the key marker of reprogramming. Using allele specific-PCR, we detected peak levels of murine mtDNA at 0.14±0.055% of total mtDNA at the 2-cell embryo stage and then at ever-decreasing levels to the blastocyst stage (<0.001%). Furthermore, these embryos had an overall mtDNA profile similar to porcine embryos. We then depleted porcine oocytes of their mtDNA using 10 μM 2',3'-dideoxycytidine and transferred murine somatic cells along with murine embryonic stem cell extract, which expressed key pluripotent genes associated with reprogramming and contained mitochondria, into these oocytes. Blastocyst rates increased significantly (3.38%) compared to embryos generated from non-supplemented oocytes (P<0.01). They also had significantly more murine mtDNA at the 2-cell stage than the non-supplemented embryos, which was maintained throughout early preimplantation development. At later stages, these embryos possessed 49.99±2.97% murine mtDNA. They also exhibited an mtDNA profile similar to murine preimplantation embryos. Overall, these data demonstrate that the addition of species compatible mtDNA and reprogramming factors improves developmental outcomes for iSCNT embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号