首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
赵萍  王攀  王筱冰 《生命科学》2011,(4):329-334
程序性细胞死亡(programmed cell death,PCD)是指由基因控制的细胞自主的有序性死亡方式,涉及一系列基因的激活、表达以及调控等。目前,经典细胞凋亡被称为Ⅰ型PCD,而自噬性细胞死亡称为Ⅱ型PCD,坏死样程序性细胞死亡则被称为Ⅲ型PCD,它们在肿瘤的发生、发展及治疗过程中起非常重要的作用。该文结合国内外最新研究进展主要针对不同细胞死亡模式及其相互作用、关键作用蛋白,细胞自噬与肿瘤发生,细胞自噬、凋亡与肿瘤治疗作一简要综述,并展望发展前景,提出在肿瘤治疗中如何利用不同死亡模式的协同作用最大限度地发挥其临床应用价值。  相似文献   

2.
Programmed cell death: alive and well in the new millennium   总被引:29,自引:0,他引:29  
Research performed over the past decade has transformed apoptosis from a distinctive form of cell death known only by its characteristic morphology and genomic destruction to an increasingly well understood cellular disassembly pathway remarkable for its complex and multifaceted regulation. Here, we summarize current understanding of apoptotic events, note recent advances in this field and identify questions that might help guide research in the coming years.  相似文献   

3.
Mutations in DJ-1 lead to early onset Parkinson's disease (PD). The aim of this study was to elucidate further the underlying mechanisms leading to neuronal cell death in DJ-1 deficiency in vivo and determine whether the observed cell loss could be prevented pharmacologically. Inactivation of DJ-1 in zebrafish, Danio rerio, resulted in loss of dopaminergic neurons after exposure to hydrogen peroxide and the proteasome inhibitor MG132. DJ-1 knockdown by itself already resulted in increased p53 and Bax expression levels prior to toxin exposure without marked neuronal cell death, suggesting subthreshold activation of cell death pathways in DJ-1 deficiency. Proteasome inhibition led to a further increase of p53 and Bax expression with widespread neuronal cell death. Pharmacological p53 inhibition either before or during MG132 exposure in vivo prevented dopaminergic neuronal cell death in both cases. Simultaneous knockdown of DJ-1 and the negative p53 regulator mdm2 led to dopaminergic neuronal cell death even without toxin exposure, further implicating involvement of p53 in DJ-1 deficiency-mediated neuronal cell loss. Our study demonstrates the utility of zebrafish as a new animal model to study PD gene defects and suggests that modulation of downstream mechanisms, such as p53 inhibition, may be of therapeutic benefit.  相似文献   

4.
Programmed cell death and the proteasome   总被引:2,自引:0,他引:2  
A characteristic feature of apoptotic cell death is the activation of a cascade of cytoplasmic proteases that results in the cleavage of a limited number of target proteins. A central role in these proteolytic events has been assigned to members of the capase family. However, the use of low molecular weight proteasomal inhibitors has also demonstrated that protein degradation or processing by the ubiquitin-proteasome system of the cell has a decisive impact on cell survival and death as well, depending on the cell type and/or the proliferative status of the cells studied. Treatment of proliferating cells with proteasome inhibitors leads to cell death, potentially involving an internal signalling conflict between accumulating levels of the cdk inhibitor p27Kip1 and c-myc. In contrast, in terminally differentiated cells the same compounds have the opposite effect of blocking apoptosis, possibly by preventing proteasome-mediated degradation of a capase inhibitor. In this review the role of proteasome-mediated proteolysis in the dying cell is discussed and apparently conflicting results are integrated into a working hypothesis which functionally locates the proteasome upstream of capase3-like enzymes.  相似文献   

5.
Programmed cell death in cereal aleurone   总被引:21,自引:0,他引:21  
Progress in understanding programmed cell death (PCD) in the cereal aleurone is described. Cereal aleurone cells are specialized endosperm cells that function to synthesize and secrete hydrolytic enzymes that break down reserves in the starchy endosperm. Unlike the cells of the starchy endosperm, aleurone cells are viable in mature grain but undergo PCD when germination is triggered or when isolated aleurone layers or protoplasts are incubated in gibberellic acid (GA). Abscisic acid (ABA) slows down the process of aleurone cell death and isolated aleurone protoplasts can be kept alive in media containing ABA for up to 6 months. Cell death in barley aleurone occurs only after cells become highly vacuolated and is manifested in an abrupt loss of plasma membrane integrity. Aleurone cell death does not follow the apoptotic pathway found in many animal cells. The hallmarks of apoptosis, including internucleosomal DNA cleavage, plasma membrane and nuclear blebbing and formation of apoptotic bodies, are not observed in dying aleurone cells. PCD in barley aleurone cells is accompanied by the accumulation of a spectrum of nuclease and protease activities and the loss of organelles as a result of cellular autolysis.  相似文献   

6.
Ceramide has been typically thought of as the membrane anchor for the carbohydrate in glycosphingolipids but many studies have suggested that it may cause apoptosis. Apoptosis or programmed cell death (PCD) is thought to be responsible for the death of one-half of neurons surviving the development of the nervous system. The potential involvement of the sphingomyelin-ceramide signaling process as an integral part of PCD was therefore examined in several neurotumour cell lines. We show that synthetic C2-ceramide (N-acetylsphingosine), a soluble ceramide analogue, can rapidly trigger PCD in these cells, characterized by: 1) classic DNA laddering on agarose gels; 2) DNA fragmentation as determined by Hoechst Dye; and 3) cell viability (mitochondrial function and intact nuclei) assays. We report that staurosporine can both activate PCD (by all three criteria above) in neurotumour cells and increase both the formation of ceramide and ceramide mass. Both ceramide formation and the induction of PCD were further enhanced by the co-addition of a ceramidase inhibitor oleoylethanolamine (25 µM). Staurosporine and oleoylethanolamine were similarly effective in inducing ceramide formation and PCD in immortalized hippocampal neurons (HN-2) and immortalized dorsal root ganglion cells (F-11). Our data suggests that formation of ceramide is a key event in the induction of PCD in neuronally derived neurotumour cells.Abbreviations PCD programmed cell death - PKC protein kinase C - HPTLC high-performance thin-layer chromatography - DETAPAC diethylenetriaminepentaacetic acid - DMEM Dubelco's modified Eagle's medium - FCS fetal calf serum - PBS phosphate-buffered saline - DAG diacylglycerol - DDI distilled-deionized - Cer ceramide - SM sphingomyelin Dedicated to Dr Sen-itiroh Hakomori in celebration of his 65th birthday.  相似文献   

7.
Programmed cell death is known to be an essential process for accurate ontogeny during the normal development of the inner ear. The inner ear is a complex sensory organ responsible for equilibrium and sound detection in vertebrates. In all vertebrates, the inner ear develops from a single ectodermic patch on the surface of the embryo's head, which undergoes a series of morphological changes to give rise to the complex structure of the adult inner ear. Enlargement and morphogenesis of the inner ear primordium is likely to depend on cellular division, growth, migration, differentiation and apoptosis. Here we describe the regions of programmed cell death that contribute to the final morphological aspect of the adult inner ear. The few studies that focus on the molecules that control this process during inner ear development indicate that the molecules and intracellular signaling pathways activated during the apoptotic response in the inner ear are similar to the previously described for the nervous system. In this review, we will describe some of the growth factors and key pathways that regulate pro- and anti-apoptotic signals and how they cross talk to determine the apoptotic or survival fate of cells in the development of the inner ear.  相似文献   

8.
Programmed cell death in cell cultures   总被引:21,自引:0,他引:21  
In plants most instances of programmed cell death (PCD) occur in a number of related, or neighbouring, cells in specific tissues. However, recent research with plant cell cultures has demonstrated that PCD can be induced in single cells. The uniformity, accessibility and reduced complexity of cell cultures make them ideal research tools to investigate the regulation of PCD in plants. PCD has now been induced in cell cultures from a wide range of species including many of the so-called model species. We will discuss the establishment of cell cultures, the fractionation of single cells and isolation of protoplasts, and consider the characteristic features of PCD in cultured cells. We will review the wide range of methods to induce cell death in cell cultures ranging from abiotic stress, absence of survival signals, manipulation of signal pathway intermediates, through the induction of defence-related PCD and developmentally induced cell death.  相似文献   

9.
In C. elegans, cell death can be readily studied at the cellular, genetic, and molecular levels. Two types of death have been characterized in this nematode: (1) programmed cell death, which occurs as a normal component in development; and (2) pathological cell death which occurs aberrantly as a consequence of mutation. Analysis of mutations that disrupt programmed cell death in various ways has defined a genetic pathway for programmed cell death which includes genes that perform such functions as the determination of which cells die, the execution of cell death, the engulfment of cell corpses, and the digestion of DNA from dead cells. Molecular analysis is providing insightinto the nature of the molecules that function in these aspects of programmed cell death. Characterization of some genes that mutate to induce abnormal cell death has defined a novel gene family called degenerins that encode putative membrane proteins. Dominant alleles of at least two degenerin genes, mec-4 and deg-1, can cause cellular swelling and late onset neurodegeneration of specific groups of cells. © 1992 John Wiley & Sons, Inc.  相似文献   

10.
Programmed cell death in the germline   总被引:9,自引:0,他引:9  
In many organisms, programmed cell death of germ cells is required for normal development. This often occurs through highly conserved events including the transfer of vital cellular material to the growing gametes following death of neighboring cells. Germline cell death also plays a role in such diverse processes as removal of abnormal or superfluous cells at certain checkpoints, establishment of caste differentiation, and individualization of gametes. This review focuses on the cell death events that occur during gametogenesis in both vertebrates and invertebrates. It also examines the signals and machinery that initiate and carry out these germ cell deaths.  相似文献   

11.
Programmed cell death via mitochondria: Different modes of dying   总被引:20,自引:0,他引:20  
Programmed cell death (PCD)is a major component of normal development, preservation of tissue homeostasis, and elimination of damaged cells. Many studies have subdivided PCD into the three categories of apoptosis, autophagy, and necrosis based on criteria such as morphological alterations, initiating death signal, or the implication of caspases. However, these classifications fail to address the interplay between the three types of PCD. In this review, we will discuss the central role of the mitochondrion in the integration of the cell death pathways. Mitochondrial alterations such as the release of sequestered apoptogenic proteins, loss of transmembrane potential, production of reactive oxygen species (ROS), disruption of the electron transport chain, and decreases in ATP synthesis have been shown to be involved in, and possibly responsible for, the different manifestations of cell death. Thus, the mitochondria can be viewed as a central regulator of the decision between cellular survival and demise.Translated from Biokhimiya, Vol. 70, No. 2, 2005, pp. 284 293.Original Russian Text Copyright ¢ 2005 by Bras, Queenan, Susin.This revised version was published online in April 2005 with corrections to the post codes.  相似文献   

12.
About 50% of spinal motoneurons undergo programmed cell death (PCD) after target contact, but little is known about how this process is initiated. Embryonic motoneurons coexpress the death receptor Fas and its ligand FasL at the stage at which PCD is about to begin. In the absence of trophic factors, many motoneurons die in culture within 2 d. Most (75%) of these were saved by Fas-Fc receptor body, which blocks interactions between Fas and FasL, or by the caspase-8 inhibitor tetrapeptide IETD. Therefore, activation of Fas by endogenous FasL underlies cell death induced by trophic deprivation. In the presence of neurotrophic factors, exogenous Fas activators such as soluble FasL or anti-Fas antibodies triggered PCD of 40-50% of purified motoneurons over the following 3-5 d; this treatment led to activation of caspase-3, and was blocked by IETD. Sensitivity to Fas activation is regulated: motoneurons cultured for 3 d with neurotrophic factors became completely resistant. Levels of Fas expressed by motoneurons varied little, but FasL was upregulated in the absence of neurotrophic factors. Motoneurons resistant to Fas activation expressed high levels of FLICE-inhibitory protein (FLIP), an endogenous inhibitor of caspase-8 activation. Our results suggest that Fas can act as a driving force for motoneuron PCD, and raise the possibility that active triggering of PCD may contribute to motoneuron loss during normal development and/or in pathological situations.  相似文献   

13.
细胞程序性死亡与生态适应   总被引:3,自引:1,他引:3  
林久生  王根轩 《生命科学》2002,14(4):232-233,207
细胞程序性死亡是多细胞有机生命周期中正常的组成部分,细胞程序性死亡过程的存在对生物体是一种保护机制。它是在生物进化过程中形成的,也是生物对环境的适应方式之一。  相似文献   

14.
15.
程序性细胞死亡因子-4(programmed celld eath-4,PDCD4)通过阻断相关基因的转录与翻译从而抑制肿瘤发生,单纯疱疹病毒-1(herpes simplex virus-1,HSV-1)US3蛋白激酶可有效调控病毒基因产物或外源因素引致的细胞凋亡。近期研究证明PDCD4在病毒感染细胞中以US3依赖及非依赖两种模式被磷酸化修饰,其中受US3修饰的PDCD4仍定位细胞核并随之被降解,这可能是细胞凋亡被抑制的主要原因之一,此外,PDCD4沉默可阻断复制不完全病毒引致的细胞凋亡,表明PDCD4与HSV-1 US3阻断细胞凋亡途径直接相关。本文综述了这两种蛋白及其作用关系的研究进展,为解析病毒与细胞相互作用机理提供新方向。  相似文献   

16.
在一定的生理或者病理条件下,细胞为了自身发育或者抵御不良刺激,会采取细胞程序化死亡(programmed cell death,PCD)的方式结束生命。泛素/26S蛋白酶体系统(ubiquitin-26S proteasome system,UPS)作为生物体中重要的翻译后蛋白质调节系统,对PCD起着关键的调节作用。该文介绍UPS通过两条细胞凋亡信号转导通路以及天冬氨酸特异性半胱氨酸蛋白酶来调控PCD的研究进展。  相似文献   

17.
Programmed cell death in the developing limb   总被引:4,自引:0,他引:4  
The sculpturing of shape in the developing limb together with the regression of the tail in anuran tadpoles constitute, perhaps, the most paradigmatic processes of programmed cell death. The study of these model systems has been of fundamental importance to support the idea that cell death is a physiological behavior of cells in multicellular organisms. Furthermore, different experimental approaches, including comparative analyses of the pattern of cell death in different avian species (i.e. chick interdigits versus duck interdigital webs) and in chick mutants with different limb phenotypes, provided the first evidence for the occurrence of a genetic program underlying the control of cell death. Two well known research groups in the field of limb development, the USA group headed first by John Saunders and next by John Fallon and the group of Donald Ede and Richard Hinchliffe in the U.K. provided a remarkable contribution to this topic. In spite of the historical importance of the developing limb in establishing the concept of programmed cell death, this model system of tissue regression has been largely neglected in recent studies devoted to the analysis of the molecular control of self-induced cell death (apoptosis). However, a considerable amount of information concerning this topic has been obtained in the last few years. Here we will review current information on the control of limb programmed cell death in an attempt to stimulate further molecular studies of this process of tissue regression.  相似文献   

18.
Programmed cell death and patterning in Drosophila   总被引:1,自引:0,他引:1  
Selective cell death provides developing tissues with the means to precisely sculpt emerging structures. By imposing patterned cell death across a tissue, boundaries can be created and tightened. As such, programmed cell death is becoming recognized as a major mechanism for patterning of a variety of complex structures. Typically, cell types are initially organized into a fairly loose pattern; selective death then removes cells between pattern elements to create correct structures. In this review, we examine the role of selective cell death across the course of Drosophila development, including the tightening of embryonic segmental boundaries, head maturation, refining adult structures such as the eye and the wing, and the ability of cell death to correct for pattern defects introduced by gene mutation. We also review what is currently known of the relationship between signals at the cell surface that are responsible for tissue patterning and the basal cell death machinery, an issue that remains poorly understood.  相似文献   

19.
Programmed cell death in plant reproduction   总被引:44,自引:0,他引:44  
Reproductive development is a rich arena to showcase programmed cell death in plants. After floral induction, the first act of reproductive development in some plants is the selective killing of cells destined to differentiate into an unwanted sexual organ. Production of functional pollen grains relies significantly on deterioration and death of the anther tapetum, a tissue whose main function appears to nurture and decorate the pollen grains with critical surface molecules. Degeneration and death in a number of anther tissues result ultimately in anther rupture and dispersal of pollen grains. Female sporogenesis frequently begins with the death of all but one of the meiotic derivatives, with surrounding nucellar cells degenerating in concert with embryo sac expansion. Female tissues that interact with pollen undergo dramatic degeneration, including death, to ensure the encounter of compatible male and female gametes. Pollen and pistil interact to kill invading pollen from an incompatible source. Most observations on cell death in reproductive tissues have been on the histological and cytological levels. We discuss various cell death phenomena in reproductive development with a view towards understanding the biochemical and molecular mechanisms that underlie these processes.  相似文献   

20.
Programmed cell death in fission yeast   总被引:2,自引:0,他引:2  
Recently a metacaspase, encoded by YCA1, has been implicated in a primitive form of apoptosis or programmed cell death in yeast. Previously it had been shown that over-expression of mammalian pro-apoptotic proteins can induce cell death in yeast, but the mechanism of how cell death occurred was not clearly established. More recently, it has been shown that DNA or oxidative damage, or other cell cycle blocks, can result in cell death that mimics apoptosis in higher cells. Also, in fission yeast deletion of genes required for triacylglycerol synthesis leads to cell death and expression of apoptotic markers. A metacaspase sharing greater than 40% identity to budding yeast Yca1 has been identified in fission yeast, however, its role in programmed cell death is not yet known. Analysis of the genetic pathways that influence cell death in yeast may provide insights into the mechanisms of apoptosis in all eukaryotic organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号