首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The regulatory role of cyclic nucleotide phosphodiesterase(s) and cyclic AMP metabolism in relation to progesterone production by gonadotropins has been studied in isolated rat ovarian cells. Low concentrations of choriogonadotropin (0.4-5ng/ml) increased steroid production without any detectable increase in cyclic AMP, when experiments were carried out in the absence of phosphodiesterase inhibitors. The concentration of choriogonadotropin (10ng/ml) that stimulated progesterone synthesis maximally resulted in a minimal increase in cyclic AMP accumulation and choriogonadotropin binding. Choriogonadotropin at a concentration of 10ng/ml and higher, however, significantly stimulated protein kinase activity and reached a maximum between 250 and 1000ng of hormone/ml. Higher concentrations (50-2500ng/ml) of choriogonadotropin caused an increase in endogenous cyclic AMP, and this increase preceded the increase in steroid synthesis. Analysis of dose-response relationships of gonadotropin-stimulated cyclic AMP accumulation, progesterone production and protein kinase activity revealed a correlation between these responses over a wide concentration range when experiments were performed in the presence of 3-isobutyl-1-methylxanthine. The phosphodiesterase inhibitors papaverine, theophylline and 3-isobutyl-1-methylxanthine each stimulated steroid production in a dose-dependent manner. Incubation of ovarian cells with dibutyryl cyclic AMP or 8-bromo cyclic AMP mimicked the steroidogenic action of gonadotropins and this effect was dependent on both incubation time and nucleotide concentration. Maximum stimulation was obtained with 2mm-dibutyryl cyclic AMP and 8-bromo cyclic AMP, and this increase was close to that produced by a maximally stimulating dose of choriogonadotropin. Other 8-substituted derivatives such as 8-hydroxy cyclic AMP and 8-isopropylthio cyclic AMP, which were less susceptible to phosphodiesterase action, also effectively stimulated steroidogenesis. The uptake and metabolism of cyclic [(3)H]AMP in ovarian cells was also studied in relation to steroidogenesis. When ovarian cells were incubated for 2h in the presence of increasing concentrations of cyclic [(3)H]AMP, the radioactivity associated with the cells increased almost linearly up to 250mum-cyclic [(3)H]AMP concentration in the incubation medium. The (3)H label in the cellular extract was recovered mainly in the forms ATP, ADP, AMP, adenosine and inosine, with cyclic AMP accounting for less than 1% of the total tissue radioactivity. Incubation of cyclic AMP in vitro with ovarian cells resulted in a rapid breakdown of the nucleotide in the medium. The degradation products in the medium have been identified as AMP, adenosine and inosine. The rapid degradation of cyclic AMP by phosphodiesterase(s) makes it difficult to correlate changes in cyclic AMP concentrations with steroidogenesis. These observations thus provide an explanation for the previously observed lack of cyclic AMP accumulation under conditions in which low doses of choriogonadotropin stimulated steroidogenesis without any detectable changes in cyclic AMP accumulation.  相似文献   

2.
Cyclic AMP-dependent protein kinase activity in Trypanosoma cruzi.   总被引:1,自引:0,他引:1       下载免费PDF全文
A cyclic AMP-dependent protein kinase activity from epimastigote forms of Trypanosoma cruzi was characterized. Cytosolic extracts were chromatographed on DEAE-cellulose columns, giving two peaks of kinase activity, which were eluted at 0.15 M- and 0.32 M-NaCl respectively. The second activity peak was stimulated by nanomolar concentrations of cyclic AMP. In addition, a cyclic AMP-binding protein co-eluted with the second kinase activity peak. Cyclic AMP-dependent protein kinase activity was further purified by gel filtration, affinity chromatography on histone-agarose and cyclic AMP-agarose, as well as by chromatography on CM-Sephadex. The enzyme ('holoenzyme') could be partially dissociated into two different components: 'catalytic' and 'regulatory'. The 'regulatory' component had specific binding for cyclic AMP, and it inhibited phosphotransferase activity of the homologous 'catalytic component' or of the 'catalytic subunit' from bovine heart. Cyclic AMP reversed these inhibitions. A 'holoenzyme preparation' was phosphorylated in the absence of exogenous phosphate acceptor and analysed by polyacrylamide-gel electrophoresis. A 56 kDa band was phosphorylated. The same preparation was analysed by Western blotting, by using polyclonal antibodies to the regulatory subunits of protein kinases type I or II. Both antibodies reacted with the 56 kDa band.  相似文献   

3.
The dependence of cell proliferation on nuclear protein phosphorylation was studied with exponential-phase and stationary-phase cultures of Chinese-hamster ovary cells. Nuclear proteins were fractionated, according to their DNA-binding affinities, by using sequential extractions of isolated nuclei with increasing concentrations of NaCl. When viable whole cells were labelled with H332PO4, phosphorylation of nuclear proteins was found to be lower in quiescent cells than in proliferating cells. Phosphorylation of nuclear proteins soluble in 0.30M-NaCl (less than 50% of these proteins bind to DNA) was greater than for those proteins soluble in higher salt concentrations (80-100% of these proteins bind to DNA). Cyclic AMP enhanced the phosphorylation of nuclear proteins soluble in 0.3 m-NaCl by 40-50%, and this stimulation was independent of cell growth. Cyclic AMP also increased the phosphorylation of nuclear proteins soluble in 0.6M-NaCl and 2.0M-NaCl by 40-50% in exponential-phase cultures, but not in stationary-phase cultures. Several examples of specific phosphorylation in response to cyclic AMP were observed, including a 35000-mol.wt. protein in the 0.30 M-NaCl-soluble fraction and several proteins larger than 100000 molecular weight within this fraction. A major peptide of molecular weight approx. 31000 extracted with 0.6M-NaCl was also phosphorylated. Its phosphorylation was independent of cyclic AMP in exponential-phase cultures, and it was not phosphorylated in plateau-phase cells. These changes in cell-growth-dependent phosphorylation occurred in the absence of any apparent qualitative changes in the nuclear protein molecular-weight distributions. These data demonstrate that (1) phosphorylation of nuclear proteins is dependent on the culture's proliferative status, (2) both cyclic AMP-dependent and cyclic AMP-independent specific phosphorylation occurs, and (3) the cyclic AMP-dependent growth-independent phosphorylation that occurs does not appear to be a modification of DNA-binding proteins, whereas the cyclic AMP-dependent growth-dependent phosphorylation does involve modification of DNA binding proteins.  相似文献   

4.
The role of the cyclic AMP-protein kinase system in mediating the steroidogenic effect of ACTH, prostaglandin E1 and dibutyryl cyclic AMP, induced similar stimulations of protein kinase activity, cyclic AMP was studied using human adrenal cells isolated from normal and adrenocortical secreting tumors. At high concentrations of ACTH, complete activation of protein kinase of normal adrenal cells was observed within 3 min, at the time when cyclic AMP production was slightly increased and there was still no stimulation of steroidogenesis. At supramaximal concentrations, ACTH, PGE1 and dibutyryl cyclic AMP and cortisol productions in adrenal cells isolated from normal and from one adrenocortical tumor. In one tumor in which the adenylate cyclase activity was insensitive to ACTH, the hormone was unable to stimulate protein kinase or steroidogenesis, but the cells responded to both PGE1 and dibutyryl cyclic AMP. In another tumor in which the adenylate cyclase was insensitive to PGE1, this compound also did not increase protein kinase activity or steroidogenesis, but both parameters were stimulated by ACTH and dibutyryl cyclic AMP. After incubation of normal adrenal cells with increasing concentrations of ACTH (0.01-100 nM) marked differences were found between cyclic AMP formation and cortisol production. However at the lowest concentrations of ACTH exerting an effect on steroid production a close linked correlation was found between protein kinase activation and cortisol production, but half-maximal and maximal cortisol production occurs at lower concentration of ACTH than was necessary to induce the same stimulation of protein kinase. Similar findings were found after incubating the adrenal cells with dibutyryl cyclic AMP (0.01-10 mM). The results implicate an important role of the cyclic AMP-protein kinase system during activation of adrenal cell steroidogenesis by low concentrations of steroidogenic compounds.  相似文献   

5.
Multiple protein kinase activities were found in the luminal segment of the renal proximal tubule cell plasma membrane (brush border membrane). Membranes were extracted with Lubrol, with no loss in activity, and the extract was chromatographed on diethylaminoethyl cellulose with a salt gradient. With protamine as substrate, activity eluted in two peaks, designated I and IIb, and was cyclic AMP independent. With histone VII-S, one peak, designated IIa, appeared, which eluted slightly ahead of IIb and was cyclic AMP dependent. The three activities eluted in their original patterns following rechromatography. Histone kinase activity in the combined IIa+b fraction was stimulated threefold by cyclic nucleotides (Ka = 0.013 and 0.94 μM for cyclic AMP and cyclic GMP, respectively) by increasing V. Cyclic AMP binding activity eluted with histone kinase activity. Rechromatography of IIa+b on diethylaminoethyl cellulose containing 1 μm cyclic AMP resulted in passage through the column of most of the histone kinase activity (IIa) prior to the salt gradient, but retention of kinase IIb, which again eluted in its original position. Characterization of the separated enzymes revealed that kinase I was highly specific for protamine and totally insensitive to cyclic AMP and a specific protein inhibitor of cyclic AMP-dependent kinases. Kinase IIa was relatively specific for histones and was completely inhibited by the protein inhibitor. Kinase IIb was nonspecific, catalyzing phosphorylation of protamine, casein, histones, and phosvitin in decreasing order of activity, and was insensitive to cyclic AMP and the protein inhibitor. Exposure of intact brush border membranes to elevated temperatures revealed that phosphorylation of intrinsic membrane proteins and protamine was thermolabile, whereas cyclic AMP-dependent histone kinase activity was relatively thermostable. These findings implicate cyclic AMP-independent protamine kinases in the cyclic AMP-independent autophosphorylation of the brush border membrane.  相似文献   

6.
A somatic cell genetic approach has been used to evaluate the role of cyclic AMP-dependent protein kinase in ACTH action on adrenal steroidogenesis. A mutant clone, 8BrcAMPr-1, previously was isolated from an ACTH-sensitive adrenocortical tumor cell line (clone Y1) following mutagenesis and selective growth in 8-bromoadenosine 3′, 5′-monophosphate. This study demonstrates that the 8BrcAMP4-1 cells have an altered cyclic AMP-dependent protein kinase. The protein kinase in the cytosol of the mutant characteristically requires, for half-maximal activity, concentrations of cyclic AMP 7-fold higher than those required by the enzyme in preparations from the parent. The cytosolic cyclic AMP-dependent protein kinases of Y1 and 8BrcAMPr-1 cells chromatograph similarly on columns of DEAE-cellulose. From each cell line, a major peak of activity (≥ 70% of recovered activity), designated as Peak I, elutes with 0.04–0.06 M NaCl; a second peak of activity, designated as Peak II, elutes with 0.12–0.14 M NaCl. Protein kinase activity in the Peak I fraction of mutant cells has a decreased apparent affinity (4-fold) for cyclic AMP relative to the corresponding fraction of parental Y1 cells. The protein kinase activities present in Peak II fractions from Y1 and mutant cells are indistinguishable. The protein kinase mutant exhibits poor steroidogenic responses to added ACTH and cyclic AMP; and as shown previously does not display the growth arrest and morphological changes produced in Y1 by these agents. These results suggest that cyclic AMP-dependent protein kinase is important in the regulation of adrenal steroidogenesis, morphology and growth by ACTH.  相似文献   

7.
Embryonic chick (7–9 day) and newborn chick myocardia contain one major peak of cyclic AMP-dependent protein kinase activity as assessed by DEAE-cellulose chromatography. Evidence is presented that the cyclic AMP-dependent protein kinase activity ratios (activity in absence of cyclic AMP/activity in presence of added cyclic AMP) of homogenates prepared with low ionicf strength buffer reflect the endogenous activation state of the enzyme. The cyclic AMP content of newborn chick myocardium is lower than that of 7–9-day embryonic chick myocardium; the baseline cyclic AMP-dependent protein kinase activity is correspondingly reduced. Isoproterenol produces smaller elevations in cyclic AMP and in the cyclic AMP-dependent protein kinase activity ratio in newborn chick as compared to embryonic chick myocardium. Differences in the ability of isoproterenol to elevate cyclic AMP in the different preparations are not accompanined by appropriate changes in the adenylate cyclase or phosphodiesterase activities of the corresponding broken cell preparations. Studies with the phosphodiesterase inhibitor, Ro 20 1724 indicate that the changes in the ability of isoproterenol to elevate cyclic AMP in the developing chick myocardium are due to changes in the metabolism of the cyclic nucleotide by phosphodiesterase.  相似文献   

8.
Embryonic chick (7-9 day) and newborn chick myocardia contain one major peak of cyclic AMP-dependent protein kinase activity as assessed by DEAE-cellulose chromatography. Evidence is presented that the cyclic AMP-dependent protein kinase activity ratios (activity in absence of cyclic AMP/activity in presence of added cyclic AMP) of homogenates prepared with low ionic strength buffer reflect the endogenous activation state of the enzyme. The cyclic AMP content of newborn chick myocardium is lower than that of 7--9 day embryonic chick myocardium; the baseline cyclic AMP-dependent protein kinase activity is correspondingly reduced. Isoproterenol produces smaller elevations in cyclic AMP and in the cyclic AMP-dependent protein kinase activity ratio of newborn chick as compared to embryonic chick myocardium. Differences in the ability of isoproterenol to elevate cyclic AMP in the different preparations are not accompanied by appropriate changes in the adenylate cyclase or phosphodiesterase activities of the corresponding broken cell preparations. Studies with the phosphodiesterase inhibitor, Ro 20 1724 indicate that the changes in the ability of isoproterenol to elevate cyclic AMP in the developing chick myocardium are due to changes in the metabolism of the cyclic nucleotide by phosphodiesterase.  相似文献   

9.
Diaphragm extracts were subjected to electrophoresis on polyacrylamide gels to separate the different molecular species of th cyclic AMP-dependent protein kinase. Using cyclic [3H]AMP, three peaks of binding activity were observed. The peak closest to the origin (peak I) was associated with cyclic AMP-dependent protein kinase activity and was abolished by incubation of the extracts with cyclic AMP prior to electrophoresis. The peak farthest from the origin (peak III) was devoid of kinase activity and was increased by incubation of extracts with cyclic AMP before electrophoresis; furthermore, when extracts were incubated with cyclic [3H]AMP before electrophoresis, essentially all the radioactivity appeared in peak III. Peak II, in an intermediate position, was also abolished by preincubation of the extracts with cyclic AMP and both its binding capacity and cyclic AMP-dependent protein kinase activity were lower than in Peak I. A peak of cyclic AMP-independent protein kinase (peak 0) that migrated more slowly than peak II was also detected. From these and other data it is concluded that peaks I and II are cyclic AMP-dependent protein kinase and that peak III is the dissociated regulatory subunit, respectively. Peak 0 is cyclic AMP-independent protein kinase together with free catalytic subunits from cyclic AMP-dependent protein kinase. Incubation of rat diaphragms with epinephrine resulted in dose- and time-dependent decrease in peak I and increase in peak III. These changes correlated with the decrease of cyclic AMP-dependent protein kinase associated with peak I. No changes in Peak II were observed with epinephrine, but an increased peak 0 was noted. Changes in peak I and peak III correlated with the modification of glycogen synthase and glycogen phosphorylase activities. No regulatory subunits (peak III) were detected as phosphorylated forms in diaphragms previously equilibrated with 32P. Treatment with epinephrine produce no noticeable phosphorylation of these regulatory subunits.  相似文献   

10.
Protein Kinase Activities in Neurospora crassa   总被引:2,自引:0,他引:2  
Several protein kinase activities have been found in 105,000g supernatant of Neurospora crassa mycelia grown up to the logarithmic phase. By chromatography on DEAE-cellulose the following enzyme activities have been resolved: (i) a cyclic AMP-dependent protein kinase (peak I kinase) eluting at 0.20 m NaCl, more active with histone than with phosvitin (it was inhibited by both a thermolabile fraction having cyclic AMP-binding activity and a thermostable inhibitor isolated from 105,0005g mycelial supernates), (ii) a cyclic nucleotide-independent protein kinase (peak II kinase) eluting at 0.35 m NaCl, also more active with histone than with phosvitin (this kinase was not inhibited by the fraction having cyclic AMP-binding activity but it was sensitive to the thermostable inhibitor); and finally, (iii) a protein kinase eluting at 0.43 m NaCl (peak II kinase), with similar activity toward histone and phosvitin, insensitive to cyclic nucleotides and to fractions carrying cyclic AMP-binding capacity (this kinase activity also resulted insensitive to the thermostable inhibiting factor).  相似文献   

11.
The activity of cyclic AMP-dependent protein kinase (cyclic AMP-PK) was significantly higher (P less than 0.001) in thioglycollate-elicited than in resident rat peritoneal macrophages. The activity ratio of the enzyme (its activity in the absence of added cyclic AMP divided by that in the presence of 5 microM cyclic AMP) was similar in the two cell types. The divalent ion ionophore A23187 induced a rapid increase in the activity ratio of cyclic AMP-PK in both macrophage types. This effect was blocked by pretreating the cells with indomethacin or aspirin (inhibitors of cyclo-oxygenase) and bromo-phenacyl bromide (an inhibitor of phospholipase A2), implicating the synthesis of a prostanoid as an intermediary step. Prostaglandin (PG) E2, 8-bromo cyclic AMP and cholera toxin, all of which inhibit chemiluminescence and/or PG formation in macrophages, increased the activity ratio of cyclic AMP-PK in these cells. We propose that the activation of cyclic AMP-PK plays a central role in the response of macrophages to both endogenously-generated and exogenously added PGE.  相似文献   

12.
Diaphragm extracts were subjected to electrophoresis on polyacrylamide gels to separate the different molecular species of the cyclic AMP-dependent protein kinase. Using cyclic [3H]AMP, three peaks of binding activity were observed. The peak closest to the origin (peak I) was associated with cyclic AMP-dependent protein kinase activity and was abolished by incubation of the extracts with cyclic AMP prior to electrophoresis. The peak farthest from the origin (peak III) was devoid of kinase activity and was increased by incubation of extracts with cyclic AMP before electrophoresis; furthermore, when extracts were incubated with cyclic [3H]AMP before electrophoresis, essentially all the radioactivity appeared in peak III. Peak II, in an intermediate position, was also abolished by preincubation of the extracts with cyclic AMP and both its binding capacity and cyclic AMP-dependent protein kinase activity were lower than in Peak I. A peak of cyclic AMP-independent protein kinase (peak O) that migrated more slowly than peak II was also detected. From these and other data it is concluded that peaks I and II are cyclic AMP-dependent protein kinase and that peak III is the dissociated regulatory subunit, respectively. Peak O is cyclic AMP-independent protein kinase together with free catalytic subunits from cyclic AMP-dependent protein kinase. Incubation of rat diaphragms with epinephrine resulted in a dose- and time-dependent decrease in peak I and increase in peak III. These changes correlated with the decrease of cyclic AMP-dependent protein kinase associated with peak I. No changes in Peak II were observed with epinephrine, but an increased peak O was noted. Changes in peak I and III correlated with the modification of glycogen synthase and glycogen phosphorylase activities.No regulatory subunits (peak III) were detected as phosphorylated forms in diaphragms previously equilibrated with 32P. Treatment with epinephrine produce no noticeable phosphorylation of these regulatory subunits.  相似文献   

13.
Studies were carried out to elucidate the mechanisms underlying the diminished phosphorylation of cerebral ribosomal protein in experimental hyperphenylalaninaemia [Roberts & Morelos (1980) Biochem. J.190, 405-419]. Administration of N(6),O(2)'-dibutyryl cyclic AMP or 3-isobutyl-1-methylxanthine, which increased phosphorylation of the S6 protein of cerebral 40S ribosomal subunits in control infant rats, did not counteract the decreased phosphorylation of this ribosomal protein resulting from intraperitoneal administration of a loading dose of l-phenylalanine. N(2),O(2)'-Dibutyryl cyclic GMP had no effect on cerebral ribosomal-protein phosphorylation in either control or hyperphenylalaninaemic animals. The phenylalanine-induced decrease in ribosomal-protein phosphorylation was associated with decreased protein kinase activity in cerebral cytosolic and microsomal preparations. However, the maximal protein kinase response to cyclic AMP added in vitro was unaltered by prior administration of phenylalanine in vivo. The heat-stable protein inhibitor of cyclic AMP-dependent protein kinases decreased the activity of these enzymes by about 90% and eliminated the phenylalanine-induced difference in protein kinase activity in the absence of added cyclic AMP. Intracisternal administration of doses of dibutyryl cyclic AMP or 3-isobutyl-1-methylxanthine which increased the cyclic AMP-dependent protein kinase activity ratio in control infant rats was without effect on this index in phenylalanine-treated animals. Dibutyryl cyclic GMP had no effect on the protein kinase activity ratio in either group of animals. These results suggest that inhibition of cerebral cyclic AMP-dependent protein kinases by abnormally high concentrations of phenylalanine may contribute to the decrease in cerebral ribosomal-protein phosphorylation in experimental hyperphenylalaninaemia.  相似文献   

14.
Fat cells isolated from the mesenteric adipose tissue of chickens (pullets) responded to glucagon with an increase in lipolysis and a sustained rise in cyclic adenosine 3':5'-monophosphate (cyclic AMP) over a 30-min incubation. The prolonged accumulation of cyclic AMP due to glucagon in chicken fat cells was primarily intracellular. In addition, there was little increase in cyclic AMP accumulation due to theophylline alone or potentiation of the increase due to glucagon. These data indicate that chicken fat cells, unlike rat fat cells, are relatively insensitive to theophylline. Neither lipolysis nor cyclic AMP accumulation by chicken fat cells was inhibited by free fatty acid to albumin ratios (3 to 7) which markedly reduced both events in rat fat cells. However, in the absence of albumin from the medium, lipolysis in chicken fat cells was reduced, but not to the same extent as in rat fat cells. Chicken fat cells did accumulate more intracellular free fatty acids in response to lipolytic agents than did rat fat cells. The uptake of oleate by rat and chicken fat cells was identical. Glucagon-induced accumulation of cyclic AMP by chicken fat cell ghosts was unaffected by added oleate. Under identical conditions glucagon-induced adenylate cyclase activity of rat fat cell ghosts was markedly inhibited by added oleate. Triglyceride lipase activity of the pH 5.2 precipitate from a 40,000 x g infranatant of homogenized fat cells from chickens was less sensitive than that from rat fat cells to the ratio of oleate to albumin. These results suggest that the maintenance of cyclic AMP levels in chicken fat cells incubated with lipolytic agents results from the relative insensitivity of chicken fat cells to free fatty acid inhibition of cyclic AMP accumulation.  相似文献   

15.
When resting confluent monolayers of WI-38 fibroblasts are stimulated to proliferate by serum, DNA synthesis begins to increase between 15-18 h after stimulation. Chromatin-bound protein kinase activity increases in stimulated cells within 1 h after the nutritional change, concomitant with an increase in the template activity of nuclear chromatin. Addition of dibutyryl 3' : 5'-cyclic adenosine monophosphate (dibutyryl cyclic) AMP to the stimulating medium inhibits the entrance of cells into S phase, but only if dibutyryl cyclic AMP (5-10(-4) M) is added before the onset of DNA synthesis. The increases in chromatin template activity and in the chromatin-bound kinase activity are not inhibited by dibutyryl cyclic AMP in the early hours after stimulation, but are completely inhibited after the 5th hour from the nutritional change. This seems to indicate that in stimulated WI-38 cells, dibutyryl cyclic AMP exerts its inhibitory action somewhere between 5 and 12 h after stimulation. A number of protein kinase activities were extracted from chromatin with 0.3 M NaCl and partially resolved on a phosphocellulose column. Two distinct peaks of protein kinase activity appeared to be markedly increased in WI-38 cells 6 h after serum stimulation. Both peaks of increased activity were inhibited by dibutyryl cyclic AMP in vivo. Adenosine, sodium butyrate and adenosine 5'-monophosphate (AMP) do not inhibit the increase in DNA synthesis nor the increase in protein kinase activity. The results suggest that stimulation of cell proliferation in confluent monolayers of WI-38 cells causes an increase (or the new appearance) of certain chromatin-bound protein kinases, and that this increase is inhibited by cyclic AMP in vivo.  相似文献   

16.
In liver cells isolated from fed female rats, glucagon (290nM) increased adenosine 3':5'-monophosphate (cyclic AMP) content and decreased cyclic AMP binding 30 s after addition of hormones. Both returned to control values after 10 min. Glucagon also stimulated cyclic AMP-independent protein kinase activity at 30 s and decreased protein kinase activity assayed in the presence of 2 muM cyclic AMP at 1 min. Glucagon increased the levels of glycogen phosphorylase a, but there was no change in total glycogen phosphorylase activity. Glucagon increased glycogen phosphorylase a at concentrations considerably less than those required to affect cyclic AMP and protein kinase. The phosphodiesterase inhibitor, 1-methyl-3-isobutyl xanthine, potentiated the action of glucagon on all variables, but did not increase the maximuM activation of glycogen phosphorylase. Epinephrine (1muM) decreased cyclic AMP binding and increased glycogen phosphorylase a after a 1-min incubation with cells. Although 0.1 muM epinephrine stimulated phosphorylase a, a concentration of 10 muM was required to increase protein kinase activity. 1-Methyl-3-isobutyl xanthine (0.1 mM) potentiated the action of epinephrine on cyclic AMP and protein kinase. (-)-Propranolol (10muM) completely abolished the changes in cyclic AMP binding and protein kinase due to epinephrine (1muM) in the presence of 0.1mM 1-methyl-3-isobutyl xanthine, yet inhibited the increase in phosphorylase a by only 14 per cent. Phenylephrine (0.1muM) increased glycogen phosphorylase a, although concentrations as great as 10 muM failed to affect cyclic AMP binding or protein kinase in the absence of phosphodiesterase inhibitor. Isoproterenol (0.1muM) stimulated phosphorylase and decreased cyclic AMP binding, but only a concentration of 10muM increased protein kinase. 1-Methyl-3-isobutyl xanthine potentiated the action of isoproterenol on cyclic AMP binding and protein kinase, and propranolol reduced the augmentation of glucose release and glycogen phosphorylase activity due to isoproterenol. These data indicate that both alpha- and beta-adrenergic agents are capable of stimulating glycogenolysis and glycogen phosphorylase a in isolated rat liver cells. Low concentrations of glucagon and beta-adrenergic agonists stimulate glycogen phosphorylase without any detectable increase in cyclic AMP or protein kinase activity. The effects of alpha-adrenergic agents appear to be completely independent of changes in cyclic AMP protein kinase activity.  相似文献   

17.
Activation of an S6 kinase from rat astroglial cells by cAMP   总被引:1,自引:0,他引:1  
Forskolin and isoproterenol, agonists of adenylate cyclase activity, and dibutyryl cyclic AMP, stimulated an S6 kinase activity in astroglial cells. This activity was insensitive to the thermostable inhibitor of cyclic AMP-dependent protein kinase and had the same behaviour on a DEAE-Sephacel column as the mitogen stimulated S6 kinase. These observations support the idea that the cyclic AMP cascade, as well as various growth factors, can activate S6 kinase.  相似文献   

18.
Protein kinase activity of lymphocytes isolated from human subjects was assayed using histone as substrate. The activity was stimulated about twofold by cyclic AMP and total enzyme activity, determined in the presence of cyclic AMP, was inhibited by 65% by the specific heat-stable inhibitor of cyclic AMP-dependent protein kinase. Histone phosphorylation was not stimulated by cyclic GMP in the presence of the inhibitor. Cyclic AMP-dependent protein kinase could be activated in vitro by incubating intact cells with isoproterenol or with forskolin and was reflected by a significant (P less than 0.05) increase in the protein kinase activity ratio. In contrast to these well-characterized adenylate cyclase activators, incubating cells for up to 2 hr in vitro in the presence of the specific beta-blocker propranolol had no significant effect on the amount of cyclic AMP-dependent protein kinase that was in the activated state. When compared in subjects between the ages of 21 and 74 years, lymphocyte protein kinase activity was unaltered by age or gender. These results indicate that cyclic nucleotide-dependent protein kinase is of the cyclic AMP-dependent variety in the human lymphocyte. A low amount of the cyclic AMP-dependent activity (about 15%) is in the already activated state in freshly isolated cells, and this is not further reduced by incubation in vitro or by beta-blockade. In contrast to previously reported changes in the capacity to synthesize cyclic AMP, lymphocyte protein kinase is unaltered by gender or age in human subjects.  相似文献   

19.
Chinese hamster ovary cells were synchronized by selective detachment of cells in mitosis. The adenosine 3':5'-cyclic monophosphate (cyclic AMP) intracellular concentrations and cyclic AMP-dependent protein kinase activities were measured as these cells traversed G1 phase and entered S phase. Protein kinase activity, assayed in the presence or absence of saturating exogenous cyclic AMP in the reaction mixture, was lowest in early G1 phase (2 h after mitosis), increased 2-fold (plus exogenous cyclic AMP in reaction mixture) or 3.5-fold (minus cyclic AMP in reaction mixture) to maximum values in mid to late G1 phase (4-5 h after mitosis), and then decreased as cells entered S phase. Intracellular cyclic AMP concentrations were minimal 1 h after mitosis, increased 5-fold to maximum levels at 4-6 after mitosis, and decreased as cells entered S phase. Similar to the fluctuations in intracellular cyclic AMP, the cyclic AMP-dependent protein kinase activity ratio increased more than 40% in late G1 or early S phase. Puromycin (either 10 mug/ml or 50 mug/ml) administered 1 h after mitosis inhibited cyclic AMP-dependent protein kinase activity up to 50% by 5 h after mitosis, while similar treatment (10 mug/ml) had no effect on the increase in cyclic AMP formation. These data demonstrate that: (1) total protein kinase activity changed during G1 phase and this increase was dependent on new protein synthesis; (2) the increased intracellular concentrations of cyclic AMP were not dependent on new protein synthesis; and (3) the activation of cyclic AMP-dependent protein kinase was temporally coordinated with increased intracellular concentration of cycli AMP as Chinese hamster ovary cells traversed G1 phase and entered S phase. These results suggest that cyclic AMP acts during G1 phase to regulate the activation of cyclic AMP-dependent protein kinase.  相似文献   

20.
1. Protein kinase activity was measured in islets of Langerhans that had been incubated in the presence of agents known to affect insulin release. 2. Glucagon, theophylline, caffeine and 3-isobutyl-1-methylxanthine, agents that raise cyclic AMP concentrations in islet cells and stimulate insulin release, increased protein kinase activity. Adrenaline and diazoxide, agents that decrease cyclic AMP concentrations and inhibit insulin secretion, decreased the activity. 3. The increase in protein kinase activity produced by different concentrations of 3-isobutyl-1-methylxanthine was apparently related to the increase in intracellular concentrations of cyclic AMP. 4. The sulphonylureas, tolbutamide and glibenclamide, agents that increase insulin release, also increased the protein kinase activity; however, leucine, arginine and xylitol, which also stimulate insulin release, were without effect on the kinase activity. 5. Increasing the glucose concentration of the incubation medium from 2 to 20mm had no effect on protein kinase activity. Further, the ability of 3-isobutyl-1-methylxanthine to increase the protein kinase activity was not affected by the glucose concentration of the incubation medium. 6. These results suggest that agents which affect insulin secretion by altering cyclic AMP concentrations may exert their effects on hormone release by altering the activity of a cyclic AMP-dependent protein kinase in islet cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号