首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inactivation of four micromycete species by action of non-thermal plasma was followed. Two sources of plasma were compared, namely, positive corona discharge and dielectric barrier discharge. The corona discharge appeared as suitable for fungal spore inactivation in water suspension, whereas the barrier discharge inactivated spores on the surface of cultivation agar. Cladosporium sphaerospermum was the most sensitive, being inactivated within 10 min of exposure to plasma, whereas Aspergillus oryzae displayed decrease in viable cell count only, the complete inactivation was not achieved even after 40 min of exposure. Intermediate sensitivity was found for Alternaria sp. and Byssochlamys nivea. The significant delay of growth was observed for all fungi after exposure to sublethal dose of plasma, but we failed to express this effect quantitatively.  相似文献   

2.
Unique patterns of biomarkers were reproducibly characterized by matrix-assisted laser desorption ionization (MALDI)-mass spectrometry and were used to distinguish Bacillus species members from one another. Discrimination at the strain level was demonstrated for Bacillus cereus spores. Lipophilic biomarkers were invariant in Bacillus globigii spores produced in three different media and in B. globigii spores stored for more than 30 years. The sensitivity was less than 5,000 cells deposited for analysis. Protein biomarkers were also characterized by MALDI analysis by using spores treated briefly with corona plasma discharge. Protein biomarkers were readily desorbed following this treatment. The effect of corona plasma discharge on the spores was examined.  相似文献   

3.
Plasma-activated water (PAW) was prepared by exposure to nonthermal plasma produced by a positive dc corona discharge in a transient spark regime. The activation of water was performed in atmosphere of various surrounding gases (air, nitrogen, carbon dioxide, and argon). This PAW retains its biological activity, measured on the mouse neuroblastoma cells culture, even after storage for more than one year. The highest hydrogen peroxide content was found for PAWs prepared in the atmospheres of argon or carbon dioxide, whereas the PAWs prepared in air and nitrogen exhibited lower hydrogen peroxide content. The acidity of PAWs mediated by nitric and nitrous acid formation displayed an opposite trend. It is concluded that the long-lasting biological effect of PAW is mediated by hydrogen peroxide in acid milieu only, whereas other possible active components decompose rapidly.  相似文献   

4.
Inactivation of spores of Bacillus subtilis (ATCC 6633) on two different grades of cellulose filter paper (Whatman Grades 2 and 6), by ultraviolet light (u.v.), at an intensity of approximately 4·5 Wm−2 and at fluences of up to 2 × 103 Jm−2, and u.v. in the presence of hydrogen peroxide, is described in terms of multi-target and single hit–single target kinetic expressions. Wet spores were inactivated at rates ranging from 6·7 to 10·6 higher than that of dry spores on both grades of filter paper. In addition, spore inactivation was up to 5·6 times more rapid on Grade 2 filter paper. Synergistic inactivation was seen to occur when spores were irradiated in the presence of 1% (w/v) hydrogen peroxide with rates up to 5·3 times higher than with treatment solely by u.v. The results obtained are discussed in general terms with particular reference to surface characteristics which might provide shielding to micro-organisms from incident u.v. light.  相似文献   

5.
Unique patterns of biomarkers were reproducibly characterized by matrix-assisted laser desorption ionization (MALDI)–mass spectrometry and were used to distinguish Bacillus species members from one another. Discrimination at the strain level was demonstrated for Bacillus cereus spores. Lipophilic biomarkers were invariant in Bacillus globigii spores produced in three different media and in B. globigii spores stored for more than 30 years. The sensitivity was less than 5,000 cells deposited for analysis. Protein biomarkers were also characterized by MALDI analysis by using spores treated briefly with corona plasma discharge. Protein biomarkers were readily desorbed following this treatment. The effect of corona plasma discharge on the spores was examined.  相似文献   

6.
Aims:  Escherichia coli and Bacillus subtilis spores were treated with an atmospheric plasma mixture created by the ionization of helium and oxygen to investigate the inactivation efficiency of a low-temperature plasma below 70°C.
Methods and results:  An electrical discharge plasma was produced at a radio frequency (RF) of 13·56 MHz, connected to a perforated circular electrode with a discharge spacing of 1–15 mm. The discharge gas was helium with 0–2% oxygen. For the plasma treatment, a dried E. coli cell or B. subtilis endospore suspension on a cover-glass was exposed to oxygen downstream of the plasma from holes in an RF-powered electrode. The sterilization effect of the RF plasma was highest with 0·2% oxygen, corresponding to the maximum production of oxygen radicals.
Conclusions:  Oxygen radicals generated by RF plasma are effective for the destruction of bacterial cells and endospores.
Significance and Impact of the study:  Low-temperature atmospheric plasma can be used for the disinfection of diverse objects, especially for the inactivation of bacterial endospores.  相似文献   

7.
The effect of hydrogen peroxide on spores of Clostridium bifermentans.   总被引:9,自引:0,他引:9  
The effect of hydrogen peroxide on the germination, colony formation and structure of spores of Clostridium bifermentans was examined. Treatment with 0.35 M-hydrogen peroxide increased the germination rate at 25 degrees C but increasing the temperature or concentration of hydrogen peroxide decreased both the germination rate and colony formation. The presence of Cu2+ increased the lethal effect of hydrogen peroxide on colony formation as much as 3000-fold. Pre-incubation of spores with Cu2+ before treatment with hydrogen peroxide produced a similar increase, but this could be eliminated by washing the spores with dilute spores--apparently from the coat--and treatment with dithiothreitol, which also removes spore-coat protein, increased the lethal effect of hydrogen peroxide 500-fold, suggesting that spore-coat protein has a protective effect against hydrogen peroxide.  相似文献   

8.
Biocide inactivation of Bacillus anthracis spores in the presence of food residues after a 10-min treatment time was investigated. Spores of nonvirulent Bacillus anthracis strains 7702, ANR-1, and 9131 were mixed with water, flour paste, whole milk, or egg yolk emulsion and dried onto stainless-steel carriers. The carriers were exposed to various concentrations of peroxyacetic acid, sodium hypochlorite (NaOCl), or hydrogen peroxide (H(2)O(2)) for 10 min at 10, 20, or 30 degrees C, after which time the survivors were quantified. The relationship between peroxyacetic acid concentration, H(2)O(2) concentration, and spore inactivation followed a sigmoid curve that was accurately described using a four-parameter logistic model. At 20 degrees C, the minimum concentrations of peroxyacetic acid, H(2)O(2), and NaOCl (as total available chlorine) predicted to inactivate 6 log(10) CFU of B. anthracis spores with no food residue present were 1.05, 23.0, and 0.78%, respectively. At 10 degrees C, sodium hypochlorite at 5% total available chlorine did not inactivate more than 4 log(10) CFU. The presence of the food residues had only a minimal effect on peroxyacetic acid and H(2)O(2) sporicidal efficacy, but the efficacy of sodium hypochlorite was markedly inhibited by whole-milk and egg yolk residues. Sodium hypochlorite at 5% total available chlorine provided no greater than a 2-log(10) CFU reduction when spores were in the presence of egg yolk residue. This research provides new information regarding the usefulness of peroxygen biocides for B. anthracis spore inactivation when food residue is present. This work also provides guidance for adjusting decontamination procedures for food-soiled and cold surfaces.  相似文献   

9.
Bacterial and fungal spore contamination in different industries has a greater economic impact. Because of the remarkable resistance of spores to most physical and chemical microbicidal agents, their inactivation need special attention during sterilization processes. Heat and chemical sporicides are not always well suited for different sterilization/decontamination applications and carries inherent risks. In recent years, novel nonthermal agents including nonthermal plasmas are emerging as effective sporicides against a broad spectrum of bacterial and fungal spores. The present review discusses various aspects related to the inactivation of spores using nonthermal plasmas. Different types of both low pressure plasmas (e.g., capacitively coupled plasma and microwave plasma) and atmospheric pressure plasmas (e.g., dielectric barrier discharges, corona discharges, arc discharges, radio-frequency-driven plasma jet) have been successfully applied to destroy spores of economic significance. Plasma agents contributing to sporicidal activity and their mode of action in inactivation are discussed. In addition, information on factors that affect the sporicidal action of nonthermal plasmas is included.  相似文献   

10.
Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O2) injected and hydrogen peroxide (H2O2) added discharge in water was achieved. The effect of H2O2 dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H2O2 addition with O2 injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH?, H, and O). Interestingly, the results demonstrated that O2 injected and H2O2 added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.  相似文献   

11.
The effect of electroporation (very short duration pulses of high voltage electricity) on the viability of Giardia cysts and Cryptosporidium oocysts, and on the viability of these organisms in the presence of free chlorine, combined chlorine, hydrogen peroxide and potassium permanganate, was examined. While electroporation itself had only a minor effect on survival, the combination of electrical and chemical treatment produced superior inactivation, particularly with combined chlorine, hydrogen peroxide and potassium permanganate. This enhancement may provide a relatively practical way of achieving enhanced inactivation of resistant protozoa by water disinfection processes. Further study of kinetics and optimum treatment combinations is needed.  相似文献   

12.
The fungicidal effect of low-temperature plasma generated by positive direct current discharge and its influence on the growth dynamics was evaluated on three micromycete species and yeast in water suspensions. The fungicidal effect was lower than analogous bactericidal effect and differs substantially among various fungal species. Together with the cidal effects, the slower growth of exposed fungal spores was observed.  相似文献   

13.
Only a single superoxide dismutase (SodA) was detected in Bacillus subtilis, and growing cells of a sodA mutant exhibited paraquat sensitivity as well as a growth defect and reduced survival at an elevated temperature. However, the sodA mutation had no effect on the heat or hydrogen peroxide resistance of wild-type spores or spores lacking the two major DNA protective alpha/beta-type small, acid-soluble, spore proteins (termed alpha(-)beta(-) spores). Spores also had only a single catalase (KatX), as the two catalases found in growing cells (KatA and KatB) were absent. While a katA mutation greatly decreased the hydrogen peroxide resistance of growing cells, as found previously, katA, katB, and katX mutations had no effect on the heat or hydrogen peroxide resistance of wild-type or alpha(-)beta(-) spores. Inactivation of the mrgA gene, which codes for a DNA-binding protein that can protect growing cells against hydrogen peroxide, also had no effect on spore hydrogen peroxide resistance. Inactivation of genes coding for alkyl hydroperoxide reductase, which has been shown to decrease growing cell resistance to alkyl hydroperoxides, had no effect on spore resistance to such compounds or on spore resistance to heat and hydrogen peroxide. However, Western blot analysis showed that at least one alkyl hydroperoxide reductase subunit was present in spores. Together these results indicate that proteins that play a role in the resistance of growing cells to oxidizing agents play no role in spore resistance. A likely reason for this lack of a protective role for spore enzymes is the inactivity of enzymes within the dormant spore.  相似文献   

14.
Results are presented from experiments on the generation of a low-temperature nonequilibrium plasma in atmospheric-pressure heterophase gas-liquid media of different compositions: (i) a liquid with air bubbles and (ii) air with liquid aerosol. To illustrate possible application of a low-temperature plasma in a heterophase medium, experiments on the inactivation of some microorganisms by a low-temperature plasma have been performed.  相似文献   

15.
Xanthine oxidase inactivation by reagents that modify thiol groups   总被引:1,自引:1,他引:0  
1. The presence of xanthine was required for the inhibition of bovine milk xanthine oxidase by o-iodosobenzoate, iodoacetamide, hydrogen peroxide or p-chloromercuribenzoate. 2. Inactivation by p-chloromercuribenzoate was very rapid, was reversed by cysteine and was less in the presence of FAD. Lineweaver-Burk plots showed that the inactivation by p-chloromercuribenzoate was competitive with substrate. 3. Inactivation by o-iodosobenzoate, iodoacetamide or hydrogen peroxide could not be reversed by cysteine or xanthine. However, the presence of xanthine during the incubation with inhibitor protected the enzyme against o-iodosobenzoate but not against iodoacetamide or hydrogen peroxide. 4. p-Chloromercuribenzoate protected the enzyme against inactivation by hydrogen peroxide.  相似文献   

16.
AIMS: To determine the mechanism of killing of Bacillus subtilis spores by hydrogen peroxide. METHODS AND RESULTS: Killing of spores of B. subtilis with hydrogen peroxide caused no release of dipicolinic acid (DPA) and hydrogen peroxide-killed spores were not appreciably sensitized for DPA release upon a subsequent heat treatment. Hydrogen peroxide-killed spores appeared to initiate germination normally, released DPA and hydrolysed significant amounts of their cortex. However, the germinated killed spores did not swell, did not accumulate ATP or reduced flavin mononucleotide and the cores of these germinated spores were not accessible to nucleic acid stains. CONCLUSIONS: These data indicate that treatment with hydrogen peroxide results in spores in which the core cannot swell properly during spore germination. SIGNIFICANCE AND IMPACT OF THE STUDY: The results provide further information on the mechanism of killing of spores of Bacillus species by hydrogen peroxide.  相似文献   

17.
Aims: To determine if pretreatment with oxidizing agents sensitizes Bacillus subtilis spores to dry heat or desiccation. Methods: Bacillus subtilis spores were killed approx. 90% by oxidizing agents, and the sensitivity of treated and untreated spores to dry heat and desiccation was determined. The effects of pyruvate on spore recovery after oxidizing agent pretreatment and then dry heat or desiccation were also determined. Conclusions: Spores pretreated with Oxone? or hypochlorite were not sensitized to dry heat or freeze‐drying. However, hydrogen peroxide or t‐butylhydroperoxide pretreatment sensitized spores to dry heat or desiccation, and the desiccation caused mutagenesis in the survivors. Pyruvate increased recovery of spores treated with hydrogen peroxide alone or plus dry heat or desiccation, and with t‐butylhydroperoxide and desiccation, but not with t‐butylhydroperoxide alone or plus dry heat. Significance and Impact of the Study: Pretreatment with peroxides sensitizes bacterial spores to subsequent stress. This finding may suggest improved regimens for spore inactivation.  相似文献   

18.
AIMS: To investigate the cause and to eliminate the inactivation of Bacillus anthracis strain Sterne spores settled onto agar and stainless steel surfaces in plastic holders. METHODS AND RESULTS: In an experimental chamber in which spores settled onto sampling surfaces, vapourous hydrogen peroxide (VHP) was used for decontamination between experiments. It was demonstrated that hydrogen peroxide (H(2)O(2)) absorbed into plastic (Plexiglas) surfaces and could outgas in the sample holders. Further experiments demonstrated that H(2)O(2) was released from Plexiglas sample holders in sufficient quantity to inactivate spores. High temperature degassing (30-35 degrees C) for several days or aluminum coating of the surfaces were two remedies found to be effective in preventing inadvertent spore inactivation. CONCLUSIONS: H(2)O(2) can be absorbed into plastic and released after an extended period of time (weeks), allowing a sufficient concentration to accumulate in small volumes to inactivate spores. Outgassing the plastic or coating the surface with an impermeable layer are potential solutions to reduce spore inactivation. SIGNIFICANCE AND IMPACT OF THE STUDY: Many studies with bacilli and other organisms are carried out using small plastic containers that may have been sterilized using H(2)O(2) or other agents. This study presents a cautionary note to ensure elimination of H(2)O(2) or other sterilizing agents to prevent spurious results.  相似文献   

19.
Human leukocytes stimulated by opsonized zymosan increase their NADPH oxidase-catalysed reduction of molecular oxygen. This leads to enhanced formation of superoxyl radicals and subsequently hydrogen peroxide. The leukocyte enzyme myeloperoxidase generates the strong microbicidal oxidant hypochlorite from hydrogen peroxide and chloride anions. Hypochlorite inactivates serum alpha 1-proteinase inhibitor, a protein which protects host tissue from digestion by proteinases, that are also secreted by stimulated leukocytes. Micromolar concentrations of a water-soluble, quaternary ammonium analogue of alpha-tocopherol (vitamin E) (3,4-dihydro-6-hydroxy-N,N,N-2,5,7,8-heptamethyl-2H-1-benzopyran-2 -ethanaminium 4-methylbenzenesulfonate) and its tertiary amine derivative (3,4-dihydro-2- (2-dimethylaminoethyl)-2,5,7,8-tetramethyl-2H-1-benzopyran-6-ol hydrochloride) were able to protect alpha 1-proteinase inhibitor from inactivation by stimulated human leukocytes. The mechanism of action of the quaternary ammonium analogue was further investigated. Selective inhibition of hydrogen peroxide formation is assumed to be the reason for its protective effect. This compound rapidly reacts with superoxyl radicals, but not with hydrogen peroxide, and is only a weak hypochlorite scavenger. It neither impedes exocytosis of elastase, nor effectively inhibits NADPH oxidase or myeloperoxidase. In contrast, superoxide dismutase, which enhances hydrogen peroxide formation, cannot protect alpha 1-proteinase inhibitor from inactivation.  相似文献   

20.
Proteomics data have suggested ascorbate peroxidase (APX) to be a potential thioredoxin-interacting protein. Using recombinant enzymes, we observed that incubation of pea cytosolic APX with reduced poplar thioredoxins h drastically inactivated the peroxidase. A similar inactivation is induced by reduced glutathione and dithiothreitol, whereas diamide and oxidized glutathione have no effect. Oxygen consumption measurements, modifications of the APX visible spectrum and protection by hydrogen peroxide scavenging enzymes suggest that APX oxidizes thiols leading to the generation of thiyl radicals. These radicals can in turn react with thiyl anions to produce the disulfide radical anions, which are responsible for oxygen reduction and subsequent hydrogen peroxide production. The APX inactivation is not due solely to hydrogen peroxide since fluorimetry indicates that the environment of the APX tryptophan residues is dramatically modified only in the presence of thiol groups. The physiological implications of this interaction are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号