首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
The operation of a reductive pyrimidine catabolic and reutilization pathway in Tetrahymena pyriformis was investigated. Consistent with the proposed catabolic interconversions, radioactivity from [2,6-14C2]thymidine was recovered in respired CO2 30 min after its addition to the culture, whereas, consistent with the proposed anabolic interconversions, over 50% of the incorporated label was recovered in cellular macromolecules other than DNA 12 h after its addition. The chromatographic recovery of 14C radioactivity in monosaccharides from [2,6-14C2]thymidine as well as from [2-14C]methylmalonic acid, a key reutilization intermediate in this proposed pathway, further substantiated the operation of the required anabolic interconversions in this organism.  相似文献   

6.
M. W. Fowler 《Planta》1973,112(3):235-242
Summary 14C from [2-14C] acetate was found to be incorporated into soluble and protein amino acids in substantial amounts by bean root apices. The 14C was spread through a wide range of amino acids in both these fractions. Glutamic acid was found to be heavily labelled with 14C in both soluble and protein amino acid fractions. The data are discussed in relation to present ideas on transport and utilization of amino acids in root systems.  相似文献   

7.
1. The metabolism of [1-(14)C]glyoxylate to carbon dioxide, glycine, oxalate, serine, formate and glycollate was investigated in hyperoxaluric and control subjects' kidney and liver tissue in vitro. 2. Only glycine and carbon dioxide became significantly labelled with (14)C, and this was less in the hyperoxaluric patients' kidney tissue than in the control tissue. 3. Liver did not show this difference. 4. The metabolism of [1-(14)C]glycollate was also studied in the liver tissue; glyoxylate formation was demonstrated and the formation of (14)CO(2) from this substrate was likewise unimpaired in the hyperoxaluric patients' liver tissue in these experiments. 5. Glycine was not metabolized by human kidney, liver or blood cells under the conditions used. 6. These observations show that glyoxylate metabolism by the kidney is impaired in primary hyperoxaluria.  相似文献   

8.
9.
10.
1. We present quantitative evidence from incorporation of [1-14C] acetate that the enzymes to synthesise isoprenoids are present in the marine sponge Amphimedon sp. and that efficient carotenoid synthesis takes place. 2. The de novo synthesis of b,b-carotene and (3R,3'R)-zeaxanthin may occur in a chlorophyll a-producing microalgal symbiont with subsequent aromatisation to (3R)-isoagelaxanthin by the sponge itself. 3. Amphimedon sp. contains nuclear-modified sterols derived by modification of conventional dietary sterols.  相似文献   

11.
Hepatocytes from fed rats were incubated for 120 min in the presence of alpha-D-[1,2-13C]glucose pentaacetate (1.7 mM), both D-[1,2-13C]glucose (1.7 mM) and acetate (8.5 mM), alpha-D-glucose penta[2-13C]acetate (1.7 mM), or D-[1,2-13C]glucose (8.3 mM). The amounts of 13C-enriched L-lactate and D-glucose and those of acetate and beta-hydroxybutyrate recovered in the incubation medium were comparable under the first two experimental conditions. The vast majority of D-glucose isotopomers consisted of alpha- and beta-D[1,2-13C]glucose. The less abundant single-labeled isotopomers of D-glucose were equally labeled on each C atom. The output of 13C-labeled L-lactate, mainly L-[2-13C]lactate and L-[3-13C]lactate, was 1 order of magnitude lower than that found in hepatocytes exposed to 8.3 mM D-[1,2-13C]glucose, in which case the total production of the single-labeled species of D-glucose was also increased and that of the C3- or C4-labeled hexose was lower than that of the other 13C-labeled isotopomers. In cells exposed to alpha-D-glucose penta[2-13C]acetate, the large majority of 13C atoms was recovered as [2-13C]acetate and, to a much lesser extent, beta-hydroxybutyrate labeled in position 2 and/or 4. Nevertheless, L-[2-13C]lactate, L-[3-13C]lactate, and single-labeled D-glucose isotopomers were also produced in amounts higher or comparable to those found in cells exposed to alpha-D-[1,2-13C]glucose pentaacetate. However, a modest preferential labelling of the C6-C5-C4 moiety of D-glucose, relative to its C1-C2-C3 moiety, and a lesser isotopic enrichment of the C3 (or C4), relative to that of C1 (or C6) and C2 (or C5), were now observed. These findings indicate that, despite extensive hydrolysis of alpha-D-glucose pentaacetate (1.7 mM) in the hepatocytes, the catabolism of its D-glucose moiety is not more efficient than that of unesterified D-glucose, tested at the same molar concentration (1.7 mM) in the presence of the same molar concentration of unesterified acetate (8.5 mM), and much lower than that found at a physiological concentration of the hexose (8.3 mM). The present results also argue against any significant back-and-forth interconversion of D-glucose 6-phosphate and triose phosphates, under conditions in which sizeable amounts of D-glucose are formed de novo from 13C-enriched Krebs cycle intermediates generated from either D-[1,2-13C]glucose or [2-13C]acetate.  相似文献   

12.
Subcellular fractions from germinated barley embryos, chloroplast preparations and whole germinating barley grains are able to carry out the conversions ent-kaurenol → ent-kaurenal → ent-kaurenoic acid → ent-hydroxykaurenoic acid, the initial steps of the biosynthetic pathway to gibberellins. Whole grains, and chloroplasts to a slight extent, incorporate radioactivity from ent-kaurenol-[17-14C] and ent-kaurenoic acid-[17-14C] into materials with similar but distinct properties from the gibberellins GA1, GA3, GA4 and GA7.  相似文献   

13.
Addition of [1-14C]acetate or [1,2-14C]acetate to actively growing cultures of Fusarium roseum 'Gibbosum' on rice yielded zearalenone with a specific activity ranging between 1.63 and 46.5 microCi/mmol.  相似文献   

14.
15.
1. Investigations of the mechanism of the non-oxidative segment of the pentose phosphate cycle in isolatd hepatocytes by prediction-labelling studies following the metabolism of [2-14C]-, [5-14C]- and [4,5,6-14C]glucose are reported. The 14C distribution patterns in glucose 6-phosphate show that the reactions of the L-type pentose pathway in hepatocytes. 2. Estimates of the quantitative contribution of the L-type pentose cycle are the exclusive form of the pentose cycle to glucose metabolism have been made. The contribution of the L-type pentose cycle to the metabolism of glucose lies between 22 and 30% in isolated hepatocytes. 3. The distribution of 14C in the carbon atoms of glucose 6-phosphate following the metabolism of [4,5,6-14C]- and [2-14C]glucose indicate that gluconeogenesis from triose phosphate and non-oxidative formation of pentose 5-phosphate do not contribute significantly to randomization of 14C in isolated hepatocytes. The transaldolase exchange reaction between fructose 6-phosphate and glyceraldehyde 3-phosphate is very active in these cells.  相似文献   

16.
17.
18.
19.
20.
Labelling experiments with [2-13C]- and [1,2-13C]acetate showed that both photopigments of Anacystis nidulans, chlorophyll a and phycocyanobilin, share a common biosynthetic pathway from glutamate. The fate of deuterium during these biosynthetic events was studied using [2-13C, 2-2H3]acetate as a precursor and determining the labelling pattern by 13C NMR spectroscopy with simultaneous [1H, 2H]-broadband decoupling. The loss of 2H (ca 20%) from the precursor occurred at an early stage during the tricarboxylic acid cycle. After formation of glutamate there was no further loss of 2H in the assembly of the cyclic tetrapyrrole intermediates or during decarboxylation and modification of the side-chains. Thus the labelling data support a divergence in the pathway to cyclic and linear tetrapyrroles after protoporphyrin IX.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号