首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epithelial-like Sertoli cells isolated from immature rat testis aggregate to form tubule-like structures when cultured on a monolayer of mesenchyme-derived peritubular cells. At the end of this morphogenetic process both cell types are separated by a basement membrane. In this study the gene expression of monocultures and direct cocultures of peritubular cells and Sertoli cells was examined using DD-RT-PCR. One of the isolated cDNA clones showed high homology to the cDNA encoding the basement membrane component entactin-1 (nidogen-1). Even though the entactin-1 (nidogen-1) gene is transcribed in peritubular cells, Sertoli cells, and in direct cocultures, the mRNA is translated only by the peritubular cells. No entactin-1 (nidogen-1) was detected in the Sertoli cells by Western blotting. Moreover, peritubular cell monocultures and cocultures showed the presence of one single band at 152 kDa in the supernatant, whereas in cell lysates two bands were detectable at 152 kDa and 150 kDa. Perturbation experiments using monoclonal antibodies directed against entactin-1 (nidogen-1) were performed with peritubular cells and Sertoli cells, respectively, and demonstrated loss of cell adhesion of the peritubular cells, while the Sertoli cells remained adherent. From these data we conclude that entactin-1 is exclusively produced and secreted by mesenchymal peritubular cells, and affects adhesion of peritubular cells in an autocrine manner.  相似文献   

2.
The potential role of transforming growth factor-alpha (TGF-alpha) as a mediator of cell-cell interactions in the growth and development of the testis was examined. Developing rat testes were collected, and preparations of mesenchymal-derived peritubular cells and epithelial-like Sertoli cells were isolated from prepubertal, midpubertal, and late pubertal rat testes. The developmental expression of TGF-alpha and its receptor, the epidermal growth factor receptor (EGFR), in whole testis and isolated cell types was determined using a nuclease protection assay. TGF-alpha and EGFR gene expression were predominant early in testis development and decreased during pubertal development. TGF-alpha expression was greatest in prepubertal peritubular cells. Sertoli cell TGF-alpha expression remained relatively constant during development, with a slight decline at the later pubertal stages. EGFR gene expression was predominant in peritublar cells throughout development. A low level of EGFR expression was detected in Sertoli cells. Scatchard analysis confirmed the presence of high affinity receptors on peritubular cells; however, no functional receptors were detected on Sertoli cells from any stage of development examined. Interestingly, low-level EGFR gene expression was also detected in pachytene spermatocytes and round spermatids. TGF-alpha was found to stimulate [3H] thymidine incorporation into DNA and increase cellular proliferation of peritubular cells from each developmental stage, while having no effect on Sertoli cells. The in vivo physiological significance of TGF-alpha was evaluated in a line of transgenic mice which overexpress TGF-alpha in the mature testis. These transgenic animals had no abnormal testicular morphology or alterations in spermatogenesis. Observations demonstrate that gene expression of TGF-alpha and its receptor is high during early pubertal stages when somatic cell growth is predominant and low at late pubertal stages when somatic cell proliferation is reduced. TGF-alpha can act as an autocrine/paracrine mitogen for the mesenchymal-derived peritubular cell, while actions on the Sertoli cell population are not evident. The observation that spermatogenic cells express the EGFR gene, although the protein remains to be identified, implies that TGF-alpha may potentially mediate Sertoli-germinal cell interactions.  相似文献   

3.
4.
5.
The incorporation of 3H-proline into protein was regarded as a measure of total protein synthesis and the incorporation into hydroxyproline as indicative of collagen synthesis. Relative collagen synthesis (expressed as percent of total protein synthesized) by Sertoli and peritubular myoid cells cultured from 20-22 day old rat testis was estimated. In both secreted and cellular pools, relative collagen synthesis by Sertoli cells was significantly greater than by peritubular myoid cells. Coculture of Sertoli and myoid cells resulted in a significant increase in relative collagen synthesis when compared to monocultures of each cell type. Addition of serum to peritubular myoid cells resulted in a stronger stimulation of relative collagen production. Sertoli cell extracellular matrix inhibited relative collagen synthesis by peritubular myoid cells in the presence or absence of serum. Radioactivity into hydroxyproline as corrected per cellular DNA also showed similar results. Immunolocalization studies confirmed that both cell types synthesize type I and type IV collagens. These results indicate that stimulation of collagen synthesis observed in Sertoli-myoid cell cocultures is due to humoral interactions, rather than extracellular matrix, and Sertoli cell extracellular matrix regulates serum-induced increase in collagen synthesis by peritubular myoid cells.  相似文献   

6.
A monoclonal antibody (MAb) raised against human sperm protein, designated YWK-II, was used to determine the distribution of antigens in rat spermatozoa and rat testicular germ cells. By an indirect immunofluorescent method, the antibody localized over the rat spermatozoal head, except for the postacrosomal region. In paraffin sections of adult and immature rat testis, germ cells, at every developmental stage, and Sertoli cells stained, while interstitial cells and peritubular myoid cells remained unstained. When cocultures of Sertoli and germ cells were tested, only the germ cells stained intensely. Sertoli cells and peritubular myoid cells in cultures did not stain. In the epididymal sections, strong staining occurred with spermatozoa in the lumen and epididymal epithelial cells, with moderate staining in the myoid layers of epididymis. To determine the sperm antigen interacting with the YWK-II antibody, rat spermatozoa proteins were prepared and analyzed by an immunoblot technique. The monoclonal antibody interacted with a single protein, with an estimated molecular weight of 115,000, present in the cauda epididymal spermatozoa. Among the proteins of the caput epididymal spermatozoa, however, the antibody interacted with a major and a minor band with molecular weights of 115,000 and 88,000, respectively. On the other hand, with proteins prepared from the membrane fraction of adult and immature rat testis, the antibody reacted with two bands with estimated molecular weights of 88,000 and 115,000. In the lysate prepared from germ cells dissociated from Sertoli-germ cell cocultures, the antibody recognized only the 88,000 protein. The present results show that the YWK-II MAb interacts with two proteins with different molecular weights. The amount of the interacting proteins in spermatozoa varied with their location within the epididymis.  相似文献   

7.
8.
The hypogonadic rat is characterized by male sterility, reduced female fertility, and renal hypoplasia controlled by a single recessive allele (hgn) on chromosome 10. Plasma testosterone is low and levels of gonadotropins are high in adult male hgn/hgn rats, indicating that the cause of hypogonadism lies within the testis itself. We found that the postnatal growth of the seminiferous tubules was severely affected. Here we describe the details of postnatal testicular pathogenesis of the hgn/ hgn rats. In these rats, gonadal sex determination and initial differentiation of each type of testicular cell occur, but proliferation, differentiation, and maturation of these cells during postnatal testicular development is severely affected. Postnatal pathological changes include reduced proliferation and apoptotic cell death of Sertoli cells, abnormal mitosis and cell death of gonocytes, reduced deposition of extracellular matrix proteins into the basal lamina, lack of the formation of an outer basal lamina, formation of multiple layers of undifferentiated peritubular cells, and the delayed appearance and islet conformation of adult-type Leydig cells. Apoptotic cell death of Sertoli cells and disappearance of FSH receptor mRNA expression indicate that this mutant rat is a useful model for Sertoli cell dysfunction. The abnormalities listed above might be caused by defective interactions between Sertoli cells and other types of testicular cells. Because the results presented here strongly indicate that a normal allele for hgn encodes a factor playing a critical role in testicular development, the determination of the gene responsible for hgn and the analysis of early alterations of gene expression caused by mutations in this gene would provide important information on the mechanisms of testicular development.  相似文献   

9.
10.
11.
12.
Testicular peritubular myoid cells secrete a paracrine factor that is a potent modulator of Sertoli cell functions involved in the maintenance of spermatogenesis. These cells also play an integral role in maintaining the structural integrity of the seminiferous tubule. To better understand this important testicular cell type, studies were initiated to characterize cultured peritubular cells using biochemical and histochemical techniques. The electrophoretic pattern of radiolabeled secreted proteins was similar for primary and subcultured peritubular cells and was unique from that of Sertoli cells. Morphologic differences between Sertoli cells and peritubular cells were noted and extended with histochemical staining techniques. Desmin cytoskeletal filaments were demonstrated immunocytochemically in peritubular cells, both in culture and in tissue sections, but were not detected in Sertoli cells. Desmin is proposed to be a marker for peritubular cell differentiation as well as a marker for peritubular cell contamination in Sertoli cell cultures. Peritubular cells and Sertoli cells were also stained histochemically for the presence of alkaline phosphatase. Staining for the alkaline phosphatase enzyme was associated with peritubular cells but not with Sertoli cells. Alkaline phosphatase is therefore an additional histochemical marker for peritubular cells. Biochemical characterization of peritubular cells relied on cell-specific enzymatic activities. Creatine phosphokinase activity, a marker for contractile cells, was found to be associated with peritubular cells, while negligible activity was associated with Sertoli cells. Alkaline phosphatase activity assayed spectrophotometrically was found to be a useful biochemical marker for peritubular cell function and was utilized to determine the responsiveness of primary and subcultured cells to regulatory agents. Testosterone stimulated alkaline phosphatase activity associated with primary cultures of peritubular cells, thus supporting the observation that peritubular cells provide a site of androgen action in the testis. Retinol increased alkaline phosphatase activity in subcultured peritubular cells. Alkaline phosphatase activity increased in response to dibutyryl cyclic adenosine monophosphate (AMP) in both primary and subcultured peritubular cell cultures. Observations indicate that the ability of androgens and retinoids to regulate testicular function may be mediated, in part, through their effects on peritubular cells. This provides additional support for the proposal that the mesenchymal-epithelial cell interactions between peritubular cells and Sertoli cells are important for the maintenance and control of testicular function. Results imply that the endocrine regulation of tissue function may be mediated in part through alterations in mesenchymal-epithelial cell interactions.  相似文献   

13.
Gonadotropin activation of cyclic adenosine 3',5'-monophosphate (cAMP)-dependent protein kinases plays an important role in the regulation of testicular function. This study was undertaken to establish the expression of various subunits of cAMP-dependent protein kinases in different testicular cell types as well as during sexual maturation. RNA was extracted from cultured Sertoli cells, cultured peritubular cells, germ cells (pachytene spermatocytes, round spermatids), tumor Leydig cells, as well as whole testis from rats of various ages. Messenger RNA levels were studied by Northern analysis using available cDNA probes. The regulatory subunit (R) designated RII51 was found to be predominantly expressed in cAMP-stimulated Sertoli cells and tumor Leydig cells. Much lower levels were found in cultured peritubular cells and germ cells. A 2.9- and 3.2-kb mRNA for the RI subunit were found at about similar levels in all cell types, whereas the smaller 1.7-kb mRNA was expressed in high levels in germ cells. Also, the catalytic subunit (C) of cAMP-dependent protein kinase, designated C alpha, was expressed in all cell types; the highest mRNA levels for this subunit were found in germ cells and in tumor Leydig cells. The 1.7-kb mRNA for androgen-binding protein (ABP) was abundant in cAMP-stimulated Sertoli cells and was not present in other cell types of the testis. Furthermore, the cellular localization of the cAMP-dependent protein kinase subunits was also supported by developmental studies. The mRNA level of the RII51 3.2-kb species was relatively constant until Day 30, after which there was a tendency to decrease. A 1.6-kb message first appeared at greater ages. The mRNA for the smaller 1.7-kb species of RI, as well as the C alpha, showed a significant increase during development, supporting an enrichment of these mRNAs in germ cells. Messenger RNA levels for ABP were not detected in testis from 5- to 10-day-old rats but increased up to Day 30. After this age, mRNA for ABP revealed an age-dependent decrease, which parallels the relative increase of germ cells in the testis. In summary, these results demonstrate a clear pattern of cellular localization of the various mRNA species for subunits of the cAMP-dependent protein kinase in the rat testis.  相似文献   

14.
The levels of IL-1alpha, IL-1beta and IL-1Ra were higher in homogenates of testicular tissue from sexually immature than those from mature mice. Immunohistochemical staining of testicular tissues from sexually immature and adult mice show that differentiated germ cells express higher levels of IL-1alpha compared to Sertoli cells and Leydig cells/interstitial cells. Peritubular cells of sexually immature and adult mice did not express IL-1alpha. Testicular tissue cells of adult mice showed high levels of expression of IL-1beta, mainly in the cytoplasm and nucleus of the spermatogonia and in spermatocytes. Sertoli cells and Leydig/interstitial cells were also highly stained for IL-1beta. However, peritubular cells did not express IL-1beta. On the other hand, testicular tissue cells from sexually immature mice, showed high levels of IL-1beta, mainly in spermatocytes. Spermatogonia showed low levels of IL-1beta expression. Also, high levels of IL-1beta expression were detected in Leydig/interstitial cells. Peritubular cells clearly showed IL-1beta expression. Testicular tissue cells from adult mice, showed IL-1Ra expression in spermatogonia, Sertoli and Leydig/interstitial cells. IL-1Ra expression was clearly present in the Golgi apparatus of spermatogonia and Sertoli cells. However, peritubular cells did not show IL-1Ra expression. Testicular tissue cells from sexually immature mice, also showed high levels of IL-1Ra expression mainly in the cytoplasm and nucleus of the spermatogonia and Sertoli cells. In addition, Leydig/interstitial cells and peritubular cells also expressed IL-1Ra. Our results demonstrate, for the first time, the expression of IL-1beta in germ and Sertoli cells, and IL-1Ra in Leydig/interstitial cells of testicular tissues from adult and sexually immature mice, under in vivo conditions. In addition, the relative elevated levels of the IL-1 system in the testis of immature mice compared to mature mice may indicate its involvement in the spermatogenesis.  相似文献   

15.
Observations summarized in this article demonstrate an essential role of laminin during the restructuring processes that occur during coculture of Sertoli cells with testicular peritubular cells. The data presented indicate that laminin becomes detectable on the free surfaces of Sertoli cells only after reaggregation of Sertoli cells begins, coincident with the initiation of repolarization at a specific stage of the morphogenetic cascade. We infer that laminin deposited at this time serves as a cohesion molecule that permits peritubular cells to come into close contact with Sertoli cells and subsequently to spread along the free surfaces of Sertoli cells. These conclusions and inferences are based on the following experiments. Cycloheximide-treated peritubular cells in culture in MEM containing cycloheximide readily attach to laminin-coated polystyrene surfaces. By contrast, added peritubular cells do not attach onto monolayers of Sertoli cells in monoculture or onto Sertoli cells plated on top of peritubular cells and maintained in coculture for periods of up to 48 h in cocultures maintained for 6 days, however, labeled peritbular cells readily adhere to the free surfaces of reaggregated Sertoli cells. Laminin, but not fibronectin, appears on the free surfaces of the reaggregated Sertoli cells atthis time, coinciding with the period of initial mound formation. The addition of antilaminin IgG, but not antifibronectin IgG, blocks the attachment of cycloheximide-treated peritubular cells to laminin-coated plates and also blocks the subsequent migration of peritubular cells required to form a monolayer. Similarly, anti-laminin IgG inhibits the attachment and spreading of labeled peritubular cells seeded on the free surfaces of reaggregated Sertoli cells in mounds generated during the morphogenetic cascade. We interpret the combined data to indicate that the appearance of laminin on the free surfaces of Sertoli cells is required to permit peritubular cells to adhere and subsequently to migrate on Sertoli cell surfaces, resulting in the formation of a tubule-like structure. © 1994 Wiley-Liss, Inc.  相似文献   

16.
The potential role of transforming growth factor beta (TGF beta) as a mediator of cell-cell interactions within the seminiferous tubule was investigated through an examination of the local production and action of TGF beta. Sertoli cells and peritubular (myoid) cells were isolated and cultured under serum-free conditions. Secreted proteins from Sertoli cells and peritubular cells were found to contain a component that bound to TGF beta receptors in RRA. Reverse-phase chromatography of Sertoli cell and peritubular cell secreted proteins fractionated a protein with similar biochemical properties as TGF beta 1. This fractionated protein also contained TGF beta bioactivity in its ability to inhibit growth of an epidermal growth factor-dependent cell line. Both peritubular cells and Sertoli cells contained a 2.4 kilobase mRNA species that hybridized in a Northern blot analysis with a TGF beta 1 cDNA probe. TGF beta 1 gene expression was not detected in freshly isolated germ cells. TGF beta 1 alone was not found to influence Sertoli cell nor peritubular cell proliferation with cells isolated from a midpubertal stage of development. The effects of hormones and TGF beta on Sertoli cell differentiation and function were assessed through an examination of transferrin production by Sertoli cells. TGF beta 1 had no effect on transferrin production nor the ability of hormones to influence transferrin production. The presence of peritubular cells in a coculture with Sertoli cells also did not affect the inability of TGF beta 1 to act on Sertoli cells. Although Sertoli cell function did not appear to be influenced by TGF beta 1, peritubular cells responded to TGF beta 1 through an increase in the production of a number of radiolabeled secreted proteins. TGF beta 1 also had relatively rapid effects on peritubular cell migration and the promotion of colony formation in culture. Cocultures of Sertoli cells and peritubular cells responded to TGF beta 1 by the formation of large cell clusters with ball-like structures. Data indicate that TGF beta may have an important role in influencing the differentiation and migration of peritubular cells. Observations demonstrate the local production of TGF beta within the seminiferous tubule by Sertoli cells and peritubular cells and suggest that TGF beta may have a role as a paracrine-autocrine factor involved in the maintenance of testicular function.  相似文献   

17.
In the testis, FSH has been shown to induce the expression and secretion of tissue inhibitor of metalloproteinases-1 (TIMP-1) from Sertoli cells in vitro. This study was performed to elucidate further the cellular origin of testicular TIMP-1 and its expression by hormonal and paracrine factors. This is the first report on the expression of testicular TIMP-1 in vivo. TIMP-1 mRNA in whole testis was decreased after hypophysectomy and strongly increased by the injection of FSH-S17 to hypophysectomized rats. Primary cultures of both peritubular and Sertoli cells showed basal expression of TIMP-1 mRNA. In contrast, we were unable to detect TIMP-1 mRNA in Leydig cells, freshly isolated immature germ cells (primary spermatocytes and spermatids), or residual bodies. We further show that treatment of Sertoli cells with 8-(4-chlorophenyl)thio-cAMP (8-CPTcAMP) in combination with 12-O-tetradecanoylphorbol 13-acetate (TPA) or Ca(2+) inducers (calcium ionophore A23187 or thapsigargin) had additive (TPA) and synergistic effects (Ca(2+)) on the level of TIMP-1 mRNA and secreted protein. We also show that both the level of TIMP-1 mRNA and secreted protein from Sertoli cells were strongly increased by residual bodies, as well as by the cytokine interleukin-1alpha. TIMP-1 was not up-regulated by either 8-CPTcAMP or interleukin-1alpha in peritubular cells. In contrast to the regulated secretory fraction of TIMP-1, we also detected constitutively expressed immunoreactive TIMP-1 in the nucleus of Sertoli cells, suggesting a role of nuclear TIMP-1 in these cells. In conclusion, our data show that secretion of TIMP-1 from Sertoli cells is highly regulated by hormonal and local processes in the testis, indicating that TIMP-1 is of physiological importance during both testicular development and spermatogenesis.  相似文献   

18.
19.
In the testis, interactions between peritubular cells (mesenchyme) and Sertoli cells (epithelium), together with proteolytic remodeling of the extracellular matrix, may play a central role in testicular development, morphogenesis, and spermatogenesis. In this study we demonstrate that a metalloproteinase of 72 kDa present in rat Sertoli cell and Sertoli-peritubular cell coculture medium is activated by p-aminophenylmercuric acetate (p-APMA) to a lower molecular mass form, indicating that it is likely to be a latent collagenase. Immunoblots using antibodies to three different domains of type IV collagenase show that the 72-kDa protease and a 76-kDa protease are type IV pro-collagenases. Sertoli cells cultured alone produce basal levels of type IV collagenase that can be immunolocalized in the cytoplasm of cultured cells. Peritubular cells cultured alone produce much less type IV collagenase. However, Sertoli and peritubular cells in coculture do produce type IV pro-collagenase, and in cultures consisting predominantly of peritubular cells, the activated form of type IV collagenase was detected by both zymography and immunoblotting. Cells growing during the transitional phase (from cell attachment to confluence) secrete more metalloproteinases than during the confluent phase. In contrast, plasminogen activator levels are unaffected by time in culture. These results show that rat testicular cells in culture produce and secrete type IV collagenase, and that the secretion and activation of this enzyme and other metalloproteases is regulated by the ratio of mesenchymal cells to epithelial cells and time in culture.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号