首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Grading evidence     
Gerald J.M. Tevaarwerk 《CMAJ》2004,170(6):928-929
  相似文献   

3.
4.
5.
6.
Gliomas are the most common types of brain tumors. Although sophisticated regimens of conventional therapies are being carried out to treat patients with gliomas, the disease invariably leads to death over months or years. Before new and potentially more effective treatment strategies, such as gene- and cell-based therapies, can be effectively implemented in the clinical application, certain prerequisites have to be established. First of all, the exact localization, extent, and metabolic activity of the glioma must be determined to identify the biologically active target tissue for a biological treatment regimen; this is usually performed by imaging the expression of up-regulated endogenous genes coding for glucose or amino acid transporters and cellular hexokinase and thymidine kinase genes, respectively. Second, neuronal function and functional changes within the surrounding brain tissue have to be assessed in order to save this tissue from therapy-induced damage. Third, pathognomonic genetic changes leading to disease have to be explored on the molecular level to serve as specific targets for patient-tailored therapies. Last, a concerted noninvasive analysis of both endogenous and exogenous gene expression in animal models as well as the clinical setting is desirable to effectively translate new treatment strategies from experimental into clinical application. All of these issues can be addressed by multi-modal radionuclide and magnetic resonance imaging techniques and fall into the exciting and fast growing field of molecular and functional imaging. Noninvasive imaging of endogenous gene expression by means of positron emission tomography (PET) may reveal insight into the molecular basis of pathogenesis and metabolic activity of the glioma and the extent of treatment response. When exogenous genes are introduced to serve for a therapeutic function, PET imaging may reveal the assessment of the "location," "magnitude," and "duration" of therapeutic gene expression and its relation to the therapeutic effect. Detailed reviews on molecular imaging have been published from the perspective of radionuclide imaging (Gambhir et al., 2000; Blasberg and Tjuvajev, 2002) as well as magnetic resonance and optical imaging (Weissleder, 2002). The present review focuses on molecular imaging of gliomas with special reference on the status and perspectives of imaging of endogenous and exogenously introduced gene expression in order to develop improved diagnostics and more effective treatment strategies of gliomas and, in that, to eventually improve the grim prognosis of this devastating disease.  相似文献   

7.
Brain gliomas are characterized by invasive growth and neovascularisation potential. Angiogenesis plays a major role in the progression of gliomas and its determination has a great prognostic value. The aim of the study was to assess the vascularisation of chosen brain gliomas and to estimate how it is correlated with tumour histological type, malignancy grade, location and size, and with age and sex of patients. Tumour vascularisation analysis was based on the determination of microvascular proliferation (MVP) and microvessel density (MVD). Microvascular proliferation was measured with immunohistochemical methods using mouse monoclonal antibodies to detect cell proliferation antigens. The following antibodies were used Ki-67 and PCNA (DAKO). Identification of vessels was performed by CD31 antibody and anti-human von Willebrand factor (DAKO). The highest microvascular proliferation and microvascular density were observed in multiform glioblastomas and the lowest in oligodendrogliomas. Significant correlation was observed between the vascularisation and malignancy grade.  相似文献   

8.
Despite improved knowledge and advanced treatments of gliomas, the overall survival rate for glioma patients remains low. Gliomas comprise of significant cell heterogeneity that contains a large number of multidrug resistant (MDR) phenotypes and cancer stem cells (CSCs), a combination that may contribute to the resistance to treatment. This article reviews the MDR related genes, major-vault protein (MVP), anti-apoptotic protein (Bcl-2) and the molecular mechanisms that may contribute to chemoresistance, in addition to the upregulated MDR phenotypes present in CSCs that has recently been identified in gliomas. Moreover, future potential therapies that modulate MDR phenotypes and CSCs are also reviewed. An improved understanding of MDR may lead to a combined treatment, targeting both CSCs and their protective MDR phenotypes leading eventually to attractive strategies for the treatment of gliomas.  相似文献   

9.
10.
11.
12.
13.
Gliomas differ from non-malignant glial cells in the overexpression or mutations of genes involved in cell cycle or growth regulation. One example is the overexpression of the somatostatin receptor subtype 2 (sst2), especially of the splice variant sst2A. The reasons for this overexpression are not known. However, the coding sequence and part of the promoter region is not mutated. In accordance to this, the sst2 is functionally active and is internalised upon agonist stimulation. Immunoelectronmicroscopic studies show that the activated sst2 is internalised via caveolin-positive endosomal vesicles and later accumulates in multivesicular bodies and lysosomal compartments. The activated sst2 is found to be co-localised with the inhibitory G-protein Gialpha at the plasma membrane and in early endosomal vesicles. Multiple signal transduction pathways are induced. Stimulation of sst2 lowers cAMP levels elicited by forskolin and activates the protein tyrosine phosphatase SHP-2. In contrast to other sst2-expressing cells a long term antiproliferative effect of somatostatin or sst2-selective agonists are not detected in cultivated glioma cells. However, continuous stimulation of sst2 decreases the expression of genes promoting tumour survival.  相似文献   

14.
15.
Despite aggressive surgery, radiation therapy, and chemotherapy, glioblastoma multiforme (GBM) is refractory to therapy, recurs quickly, and results in a median survival time of only 14 months. The modulation of the apoptotic receptor Fas with cytotoxic agents could potentiate the response to therapy. However, Fas ligand (FasL) is not expressed in the brain and therefore this Fas-inducing cell death mechanism cannot be utilized. Vaccination of patients with gliomas has shown promising responses. In animal studies, brain tumors of vaccinated mice were infiltrated with activated T cells. Since activated immune cells express FasL, we hypothesized that combination of immunotherapy with chemotherapy can activate Fas signaling, which could be responsible for a synergistic or additive effect of the combination. When we treated the human glioma cell line U-87 and GBM tumor cells isolated from patients with TPT, Fas was up regulated. Subsequent administration of soluble Fas ligand (sFasL) to treated cells significantly increased their cell death indicating that these Fas receptors were functional. Similar effect was observed when CD3+ T cells were used as a source of the FasL, indicating that the up regulated Fas expression on glioma cells increases their susceptibility to cytotoxic T cell killing. This additive effect was not observed when glioma cells were pre-treated with temozolomide, which was unable to increase Fas expression in tumor. Inhibition of FasL activity with the antagonistic antibody Nok-1 mitigated these effects confirming that these responses were specifically mediated by the Fas-FasL interaction. Furthermore, the CD3+ T cells co-cultured with topotecan treated U-87 and autologous GBM tumor cells showed a significant increase in expression in IFN-γ, a key cytokine produced by activated T cells, and accordingly enhanced tumor cytotoxicity. Based on our data we conclude that drugs, such as topotecan, which cause up regulation of Fas on glioma cells can be potentially exploited with immunotherapy to enhance immune clearance of tumors via Fas signaling. Jun Wei and Guillermo DeAngulo are Co-lead authors.  相似文献   

16.
Malignant gliomas are aggressive and highly invasive tumors. Various genetic and epigenetic changes are common for these tumors. Mostly they concern the genes involved in cell-cycle regulation, apoptotic pathways, cell invasion, angiogenesis, and cell metabolism. The role of epigenetic mechanisms in glioma malignant transformation, despite recent progress, is uncertain and remains under intense study. This review describes the mechanisms of epigenetic regulation of gene expression, including posttranslational modifications of histones, DNA methylation in promoter regions, and microRNA regulation. The genetic and epigenetic factors driving the pathogenesis of gliomas in their possible mutual influence and the potential epigenetic targets that can be used for diagnostics and new therapeutic approaches are also discussed.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号