首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Poly(Leu-Lys-Lys-Leu) and poly(Leu-Lys) are sequential amphiphilic peptide isomers that adopt respectively an alpha-helical conformation and a beta-sheet structure in saline solutions and at the air/water interface. The surface active properties of LKKL and LK sequential isopeptides containing 16, 20, and n residues have been compared in order to evaluate the contributions of the alpha-helical and beta-sheet conformations. Both have a natural tendency to spread at the surface of a saline solution and the values of the equilibrium spreading pressure pi(e) lie in the same range. When dissolved in a saline solution, alpha-helical peptides diffuse faster and adsorb faster at the interface than the beta-sheet isomers. From the compression isotherms of LKKL and LK peptide monolayers it is possible to extract parameters that characterize the behavior of alpha-helical and beta-sheet conformations: beta-sheet peptide monolayers are more stable and less compressible than the monolayers formed with the alpha-helical isomers. The LK peptides differ also by their high degree of self-association at the air/water interface. Copyright 1999 John Wiley & Sons, Inc.  相似文献   

2.
This paper presents the compression isotherms obtained by spreading membranes of intestinal brush border, human erythrocyte and Escherichia coli (cytoplasmic) at the air/water interface. Unilamellar membrane films were formed, with a good yield, at zero surface pressure, whereas multilamellar structures were formed at high surface pressure. Once formed, the films were particularly stable and could be manipulated without any detectable loss. With doubly-labelled E. coli cytoplasmic membrane, we could show that phospholipids and proteins spread, with the same yield, as a single unit. Moreover, we studied the influence of hydrolytic enzymes, chemical agents and cations on the compression isotherm of biomembranes. The resultant change sin architecture of membrane films can provide a very simple method of studying the influence of membrane packing on catalytic activity and protein conformation of membrane-bound proteins.  相似文献   

3.
This paper presents the compression isotherms obtained by spreading membranes of intestinal brush border, human erythrocyte and Escherichia coli (cytoplasmic) at the air/water interface. Unilamellar membrane films were formed, with a good yield, at zero surface pressure, whereas multilamellar structures were formed at high surface pressure. Once formed, the films were particularly stable and could be manipulated without any detectable loss. With doubly-labelled E. coli cytoplasmic membrane, we could show that phospholipids and proteins spread, with the same yield, as a single unit. Moreover, we studied the influence of hydrolytic enzymes, chemical agents and cations on the compression isotherm of biomembranes. The resultant changes in architecture of membrane films can provide a very simple method of studying the influence of membrane packing on catalytic activity and protein conformation of membrane-bound proteins.  相似文献   

4.
Miano F  Zhao X  Lu JR  Penfold J 《Biophysical journal》2007,92(4):1254-1262
The coadsorption of human milk lactoferrin into a spread monolayer of dipalmitoylglycerol phosphatidylcholine (DPPC) at the air/water interface has been studied by neutron reflection. The system is a good model of the preocular tear film outer interface, which was the motivation for the study. The association of the protein with the surface was indicated by an increase of the surface pressure exerted by the DPPC monolayer. The extent of lactoferrin coadsorption was found to decrease with increasing surface pressure in the lipid monolayer, a trend consistent with the observation reported for other proteins, such as lysozyme and beta-lactoglobulin. The neutron reflectivity measurements were subsequently carried out at the three surface pressures of 8, 15, and 35 mN/m to examine the structure and composition of lactoferrin coadsorbed at the interface. Whereas the DPPC monolayer effectively prevented lactoferrin insertion at the high surface pressure, a measurable amount of lactoferrin was found at the air/water interface at the two lower surface pressures. At 15 mN/m it was difficult to identify the distribution of lactoferrin with respect to the DPPC monolayer, due to its relatively low adsorbed amount and much broader distribution. At the lowest surface pressure of 8 mN/m, the lactoferrin coadsorption was found to increase with time over the first few hours. After 5 h the distribution of the lactoferrin layer became similar to, though quantitatively lower than, that adsorbed in the absence of the DPPC monolayer. It is characterized by a top dense sublayer of 15 A with a bottom diffuse sublayer of 60 A, indicating structural unfolding induced by surface adsorption under these conditions.  相似文献   

5.
The main intrinsic membrane proteins of the human erythrocyte membrane, glycophorin and the anion transporter, were isolated by extraction with Triton X-100 and ion-exchange chromatography. After removal of detergent the extract consisted of proteolipid vesicles with a lipid:protein molar ratio in the range 50-60 and a diameter of the order of 200 nm. The interaction between these vesicles and dipalmitoylphosphatidylcholine (DPPC), cholesterol and cholesterol:DPPC (2:1 molar ratio) monolayers at air/water and n-decane/water interfaces has been studied. The vesicles interact with the monolayers, rapidly causing large increases in surface pressure. Limiting values of surface pressure, 39.4-43 mN . m-1 at air/water and 31.5-33.4 mN . m-1 at the n-decane/water interface, were reached at protein levels above 1 microgram . ml-1. At the air/water interface, and probably at the n-decane/water, surface pressure increases were limited by monolayer collapse. Compression isotherms and surface potential measurements indicated that material from the proteolipid vesicles entered the monolayer phase. In contrast to proteolipid vesicles, injection of protein-free liposomes beneath the monolayer resulted in smaller, slower increases in surface pressure. Thus, the presence of intrinsic membrane proteins in vesicles greatly facilitated the transfer of material into the lipid monolayer.  相似文献   

6.
The surface of spiroplasmas, helically shaped pathogenic bacteria related to the mycoplasmas, is crowded with the membrane-anchored lipoprotein spiralin whose structure and function are unknown. In this work, the secondary structure of spiralin under the form of detergent-free micelles (average Stokes radius, 87.5 A) in water and at the air/water interface, alone or in interaction with lipid monolayers was analyzed. FT-IR and circular dichroism (CD) spectroscopic data indicate that spiralin in solution contains about 25+/-3% of helices and 38+/-2% of beta sheets. These measurements are consistent with a consensus predictive analysis of the protein sequence suggesting about 28% of helices, 32% of beta sheets and 40% of irregular structure. Brewster angle microscopy (BAM) revealed that, in water, the micelles slowly disaggregate to form a stable and homogeneous layer at the air/water interface, exhibiting a surface pressure up to 10 mN/m. Polarization modulation infrared reflection absorption spectroscopy (PMIRRAS) spectra of interfacial spiralin display a complex amide I band characteristic of a mixture of beta sheets and alpha helices, and an intense amide II band. Spectral simulations indicate a flat orientation for the beta sheets and a vertical orientation for the alpha helices with respect to the interface. The combination of tensiometric and PMIRRAS measurements show that, when spiroplasma lipids are used to form a monolayer at the air/water interface, spiralin is adsorbed under this monolayer and its antiparallel beta sheets are mainly parallel to the polar-head layer of the lipids without deep perturbation of the fatty acid chains organization. Based upon these results, we propose a 'carpet model' for spiralin organization at the spiroplasma cell surface. In this model, spiralin molecules anchored into the outer leaflet of the lipid bilayer by their N-terminal lipid moiety are composed of two colinear domains (instead of a single globular domain) situated at the lipid/water interface. Owing to the very high amount of spiralin in the membrane, such carpets would cover most if not all the lipids present in the outer leaflet of the bilayer.  相似文献   

7.
The state of photosystem II core complex (PS II CC) in monolayer at the gas-water interface was investigated using in situ polarization-modulated infrared reflection absorption spectroscopy and x-ray reflectivity techniques. Two approaches for preparing and manipulating the monolayers were examined and compared. In the first, PS II CC was compressed immediately after spreading at an initial surface pressure of 5.7 mN/m, whereas in the second, the monolayer was incubated for 30 min at an initial surface pressure of 0.6 mN/m before compression. In the first approach, the protein complex maintained its native alpha-helical conformation upon compression, and the secondary structure of PS II CC was found to be stable for 2 h. The second approach resulted in films showing stable surface pressure below 30 mN/m and the presence of large amounts of beta-sheets, which indicated denaturation of PS II CC. Above 30 mN/m, those films suffered surface pressure instability, which had to be compensated by continuous compression. This instability was correlated with the formation of new alpha-helices in the film. Measurements at 4 degreesC strongly reduced denaturation of PS II CC. The x-ray reflectivity studies indicated that the spread film consists of a single protein layer at the gas-water interface. Altogether, this study provides direct structural and molecular information on membrane proteins when spread in monolayers at the gas-water interface.  相似文献   

8.
The synthesis and surface behavior of a series of nine new hydrogenated nonionic surfactants and their fluorinated analogs, derived from D-mannitol are described. Adsorption monolayers (Gibbs monolayers) were studied by surface pressure (H) measurements as a function of time. For the spread monolayers (Langmuir monolayers), the measurements of surface pressure versus molecular area (A) were performed. For the most hydrophobic amphiphiles at low concentrations, the adsorption at the air/water interface from the bulk solution required extremely long times to attain equilibrium. The A values for two compounds which could be studied in both adsorbed and spread monolayers provided data allowing a direct comparison of the properties of the two types of films formed at the air/water interface. In spite of different mechanisms of formation of Langmuir and Gibbs monolayers, their characteristic parameters were identical, proving the equivalence of these two types of structures.  相似文献   

9.
In order to study protein-lipid monolayers at the air/water interface a miniaturized micro-fluorescence film-balance apparatus has been developed and combined with a modified technique of spreading and separating a monolayer from a vesicle suspension. The spreading method provides non-denaturing conditions for protein-lipids. When applied to protein-lipid vesicles, monolayers with incorporated proteins are obtained, and their thermodynamic parameters may be controlled in a well-defined way by film balance techniques. In the apparatus introduced, a movable microscope allows the observation of micro-fluorescence during the tracking of individual domains at the air/water interface of a fixed Langmuir trough. After the control of parameters such as subphase temperature, surface pressure and lateral molecule distribution, a monolayer may be transferred and immobilized on a planar solid support, making it accessible to optical surface-sensitive measuring methods as well as to electron microscopy and scanning probe techniques.  相似文献   

10.
S-layer protein isolated from Bacillus coagulans E38-66 could be recrystallized into large-scale coherent monolayers at an air/water interface and on phospholipid films spread on a Langmuir-Blodgett trough. Because of the asymmetry in the physiochemical surface properties of the S-layer protein, the subunits were associated with their more hydrophobic outer face with the air/water interface and oriented with their negatively charged inner face to the zwitterionic head groups of the dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylethanolamine (DPPE) monolayer films. The dynamic crystal growth at both types of interfaces was first initiated at several distant nucleation points. The individual monocrystalline areas grew isotropically in all directions until the front edge of neighboring crystals was met. The recrystallized S-layer protein and the S-layer-DPPE layer could be chemically cross-linked from the subphase with glutaraldehyde.  相似文献   

11.
Adsorption of procaine at the air/water interface and its penetration into stearic acid monolayers from aqueous subphase of pH 8 are studied by measuring surface tension of aqueous procaine solutions and by recording surface pressure vs. mean molecular area curves for stearic acid monolayers spread onto procaine solutions of different concentrations. The amount of procaine in the interface is derived by means of Gibbs' equation. Results are compared to those obtained earlier at pH 2 and on unbuffered subphases. With increasing pH an increasing procaine adsorption and procaine penetration is observed. This phenomenon is interpreted in terms of protolytic equilibria in which participate both surfactants procaine and stearic acid.  相似文献   

12.
The structures of films of pulmonary surfactant protein B (SP-B) and mixtures of SP-B and dipalmitoylphosphatidylcholine (DPPC) at the air/water interface have been studied by neutron reflectometry and Langmuir film balance methods. From the film balance studies, we observe that the isotherms of pure DPPC and SP-B/DPPC mixtures very nearly overlay one another at very high pressures, suggesting that the SP-B is being excluded from the film. The use of multiple contrasts with neutron reflectometry at a range of surface pressures has enabled the mixing and squeeze out of the DPPC and SP-B mixtures to be studied. We can identify the SP-B component of the interfacial structure and its position as a function of surface pressure. The mixtures are initially a homogeneous layer at low surface pressures. At higher surface pressures, the SP-B is squeezed out of the lipid layer into the subphase, with the first signs detected at 30 mN m−1. At 50 mN m−1, the subphase is almost completely excluded from the DPPC layer, with the SP-B content significantly reduced. Only a small amount of DPPC appears to be associated with the squeezed out SP-B.  相似文献   

13.
Binary mixed liposomes were prepared from dipalmitoylphosphatidylcholine (DPPC) and a minor compound, e.g., egg phosphatidylglycerol (PG) at a ratio of 9:1. Using different preparative techniques, large unilamellar vesicles (LUV), small unilamellar vesicles (SUV) or multilamellar vesicles (MLV) were obtained and were studied with an electron microscope for morphology, with a Wilhelmy balance for spreading and surface tension lowering potential, and in the surfactant-depleted isolated rat lung for their ability to restore expiratory lung capacity. Only the simultaneous investigation of phospholipids by negative staining and thin sectioning allows unequivocal classification of liposomes. The surface-active structures prepared with the technique of Bangham et al. (Bangham, A.D., Hill, M.W. and Miller, N.G.A. (1974) in Methods in Membrane Biology (Korn, E., ed.), Vol. 1, pp. 1-68, Plenum Press, New York) at room temperature are LUV. LUV containing DPPC:PG at a ratio of 9:1 rapidly spread to a film with high surface tension lowering potential. Within 5 min after injection into the subphase they rise to the surface and form a film at the air/liquid interface able to lower the surface tension to less than 1 mN/m at compression. SUV of the same chemical composition, however, are immediately surface-active only when spread directly onto the surface. MLV exhibit poor surface activity. LUV or pure DPPC, applied onto the surface, are weakly surface active within 5 min. DPPC vesicles injected into the subphase at 37 degrees C do not adsorb to any film with surface tension lowering potential in this time. The minor compounds PE, PI, PS, PA, lysoPC enable DPPC to form surface-active films after application on saline at 37 degrees C. Removal of surfactant decreases the expiratory lung capacity of the isolated rat lung from 49.7 to 12.4% at 4 cmH2O. After substitution with natural surfactant, the expiratory lung capacity is twice that of the washed lung (25.9%), but the original distensibility of the native lung is not restituted. The effect of LUV containing DPPC:PG at a ratio of 9:1 is also remarkable (21.2%).  相似文献   

14.
Monolayer of functionalized lipid spread at the air/water interface is used for the structural analysis of soluble and membrane proteins by electron crystallography and single particle analysis. This powerful approach lacks of a method for the screening of the binding of proteins to the surface of the lipid layer. Here, we described an optical method based on the use of reflected light microscopy to image, without the use of any labeling, the lipid layer at the surface of buffers in the Teflon wells used for 2D crystallization. Images revealed that the lipid layer was made of a monolayer coexisting with liposomes or aggregates of lipids floating at the surface. Protein binding led to an increase of the contrast and the decrease of the fluidity of the lipid surface, as demonstrated with the binding of soluble Shiga toxin B subunit, of purple membrane and of solubilized His-BmrA, a bacterial ABC transporter. Moreover the reconstitution of membrane proteins bound to the lipidic surface upon detergent removal can be followed through the appearance of large recognizable domains at the surface. Proteins binding and reconstitution were further confirmed by electron microcopy. Overall, this method provides a quick evaluation of the monolayer trials, a significant reduction in screening by transmission electron microscopy and new insights in the proteins binding and 2D crystallogenesis at the lipid surface.  相似文献   

15.
The interfacial behavior of the neoglycolipids formed of Guerbet alcohol (G(28)) bound to a triethylene glycol spacer (E(3)) and to a sugar moiety (alpha- and beta-fucose) spread at the air/water interface has been studied under dynamic conditions of compression. Although the alpha (alpha-FucE3G28)- and beta-fucose (beta-FucE3G28) derivatives possessed the same chemical structure, the positioning of the sugar moiety relative to the whole molecule had a significant influence on the organization of neoglycolipid molecules in the spread monolayers. Thus, beta-fucose molecules exhibited higher compressibilities and larger molecular areas than a alpha/beta (84/16%) mixture (alpha(84)-FucE3G28). The comparison of the compressional behavior of the fucose derivatives with that of Guerbet alcohol in the absence and in the presence of the triethylene glycol spacer shows that the presence of the E(3) chain is necessary to stabilize the lipid at the interface and that the incorporation of a sugar moiety into the molecule resulted in an important expansion of a monolayer. Despite their different interfacial behaviors, the two sugar derivatives formed ideal mixtures when cospread at the air/water interface. Conversely, in the presence of a phospholipid, such as DMPC, repulsive interactions were observed and appeared to be stronger for DMPC/alpha(84)-FucE3G28 mixed monolayers. The membrane fluidity of DMPC liposomes bearing the studied amphiphilic molecules was assessed by fluorescence depolarization measurements. The results reveal that whereas G(28) was deeply inserted into the liposome bilayers, the presence of a E(3) chain and of a sugar moiety in these bilayers induced a transfer of the amphiphilic derivatives from the hydrophobic core towards polar headgroups of phospholipid molecules.  相似文献   

16.
Lipid vesicles with incorporated ion channels from polyene antibiotic amphotericin B were used to investigate structures of planar membranes formed by Shindler's techniques. A planar membrane assembled on the aperture in a lavsan film from two layers generated at the air-aqueous liposome suspension interface is not a simple bilayer but a bimolecular membrane containing numerous partly fused liposomes. A complete fusion of liposomal membranes with the planar bilayer is an unlikely event during membrane formation. A planar bimolecular lipid membrane without incorporated liposomes can be made by a method consisting of three stages: formation of a lipid layer on the air-water interface of a suspension containing liposomes, transfer of this layer along the surface of the solution into a chamber containing a solution without liposomes where a lipid monomolecular layer forms gradually (within about 20 min) at the air-water interface, assembling of the planar bilayer membrane from this monolayer. The knowledge of the planar membrane structure may be useful in experiments on incorporation of membrane proteins into a planar lipid bilayer.  相似文献   

17.
J Ma  S Koppenol  H Yu    G Zografi 《Biophysical journal》1998,74(4):1899-1907
We report on the surface behavior of a hydrophobic, cationic peptide, [lysine-(leucine)4]4-lysine (KL4), spread at the air/water interface at 25 degrees C and pH 7.2, and its effect at very low molar ratios on the surface properties of the zwitterionic phospholipid 1,2-dipalmitoylphosphatidylcholine (DPPC), and the anionic forms of 1-palmitoyl-2-oleoylphosphatidylglycerol (POPG) and palmitic acid (PA), in various combinations. Surface properties were evaluated by measuring equilibrium spreading pressures (pi(e)) and surface pressure-area isotherms (pi-A) with the Wilhelmy plate technique. Surface phase separation was observed with fluorescence microscopy. KL4 itself forms a single-phase monolayer, stable up to a surface pressure pi of 30 mN/m, and forms an immiscible monolayer mixture with DPPC. No strong interaction was detected between POPG and KL4 in the low pi region, whereas a stable monolayer of the PA/KL4 binary mixture forms, which is attributed to ionic interactions between oppositely charged PA and KL4. KL4 has significant effects on the DPPC/POPG mixture, in that it promotes surface phase separation while also increasing pi(e) and pi(max), and these effects are greatly enhanced in the presence of PA. In the model we have proposed, KL4 facilitates the separation of DPPC-rich and POPG/PA-rich phases to achieve surface refinement. It is these two phases that can fulfill the important lung surfactant functions of high surface pressure stability and efficient spreading.  相似文献   

18.
Surfactant protein B (SP-B) enhances lipid insertion into the alveolar air/liquid interface upon inhalation. The aim of this study was (i) to apply a palette of tests for a detailed biochemical and biophysical characterization of SP-B and (ii) to use these tests to compare native SP-B with a fluorescent (Bodipy) SP-B analog. The method of labeling was fast and resulted in a covalent fluorophore-protein bond. The ability of both proteins to spread a surfactant film on top of a buffer surface was determined in a spreading tray using the Wilhelmy plate technique to allow detection of alterations in surface tension and calculation of spreading velocities. In a captive bubble surfactometer surface tensions of spread films were measured. Similar biophysical properties were found for both native and Bodipy-labeled SP-B. It is concluded that the combination of tests used allows detection of small differences in structure and activity between the two proteins.  相似文献   

19.
The behavior of phosphatidylcholine monolayers at the air/water interface was studied by measuring their surface isotherm, surface potential, surface viscosity, and rate of hydrolysis by the dimeric phospholipase A2 from the venom of Crotalus atrox. The monolayers showed typical liquid-expanded behavior. In this phase, the surface potential was linearly dependent on surface concentration and extrapolated at zero concentration to a value characteristic of a liquid hydrocarbon/water interface. The rate of the reaction was measured by monitoring changes in area at constant surface pressure for 1,2-dioctanoyl- and 1,2-didecanoyl-3-sn-phosphatidylcholines, and by monitoring changes in surface potential for 1,2-dimyristoyl-, 1,2-dipalmitoyl-, 1-palmitoyl-2-oleoyl-, and 1-oleoyl-2-palmitoyl-sn-glycero-3-phosphocholines. The enzymatic hydrolysis is first order with respect to the enzyme-calcium complex which forms with a Kd = 1.5 mM. A mechanism is proposed to account for the dependency of the reaction rates on the surface concentration of the substrate. We postulate that the rate-limiting step is the decomposition of a quaternary complex formed from two phospholipid molecules, one calcium ion and one dimeric enzyme. The rate is independent of the surface pressure per se; addition of inert lipids to a monolayer at constant area, and hence constant surface concentration of the substrate, increases the surface pressure without changing the surface density of the substrate yielding maximal enzymatic rate. The enzyme is specific for loosely packed substrate molecules in the liquid-expanded state: transition into the liquid-condensed state or compression of the liquid-expanded layer beyond 80 A2/phospholipid strongly inhibits the enzymatic reaction. Our results show that surface recognition is a direct consequence of a bifunctional active site since it is only at a phospholipid surface that the distance between two substrate molecules is optimal for forming a catalytically competent enzyme-Ca2+-(substrate)2 complex.  相似文献   

20.
Mechanisms underlying the surface properties of lung surfactant are extensively studied in in vitro systems such as the captive-bubble surfactometer (CBS), the pulsating-bubble surfactometer, and the Wilhelmy balance. Among these systems, the CBS is advantageous when a leakproof system and high cycling rates are required. However, widespread application of the CBS to mechanistic studies of dynamic surfactant protein-phospholipid interactions of spread film and to comparative studies between spread and adsorbed film is hampered because spreading of film is difficult. In addition, when film is formed by adsorption, the amount of material required is fairly large. We have developed an easy spreading technique that allows routine formation of film by spreading of small amounts of surfactant components at the air-water interface of an air bubble in a CBS. The technique is reliable, precise, and accurate, and the biophysical activity of film formed by spreading is similar to that of film formed by adsorption. This method will be useful for mechanistic studies of surfactant components under dynamic conditions and for comparative studies of spread films and adsorbed films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号