首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 991 毫秒
1.
The nuclease domain of ColE7 (N-ColE7) contains an H-N-H motif that folds in a beta beta alpha-metal topology. Here we report the crystal structures of a Zn2+-bound N-ColE7 (H545E mutant) in complex with a 12-bp duplex DNA and a Ni2+-bound N-ColE7 in complex with the inhibitor Im7 at a resolution of 2.5 A and 2.0 A, respectively. Metal-dependent cleavage assays showed that N-ColE7 cleaves double-stranded DNA with a single metal ion cofactor, Ni2+, Mg2+, Mn2+, and Zn2+. ColE7 purified from Escherichia coli contains an endogenous zinc ion that was not replaced by Mg2+ at concentrations of <25 mM, indicating that zinc is the physiologically relevant metal ion in N-ColE7 in host E. coli. In the crystal structure of N-ColE7/DNA complex, the zinc ion is directly coordinated to three histidines and the DNA scissile phosphate in a tetrahedral geometry. In contrast, Ni2+ is bound in N-ColE7 in two different modes, to four ligands (three histidines and one phosphate ion), or to five ligands with an additional water molecule. These data suggest that the divalent metal ion in the His-metal finger motif can be coordinated to six ligands, such as Mg2+ in I-PpoI, Serratia nuclease and Vvn, five ligands or four ligands, such as Ni2+ or Zn2+ in ColE7. Universally, the metal ion in the His-metal finger motif is bound to the DNA scissile phosphate and serves three roles during hydrolysis: polarization of the P-O bond for nucleophilic attack, stabilization of the phosphoanion transition state and stabilization of the cleaved product.  相似文献   

2.
The 134 amino acid DNase domain of colicin E9 contains a zinc-finger-like HNH motif that binds divalent transition metal ions. We have used 1D 1H and 2D 1H-15N NMR methods to characterise the binding of Co2+, Ni2+ and Zn2+ to this protein. Data for the Co2+-substituted and Ni2+-substituted proteins show that the metal ion is coordinated by three histidine residues; and the NMR characteristics of the Ni2+-substituted protein show that two of the histidines are coordinated through their N(epsilon2) atoms and one via its N(delta1). Furthermore, the NMR spectrum of the Ni2+-substituted protein is perturbed by the presence of phosphate, consistent with an X-ray structure showing that phosphate is coordinated to bound Ni2+, and by a change in pH, consistent with an ionisable group at the metal centre with a pKa of 7.9. Binding of an inhibitor protein to the DNase does not perturb the resonances of the metal site, suggesting there is no substantial conformation change of the DNase HNH motif on inhibitor binding. 1H-15N NMR data for the Zn2+-substituted DNase show that this protein, like the metal-free DNase, exists as two conformers with different 1H-15N correlation NMR spectra, and that the binding of Zn2+ does not significantly perturb the spectra, and hence structures, of these conformers beyond the HNH motif region.  相似文献   

3.
The bacterial toxin ColE7 bears an HNH motif which has been identified in hundreds of prokaryotic and eukaryotic endonucleases, involved in DNA homing, restriction, repair, or chromosome degradation. The crystal structure of the nuclease domain of ColE7 in complex with a duplex DNA has been determined at 2.5 A resolution. The HNH motif is bound at the minor groove primarily to DNA phosphate groups at and beyond the 3' side of the scissile phosphate, with little interaction with ribose groups and bases. This result provides a structural basis for sugar- and sequence-independent DNA recognition and the inhibition mechanism by inhibitor Im7, which blocks the substrate binding site but not the active site. Structural comparison shows that two families of endonucleases bind and bend DNA in a similar way to that of the HNH ColE7, indicating that endonucleases containing a "betabetaalpha-metal" fold of active site possess a universal mode for protein-DNA interactions.  相似文献   

4.
S G Miran  S H Chang  F M Raushel 《Biochemistry》1991,30(32):7901-7907
Carbamoyl phosphate synthetase from Escherichia coli catalyzes the formation of carbamoyl phosphate from ATP, bicarbonate, and glutamine. The amidotransferase activity of this enzyme is catalyzed by the smaller of the two subunits of the heterodimeric protein. The roles of four conserved histidine residues within this subunit were probed by site-directed mutagenesis to asparagine. The catalytic activities of the H272N and H341N mutants are not significantly different than that of the wild-type enzyme. The H353N mutant is unable to utilize glutamine as a nitrogen source in the synthetase reaction or the partial glutaminase reaction. However, binding to the glutamine active site is not impaired in the H353N enzyme since glutamine is found to activate the partial ATPase reaction by 40% with a Kd of 54 microM. The H312N mutant has a Michaelis constant for glutamine that is 2 orders of magnitude larger than the wild-type value, but the maximal rate of glutamine hydrolysis is unchanged. These results are consistent with His-353 functioning as a general acid/base catalyst for proton transfers while His-312 serves a critical role for the binding of glutamine to the active site.  相似文献   

5.
The last gene in the genome of the bacteriophage HK97 encodes the protein gp74. We present data in this article that demonstrates, for the first time, that gp74 possesses HNH endonuclease activity. HNH endonucleases are small DNA binding and digestion proteins characterized by two His residues and an Asn residue. We demonstrate that gp74 cleaves lambda phage DNA at multiple sites and that gp74 requires divalent metals for its endonuclease activity. We also present intrinsic tryptophan fluorescence data that show direct binding of Ni(2+) to gp74. The activity of gp74 in the presence of Ni(2+) is significantly decreased below neutral pH, suggesting the presence of one or more His residues in metal binding and/or DNA digestion. Surprisingly, this pH-dependence of activity is not seen with Zn(2+) , suggesting a different mode of binding of Zn(2+) and Ni(2+) . This difference in activity may result from binding of a second Zn(2+) ion by a putative zinc finger in gp74 in addition to binding of a Zn(2+) ion by the HNH motif. These studies define the biochemical function of gp74 as an HNH endonuclease and provide a platform for determining the role of gp74 in life cycle of the bacteriophage HK97.  相似文献   

6.
beta-diketone-cleaving enzyme Dke1 is a homotetrameric Fe2+-dependent dioxygenase from Acinetobacter johnsonii. The Dke1protomer adopts a single-domain beta-barrel fold characteristic of the cupin superfamily of proteins and features a mononuclear non-haem Fe2+ centre where a triad of histidine residues, His-62, His-64 and His-104, co-ordinate the catalytic metal. To provide structure-function relationships for the peculiar metal site of Dke1 in relation to the more widespread 2-His-1-Glu/Asp binding site for non-haem Fe2+,we replaced each histidine residue individually with glutamate and asparagine and compared binding of Fe2+ and four non-native catalytically inactive metals with purified apo-forms of wild-type and mutant enzymes. Results from anaerobic equilibrium microdialysis (Fe2+) and fluorescence titration (Fe2+, Cu2+, Ni2+, Mn2+ and Zn2+) experiments revealed the presence of two broadly specific metal-binding sites in native Dke1 that bind Fe2+ with a dissociation constant (Kd) of 5 microM (site I) and approximately 0.3 mM (site II). Each mutation, except for the substitution of asparagine for His-104, disrupted binding of Fe2+, but not that of the other bivalent metal ions, at site I,while leaving metal binding at site II largely unaffected. Dke1 mutants harbouring glutamate substitutions were completely inactive and not functionally complemented by external Fe2+.The Fe2+ catalytic centre activity (kcat) of mutants with asparagine substitution of His-62 and His-104 was decreased 140- and 220-fold respectively, compared with the kcat value of 8.5 s(-1) for the wild-type enzyme in the reaction with pentane-2,4-dione.The H64N mutant was not catalytically competent, except in the presence of external Fe2+ (1 mM) which elicited about 1/1000 of wild-type activity. Therefore co-ordination of Fe2+ by Dke1 requires an uncharged metallocentre, and three histidine ligands are needed for the assembly of a fully functional catalytic site. Oxidative inactivation of Dke1 was shown to involve conversion of enzyme-bound Fe2+ into Fe3+, which is then released from the metal centre.  相似文献   

7.
Edema factor is a calmodulin dependent adenylyl cyclase secreted as one of the primary exotoxins by Bacillus anthracis. A histidine residue at position 351 located in its active site has been implicated in catalysis but direct evidence of its functional role is still lacking. In the present study, we introduced mutations in full-length edema factor (EF) to generate alanine (H351A), asparagine (H351N), and phenylalanine (H351F) variants. Spectral analysis of these variants displayed no gross structural deformities. Kinetic characterization showed that the adenylyl cyclase activity of H351N and H351F mutants decreased 34- and 40-fold, respectively, whereas H351A mutant completely lost activity. K(m) and K(i) values for ATP, pH activity profiles, and calmodulin activation curves of asparagine and phenylalanine mutants were not altered markedly. This kinetic data corroborated our ligand binding studies. Apparent K(d) values for calmodulin and ATP binding were found to be similar for wild-type EF and these active site variants. The effective substitution of H351 by asparagine and phenylalanine, albeit at a greatly reduced K(cat), without perturbing the ATP binding highlights the importance of this residue in transition-state stabilization. This was also evident from the positive free energy difference calculated for these mutants. However, equilibrium dialysis experiments revealed noticeable increase in ATP binding constant of H351A mutant, suggesting an additional role of H351 in precise substrate binding in the catalytic pocket. This is the first comprehensive study that describes the kinetic and ligand binding properties of H351 mutants and validates the importance of this residue in EF catalysis.  相似文献   

8.
The nuclease domain of colicin E7 (NColE7) promotes the nonspecific cleavage of nucleic acids at its C‐terminal HNH motif. Interestingly, the deletion of four N‐terminal residues (446–449 NColE7 = KRNK) resulted in complete loss of the enzyme activity. R447A mutation was reported to decrease the nuclease activity, but a detailed analysis of the role of the highly positive and flexible N‐terminus is still missing. Here, we present the study of four mutants, with a decreased activity in the following order: NColE7  >> KGNK > KGNG ~ GGNK > GGNG. At the same time, the folding, the metal‐ion, and the DNA‐binding affinity were unaffected by the mutations as revealed by linear and circular dichroism spectroscopy, isothermal calorimetric titrations, and gel mobility shift experiments. Semiempirical quantum chemical calculations and molecular dynamics simulations revealed that K446, K449, and/or the N‐terminal amino group are able to approach the active centre in the absence of the other positively charged residues. The results suggested a complex role of the N‐terminus in the catalytic process that could be exploited in the design of a controlled nuclease.  相似文献   

9.
The HNH motif was originally identified in the subfamily of HNH homing endonucleases, which initiate the process of the insertion of mobile genetic elements into specific sites. Several bacteria toxins, including colicin E7 (ColE7), also contain the 30 amino acid HNH motif in their nuclease domains. In this work, we found that the nuclease domain of ColE7 (nuclease-ColE7) purified from Escherichia coli contains a one-to-one stoichiometry of zinc ion and that this zinc-containing enzyme hydrolyzes DNA without externally added divalent metal ions. The apo-enzyme, in which the indigenous zinc ion was removed from nuclease-ColE7, had no DNase activity. Several divalent metal ions, including Ni2+, Mg2+, Co2+, Mn2+, Ca2+, Sr2+, Cu2+ and Zn2+, re-activated the DNase activity of the apo-enzyme to various degrees, however higher concentrations of zinc ion inhibited this DNase activity. Two charged residues located at positions close to the zinc-binding site were mutated to alanine. The single-site mutants, R538A and E542A, showed reduced DNase activity, whereas the double-point mutant, R538A + E542A, had no observable DNase activity. A gel retardation assay further demonstrated that the nuclease-ColE7 hydrolyzed DNA in the presence of zinc ions, but only bound to DNA in the absence of zinc ions. These results demonstrate that the zinc ion in the HNH motif of nuclease-ColE7 is not required for DNA binding, but is essential for DNA hydrolysis, suggesting that the zinc ion not only stabilizes the folding of the enzyme, but is also likely to be involved in DNA hydrolysis.  相似文献   

10.
Based on the crystal structure of human topoisomerase I, we hypothesized that hydrogen bonding between the side chain of the highly conserved His(632) and one of the nonbridging oxygens of the scissile phosphate contributes to catalysis by stabilizing the transition state. This hypothesis has been tested by examining the effects of changing His(632) to glutamine, asparagine, alanine, and tryptophan. The change to glutamine reduced both the relaxation activity and single-turnover cleavage activity by approximately 100-fold, whereas the same change at three other conserved histidines (positions 222, 367, and 406) had no significant effect on the relaxation activity. The properties of the mutant protein containing asparagine instead of histidine at position 632 were similar to those of the glutamine mutant, whereas mutations to alanine or tryptophan reduced the activity by approximately 4 orders of magnitude. The reduction in activity for the mutants was not due to alterations in substrate binding affinities or changes in the cleavage specificities of the proteins. The above results for the glutamine mutation in conjunction with the similar effects of pH on the wild type and the H632Q mutant enzyme rule out the possibility that His(632) acts as a general acid to protonate the leaving 5'-oxygen during the cleavage reaction. Taken together, these data strongly support the hypothesis that the only role for His(632) is to stabilize the pentavalent transition state through hydrogen bonding to one of the nonbridging oxygens.  相似文献   

11.
Using a cloned single domain of the high mobility group protein 1 (HMGB1), we evaluated the effect of introducing metal binding site(s) on protein stability and function. An HMG domain is a conserved sequence of approximately 80 amino acids rich in basic, aromatic and proline residues that is active in binding DNA in a sequence- or structure-specific manner. The design strategy focuses on anchoring selected regions of the protein, specifically loops and turns in the molecule, using His-metal ligands. Changes in secondary structure, thermostability and DNA binding properties of a series of such mutants were evaluated. The two most stable mutant constructs contain three surface histidine replacements (two metal binding sites) in the regions encompassing both turns of the molecule. On ligation with the divalent nickel cation, the stability of these two triple histidine mutants (I38H/N51H/D55H and G39H/N51H/D55H) increases by 1.3 and 1.6 kcal/mol, respectively, relative to the wild-type protein, although the creation of binding sites per se destabilizes the protein. The DNA-binding properties of the modified proteins are not impaired by the introduction of the metal binding motifs. These results indicate that it is feasible to stabilize protein tertiary structure using appropriate placement of surface His-metal bonds without loss of function.  相似文献   

12.
Members of the DRE-TIM metallolyase superfamily rely on an active-site divalent cation to catalyze various reactions involving the making and breaking of carbon–carbon bonds. While the identity of the metal varies, the binding site is well-conserved at the superfamily level with an aspartic acid and two histidine residues acting as ligands to the metal. Previous structural and bioinformatics results indicate that the metal can adopt an alternate architecture through the addition of an asparagine residue as a fourth ligand. This asparagine residue is strictly conserved in all members of the DRE-TIM metallolyase superfamily except fungal homocitrate synthase (HCS-lys) where it is replaced with isoleucine. The role of this additional metal ligand in α-isopropylmalate synthase from Mycobacterium tuberculosis (MtIPMS) has been investigated using site-directed mutagenesis. Substitution of the asparagine ligand with alanine or isoleucine results in inactive enzymes with respect to α-isopropylmalate formation. Control experiments suggest that the substitutions have not drastically affected the enzyme's structure indicating that the asparagine residue is essential for catalysis. Interestingly, all enzyme variants retained acetyl CoA hydrolysis activity in the absence of α-ketoisovalerate, similar to the wild-type enzyme. In contrast to the requirement of magnesium for α-isopropylmalate formation, hydrolytic activity could be inhibited by the addition of magnesium chloride in wild-type, D81E, and N321A MtIPMS, but not in the other variants studied. Attempts to rescue loss of activity in N321I MtIPMS by mimicking the fungal HCS active site through the D81E/N321I double variant were unsuccessful. This suggests epistatic constraints in evolution of function in IPMS and HCS-lys enzymes.  相似文献   

13.
14.
15.
Shiraishi Y  Imanishi M  Sugiura Y 《Biochemistry》2004,43(20):6352-6359
In the DNA recognition mode of C(2)H(2)-type zinc fingers, the finger-finger connection region, consisting of the histidine spacing (HX(3-5)H) and linker, would be important for determining the orientation of the zinc finger domains. To clarify the influence of spacing between two ligand histidines in the DNA binding, we exchanged the histidine spacing between Sp1 and GLI zinc fingers, which have an HX(3)H-TGEKK linker (typical) and an HX(4)H-SNEKP linker (atypical), respectively. A significant decrease in the DNA binding affinity and specificity is found in Sp1-type peptides, whereas GLI-type peptides show a mild reduction. To evaluate the effect of the linker characteristics, we further designed Sp1-type mutants with an SNEKP linker. As a result, the significant effect of the histidine spacing in Sp1-type peptides was reduced. These results demonstrate that (1) the histidine spacing significantly affects the DNA binding of zinc finger proteins and (2) the histidine spacing and the following linker regions are one effective target for regulating the DNA recognition mode of zinc finger proteins.  相似文献   

16.
An invariant histidine residue, His-365 in Escherichia coli DNA topoisomerase I, is located at the active site of type IA DNA topoisomerases and near the active site tyrosine. Its ability to participate in the multistep catalytic process of DNA relaxation was investigated. His-365 was mutated to alanine, arginine, asparagine, aspartate, glutamate, and glutamine to study its ability to participate in general acid/base catalysis and bind DNA. The mutants were examined for pH-dependent DNA relaxation and cleavage, salt-dependent DNA relaxation, and salt-dependent DNA binding affinity. The mutants relax DNA in a pH-dependent manner and at low salt concentrations. The pH dependence of all mutants is different from the wild type, suggesting that His-365 is responsible for the pH dependence of the enzyme. Additionally, whereas the wild type enzyme shows pH-dependent oligonucleotide cleavage, cleavage by both H365Q and H365A is pH-independent. H365Q cleaves DNA with rates similar to the wild type enzyme, whereas H365A has a slower rate of DNA cleavage than the wild type but can cleave more substrate overall. H365A also has a lower DNA binding affinity than the wild type enzyme. The binding affinity was determined at different salt concentrations, showing that the alanine mutant displaces half a charge less upon binding DNA than an inactive form of topoisomerase I. These observations indicate that His-365 participates in DNA binding and is responsible for optimal catalysis at physiological pH.  相似文献   

17.
Acyltransferases determine which extender units are incorporated into polyketide and fatty acid products. The ping-pong acyltransferase mechanism utilizes a serine in a conserved GHSxG motif. However, the role of the conserved histidine in this motif is poorly understood. We observed that a histidine to alanine mutation (H640A) in the GHSxG motif of the malonyl-CoA specific yersiniabactin acyltransferase results in an approximately seven-fold higher hydrolysis rate over the wildtype enzyme, while retaining transacylation activity. We propose two possibilities for the reduction in hydrolysis rate: either H640 structurally stabilizes the protein by hydrogen bonding with a conserved asparagine in the ferredoxin-like subdomain of the protein, or a water-mediated hydrogen bond between H640 and the malonyl moiety stabilizes the malonyl-O-AT ester intermediate.  相似文献   

18.
We describe two uncommon roles for Zn2+ in enzyme KpnI restriction endonuclease (REase). Among all of the REases studied, KpnI REase is unique in its DNA binding and cleavage characteristics. The enzyme is a poor discriminator of DNA sequences, cleaving DNA in a promiscuous manner in the presence of Mg2+. Unlike most Type II REases, the active site of the enzyme comprises an HNH motif, which can accommodate Mg2+, Mn2+, or Ca2+. Among these metal ions, Mg2+ and Mn2+ induce promiscuous cleavage by the enzyme, whereas Ca2+-bound enzyme exhibits site-specific cleavage. Examination of the sequence of the protein revealed the presence of a zinc finger CCCH motif rarely found in proteins of prokaryotic origin. The zinc binding motif tightly coordinates zinc to provide a rigid structural framework for the enzyme needed for its function. In addition to this structural scaffold, another atom of zinc binds to the active site to induce high fidelity cleavage and suppress the Mg2+- and Mn2+-mediated promiscuous behavior of the enzyme. This is the first demonstration of distinct structural and catalytic roles for zinc in an enzyme, suggesting the distinct origin of KpnI REase.  相似文献   

19.
Dutta SJ  Liu J  Stemmler AJ  Mitra B 《Biochemistry》2007,46(12):3692-3703
ZntA from Escherichia coli belongs to the P1B-ATPase transporter family and mediates resistance to toxic levels of selected divalent metal ions. P1B-type ATPases can be divided into subgroups based on substrate cation selectivity. ZntA has the highest selectivity for Pb2+, followed by Zn2+ and Cd2+; it also shows low levels of activity with Cu2+, Ni2+, and Co2+. It has two high-affinity metal-binding sites, one each in the N-terminus and the transmembrane domains. Ligands to the transmembrane metal site in ZntA include the cysteine residues of the conserved 392CPC394 motif in the sixth transmembrane helix. Pro393 is invariant in all P-type ATPases. For ZntA homologues with different metal ion selectivity, the cysteines are replaced by serine, histidine, and threonine. To test the effect on activity and metal ion selectivity, single alanine, histidine, and serine substitutions at Cys392 or Cys394 in ZntA were characterized, as well as double substitutions of both cysteines by histidine or serine. P393A was also characterized. C392A, C394A, and P393A lost the ability to bind a metal ion with high affinity in the transmembrane domain. Histidine and serine substitutions at Cys392 and Cys394 resulted in loss of binding of Pb2+ at the transmembrane site, indicating that both cysteines of the CPC motif are required for binding Pb2+ with high affinity in ZntA homologues. However, C392H, C392S, C394H, C394S, C392S/C394S, and C392H/C394H could bind other divalent metal ions at the transmembrane site and retained low but measurable activity. Interestingly, these mutants lost the predominant selectivity for Zn2+ and Cd2+ shown by wtZntA. Therefore, conserved residues contribute to metal selectivity by supplying ligands that bind metal ions not only with high affinity, as for Pb2+, but also with the most favorable binding geometry that results in efficient catalysis.  相似文献   

20.
White DJ  Reiter NJ  Sikkink RA  Yu L  Rusnak F 《Biochemistry》2001,40(30):8918-8929
Bacteriophage lambda phosphoprotein phosphatase (lambdaPP) has structural similarity to the mammalian Ser/Thr phosphoprotein phosphatases (PPPs) including the immunosuppressant drug target calcineurin. PPPs possess a conserved active site containing a dinuclear metal cluster, with metal ligands provided by a phosphoesterase motif plus two additional histidine residues at the C-terminus. Multiple sequence alignment of lambdaPP with 28 eubacterial and archeal phosphoesterases identified active site residues from the phosphoesterase motif and in many cases 2 additional C-terminal His metal ligands. Most highly similar to lambdaPP are E. coli PrpA and PrpB. Using the crystal structure of lambdaPP [Voegtli, W. C., et al. (2000) Biochemistry 39, 15365-15374] as a structural and active site model for PPPs and related bacterial phosphoesterases, we have studied mutant forms of lambdaPP reconstituted with Mn(2+) by electron paramagnetic resonance (EPR) spectroscopy, Mn(2+) binding analysis, and phosphatase kinetics. Analysis of Mn(2+)-bound active site mutant lambdaPP proteins shows that H22N, N75H, and H186N mutations decrease phosphatase activity but still allow mononuclear Mn(2+) and [(Mn(2+))(2)] binding. The high affinity Mn(2+) binding site is shown to consist of M2 site ligands H186 and Asn75, but not H22 from the M1 site which is ascribed as the lower affinity site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号