首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We have shown previously that protein kinase Cdelta (PKCdelta) is required for mitochondrial-dependent apoptosis. Here we show that PKCdelta is imported into the nucleus of etoposide-treated cells, that nuclear import is required for apoptosis and that it is mediated by a nuclear localization signal (NLS) in the C-terminus of PKCdelta. Mutation of the caspase cleavage site of PKCdelta inhibits nuclear accumulation in apoptotic cells, indicating that caspase cleavage facilitates this process. Expression of the PKCdelta catalytic fragment (CFdelta) in transfected cells results in nuclear localization and apoptosis. We show that the PKCdelta NLS is required for nuclear import of both full-length PKCdelta and CFdelta, and drives nuclear localization of a multimeric green fluorescent protein. Mutations within the NLS of CFdelta prevent nuclear accumulation and block apoptosis. Conversely, nuclear expression of a kinase-negative catalytic fragment (KN-CFdelta) protects cells from etoposide-induced apoptosis. Mutation of the NLS blocks the ability of KN-CFdelta to protect against etoposide-induced apoptosis. These results indicate that PKCdelta regulates an essential nuclear event(s) that is required for initiation of the apoptotic pathway.  相似文献   

2.
3.
Members of high (22-, 22.5-, 24-, and 34-kDa) and low (18-kDa) molecular mass forms of fibroblast growth factor-2 (FGF-2) regulate cell proliferation, differentiation, and migration. FGF-2s have been previously shown to accumulate in the nucleus and nucleolus. Although high molecular weight forms of FGF-2 contain at least one nuclear localization signal (NLS) in their N-terminal extension, the 18-kDa FGF-2 does not contain a standard NLS. To determine signals controlling the nuclear and subnuclear localization of the 18-kDa FGF-2, its full-length cDNA was fused to that of green fluorescent protein (GFP). The fusion protein was primarily localized to the nucleus of COS-7 and HeLa cells and accumulated in the nucleolus. The subcellular distribution was confirmed using wild type FGF-2 and FGF-2 tagged with a FLAG epitope. A 17-amino acid sequence containing two groups of basic amino acid residues separated by eight amino acid residues directed GFP and a GFP dimer into the nucleus. We systematically mutated the basic amino acid residues in this nonclassical NLS and determined the effect on nuclear and nucleolar accumulation of 18-kDa FGF-2. Lys(119) and Arg(129) are the key amino acid residues in both nuclear and nucleolar localization, whereas Lys(128) regulates only nucleolar localization of 18-kDa FGF-2. Together, these results demonstrate that the 18-kDa FGF-2 harbors a C-terminal nonclassical bipartite NLS, a portion of which also regulates its nucleolar localization.  相似文献   

4.
p27(Kip1) is a cyclin-dependent kinase inhibitor, and its nuclear localization is a prerequisite for it to function as a cell cycle regulator. In the present study, the minimal requirement for the nuclear localization signal (NLS) of p27(Kip1) was determined by analyzing the localization of various mutants of p27(Kip1) tagged with green fluorescent protein (GFP) in HeLa cells and porcine aortic endothelial cells. Wild-type p27(Kip1) exclusively localized into nucleus, while GFP alone localized in both cytosol and nucleus. A comparison of various truncation mutants revealed residues 153-166 to be the minimal region necessary for nuclear localization. However, a fusion of this region to GFP showed cytoplasmic retention in addition to nuclear localization, thus suggesting that some extension flanking this region is required to achieve a full function of NLS. The site-directed mutation of the full-length p27(Kip1) therefore showed that four basic residues (K153, R154, K165, R166), especially R166, play a critical role in the nuclear localization of p27(Kip1).  相似文献   

5.
6.
Flap endonuclease-1 (FEN-1), a 43-kDa protein, is a structure-specific and multifunctional nuclease. It plays important roles in RNA primer removal of Okazaki fragments during DNA replication, DNA base excision repair, and maintenance of genome stability. Three functional motifs of the enzyme were proposed to be responsible for its nuclease activities, interaction with proliferating cell nuclear antigen, and nuclear localization. In this study, we demonstrate in HeLa cells that a signal located at the C terminus (the nuclear localization signal (NLS) motif) facilitates nuclear localization of the enzyme during S phase of the cell cycle and in response to DNA damage. Truncation of the NLS motif prevents migration of the protein from the cytoplasm to the nucleus, while having no effect on the nuclease activities and its proliferating cell nuclear antigen interaction capability. Site-directed mutagenesis further revealed that a mutation of the KRK cluster to three alanine residues completely blocked the localization of FEN-1 into the nucleus, whereas mutagenesis of the KKK cluster led to a partial defect of nuclear localization in HeLa cells without observable phenotype in yeast. Therefore, the KRKXXXXXXXXKKK motif may be a bipartite NLS driving the protein into nuclei. Yeast RAD27Delta cells transformed with human mutant M(krk) survived poorly upon methyl methanesulfonate treatment or when they were incubated at an elevated temperature.  相似文献   

7.
8.
《The Journal of cell biology》1989,109(6):2623-2632
Through a series of label transfer experiments, we have identified a HeLa cell nuclear protein that interacts with nuclear localization signals (NLSs). The protein has a molecular weight of 66,000 and an isoelectric point of approximately 6. It associates with a synthetic peptide that contains the SV-40 T antigen NLS peptide but not with an analogous peptide in which an asparagine is substituted for an essential lysine (un-NLS peptide). In addition to these peptides, several proteins have been tested as label donors. With the proteins, there is a correlation between nuclear localization (assayed with lysolecithin-permeabilized cells) and label transfer to the 66-kD protein. The NLS peptide (but not the un-NLS peptide) competes with the proteins in label transfer experiments, but neither wheat germ agglutinin nor ATP has an effect. These results suggest that the 66-kD protein functions as an NLS receptor in the first step of nuclear localization. In the course of this work, we have observed that the Staphylococcus aureus protein A is a strongly karyophilic protein. Its dramatic nuclear localization properties suggest that it may have multiple copies of an NLS.  相似文献   

9.
In spite of recent efforts to elucidate the nuclear import pathway of the human immunodeficiency virus type 1 (HIV-1) integrase protein (IN), its exact route as well as the domains that mediate its import are still unknown. Here, we show that a synthetic peptide bearing the amino acid residues 161-173 of the HIV-1 IN is able to mediate active import of covalently attached bovine serum albumin molecules into nuclei of permeabilized cells and therefore was designated as nuclear localization signal-IN (NLS(IN)). A peptide bearing residues 161-173 in the reversed order showed low karyophilic properties. Active nuclear import was demonstrated by using fluorescence microscopy and a quantitative ELISA-based assay system. Nuclear import was blocked by addition of the NLS(IN) peptide, as well as by a peptide bearing the NLS of the simian virus 40 T-antigen (NLS-SV40). The NLS(IN) peptide partially inhibited nuclear import mediated by the full-length recombinant HIV-1 IN protein, indicating that the sequence of the NLS(IN) is involved in mediating nuclear import of the IN protein. The NLS(IN) as well as the full-length IN protein interacted specifically with importin alpha, binding of which was blocked by the NLS(IN) peptide itself as well as by the NLS-SV40.  相似文献   

10.
Matrin 3, a nuclear matrix protein has potential (1) to withhold promiscuously edited RNAs within the nucleus in cooperation with p54(nrb) and PSF, (2) to mediate NMDA-induced neuronal death, and (3) to modulate promoter activity of genes proximal to matrix/scaffold attachment region (MAR/SAR). We identified a bipartite nuclear localization signal (NLS) of chicken matrin 3 (cmatr3) at residues 583-602. By expressing green fluorescent protein (GFP) fused to the NLS mutant in chicken DT40 cells, we showed an essential role of the NLS for cell proliferation. Furthermore, we showed that both clusters of basic amino acids and a linker of the bipartite NLS were essential and sufficient for the nuclear import of GFP. Exogenous cmatr3 rescued the HeLa cells where human matrin 3 was suppressed by RNA interference, but cmatr3 containing deletions at either of the basic amino acid clusters or the linker could not.  相似文献   

11.
Scythe cleavage during Fas (APO-1)-and staurosporine-mediated apoptosis   总被引:1,自引:0,他引:1  
Preta G  Fadeel B 《FEBS letters》2012,586(6):747-752
Scythe is a nuclear protein that has been implicated in the apoptotic process in Drosophila melanogaster; however, its role in apoptosis of mammalian cells is not fully elucidated. Here we show that cleavage of Scythe by caspase-3 occurs after activation of both the extrinsic (i.e. Fas/APO-1-mediated) and the intrinsic (i.e. staurosporine-induced) apoptosis pathway. Moreover, this caspase-dependent cleavage correlates with Scythe translocation from the nucleus to the cytosol. We also show that cytosolic re-localization of Scythe is required for Fas/APO-1-triggered phosphatidylserine (PS) exposure, a signal for macrophage clearance of apoptotic cells. Our data suggest that Scythe cleavage may represent a marker for caspase-3 activation and implicate cytosolic re-localization of Scythe in the pathway of PS exposure.  相似文献   

12.
Cytolethal distending toxin (CDT) is a heterotrimeric protein toxin produced by several bacterial pathogens. Cells exposed to CDT die from either activation of the mitotic checkpoint cascade or apoptosis. Introduction of the purified CdtB subunit, a homologue of mammalian type I DNase, into cells mimics the action of the CDT holotoxin. Mutant CdtBs lacking DNase activity are devoid of biological activity. Chromosomal DNA appears to be the CDT target; thus, nuclear translocation of CdtB must precede cytolethal activity. Examination of the CdtB sequence indicates the presence of putative candidate bipartite nuclear localization signals (NLS). Here, we examine the functionality of the two potential NLS sequences found in the Escherichia coli CdtB-II. Nuclear translocation of EcCdtB-II was examined by monitoring the localization of an EcCdtB-II-EGFP fusion in Cos-7 cells. Our results indicated that EGFP-EcCdtB-II localized to the nucleus. The candidate EcCdtB-II-II NLS sequences were modified by site-directed mutagenesis such that tandem arginine residues were changed to threonine and serine respectively. Mutation of both putative NLS sequences had no effect on EcCdtB-II-associated DNase activity; however, cell cycle arrest and nuclear localization were significantly impaired in cells that received CDT reconstituted from the EcCdtB-II-DeltaNLS mutants. When HeLa cells were electroporated with the EcCdtB-II-DeltaNLS1 and the EcCdtB-II-NLS double mutants, toxicity was not observed, whereas the activity of EcCdtB-II-DeltaNLS2 was similar to that of wild-type EcCdtB-II. These data indicate that the putative NLS sequences are important for CDT-mediated action arrest and that they are likely to function in the nuclear translocation of EcCdtB-II.  相似文献   

13.
Protein transport into the nucleus is generally considered to involve specific nuclear localization signals (NLS) though it is becoming increasingly evident that efficient and well controlled import of proteins which lack a canonical NLS also occurs in cells. Vpx, a 112 amino acid protein from human immunodeficiency virus type 2 (HIV-2) and the closely related simian immunodeficiency virus (SIV) is one such protein, which does not have an identifiable canonical NLS and is yet efficiently imported to the nuclear compartment. Here we report that Vpx protein is imported to the nucleus independently of virus-encoded cofactors. When fusions of truncated versions of Vpx with full-length beta-galactosidase (beta-Gal) were tested, the region from Vpx 61 to 80 was found to be sufficient to mediate the import of the heterologous cytoplasmic protein to the nucleus. Inactivation of Vpx NLS precluded nuclear import of Vpx and reduced virus replication in non-dividing macrophage cultures, even when functional integrase and Gag matrix proteins implicated in viral nuclear import were present. Importantly, we identified and characterized a novel type of 20 amino acid transferable nuclear import signal in Vpx that is distinct from other import signals described. In addition, we show that the minimal nuclear targeting domain identified here overlaps with helical domain III (amino acid (aa) 64-82) and the structural integrity of this helical motif is critical for the nuclear import of Vpx. Taken together, these data suggest that Vpx is imported to the nucleus via a novel import pathway that is dependent on its 20 amino acid unique nuclear targeting signal, and that the nuclear import property of Vpx is critical for the optimal virus replication in non-dividing cells such as macrophages.  相似文献   

14.
The nucleocapsid protein VP15 of white spot syndrome virus (WSSV) is a basic DNA-binding protein. Three canonical bipartite nuclear localization signals (NLSs), called NLS1 (aa 11-27), NLS2 (aa 33-49) and NLS3 (44-60), have been detected in this protein, using the ScanProsite computer program. To determine the nuclear localization sequence of VP15, the full-length open reading frame, or the sequence of one of the three NLSs, was fused to the green fluorescent protein (GFP) gene, and transiently expressed in insect Sf9 cells. Transfection with full-length VP15 resulted in GFP fluorescence being distributed exclusively in the nucleus. NLS 1 alone could also direct GFP to the nucleus, but less efficiently. Neither of the other two NLSs (NLS2 and 3) was functional when expressed alone, but exhibited similar activity to NLS1 when they were expressed as a fusion peptide. Furthermore, a mutated VP15, in which the two basic amino acids (11RR12) of NLSI were changed to two alanines (11AA12), caused GFP to be localized only in the cytoplasm of Sf9 cells. These results demonstrated that VP15, as a nuclear localization protein, needs cooperation between its three NLSs, and that the two residues (11RR12) of NLS1 play a key role in transporting the protein to the nucleus.  相似文献   

15.
16.
探讨了由核定位信号(NLS)多肽介导的核因子-κB(NF-κB)寡核苷酸诱骗子(ODNs decoy)进入HeLa细胞核的效率,以及对细胞核内NF-κB活性的调控作用。利用双功能交联剂(Sulfo-SMCC)共价交联末端氨基修饰的ODNs decoy和末端巯基修饰的NLS多肽,形成NLS多肽共价连接的ODNs decoy。依靠TransME转染试剂的辅助转染NLS-ODNs decoy进入HeLa细胞,用荧光显微镜观察荧光标记的NLS-ODNs在细胞内的分布。用MTT法检测HeLa细胞的活力,以凝胶迁移实验(EMSA)检测TNF-α诱导的HeLa细胞核抽提物中NF-κB的活性。结果表明,NLS多肽成功地连接到ODNs decoy上,NLS-ODNs可高效入核,入核率达到17.9%。转染NLS-ODNs进入HeLa细胞,对细胞活力无明显影响,而显著抑制核内NF-κB的活性。结果表明NLS多肽可提高ODNs decoy的入核效率,显著增强诱骗子对NF-κB活性的抑制效果。  相似文献   

17.
18.
The armadillo protein SmgGDS promotes guanine nucleotide exchange by small GTPases containing a C-terminal polybasic region (PBR), such as Rac1 and RhoA. Because the PBR resembles a nuclear localization signal (NLS) sequence, we investigated the nuclear transport of SmgGDS with Rac1 or RhoA. We show that the Rac1 PBR has significant NLS activity when it is fused to green fluorescent protein (GFP) or in the context of full-length Rac1. In contrast, the RhoA PBR has very poor NLS activity when it is fused to GFP or in the context of full-length RhoA. The nuclear accumulation of both Rac1 and SmgGDS is enhanced by Rac1 activation and diminished by mutation of the Rac1 PBR. Conversely, SmgGDS nuclear accumulation is diminished by interactions with RhoA. An SmgGDS nuclear export signal sequence that we identified promotes SmgGDS nuclear export. These results suggest that SmgGDS. Rac1 complexes accumulate in the nucleus because the Rac1 PBR has NLS activity and because Rac1 supplies the appropriate GTP-dependent signal. In contrast, SmgGDS.RhoA complexes accumulate in the cytoplasm because the RhoA PBR does not have NLS activity. This model may be applicable to other armadillo proteins in addition to SmgGDS, because we demonstrate that activated Rac1 and RhoA also provide stimulatory and inhibitory signals, respectively, for the nuclear accumulation of p120 catenin. These results indicate that small GTPases with a PBR can regulate the nuclear transport of armadillo proteins.  相似文献   

19.
Importin α1 can bind classical nuclear localization signals (NLSs) in two NLS-binding sites, known as "major" and "minor." The major site is located between ARM repeats 2-4, whereas the minor site spans ARM 7-8. In this study, we have characterized the cellular localization of human phospholipid scramblase 4 (hPLSCR4), a member of the phospholipid scramblase protein family. We identified a minimal NLS in hPLSCR4 ((273)GSIIRKWN(280)) that contains only two basic amino acids. This NLS is both necessary for nuclear localization of hPLSCR4 in transfected HeLa cells and sufficient for nuclear import of a non-diffusible cargo in permeabilized cells. Mutation of only one of the two basic residues, Arg(277), correlates with loss of nuclear localization, suggesting this amino acid plays a key role in nuclear transport. Crystallographic analysis of mammalian importin α1 in complex with the hPLSCR4-NLS reveals this minimal NLS binds specifically and exclusively to the minor binding site of importin α. These data provide the first structural and functional evidence of a novel NLS-binding mode in importin α1 that uses only the minor groove as the exclusive site for nuclear import of nonclassical cargos.  相似文献   

20.
BLM解旋酶是人RecQ DNA解旋酶家族重要成员之一,在机体的DNA复制、重组、损伤修复以及维护基因组稳定性等方面发挥重要作用。早期研究表明,BLM解旋酶通过自身携带的核定位信号(nuclear localization signal, NLS)进入细胞核,但是介导其细胞核定位的关键氨基酸位点尚不清楚。本研究构建了BLM解旋酶C端(aa642 1417)截短体克隆,首先通过截短表达的方法确证其NLS结构域。在此基础上,构建重组真核表达载体pEGFP NLS/BLM NES/Rev,通过观察BLM NLS碱性氨基酸位点突变对EGFP NLS/ BLM NES/Rev融合蛋白细胞核定位的影响,以此快速鉴定NLS中介导BLM解旋酶细胞核定位的关键氨基酸位点。结果表明,BLM(aa642 1417) C端截短体具有与全长BLM解旋酶相同的细胞核定位,同时确证1344RSKRRK1349是BLM解旋酶NLS结构域的活性位点,且具有与SV40 NLS相同的核输入能力。氨基酸位点突变试验结果表明,R1344A、K1346A、R1348A和K1349A点突变均减少了EGFP NLS/BLM NES/Rev和EGFP BLM(642 1417)融合蛋白的细胞核定位。因此,这4个位点是介导BLM解旋酶细胞核定位的关键氨基酸位点。此结果为后续研究BLM解旋酶细胞核定位的分子机制奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号