首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oocytes and their companion somatic cells maintain a close association throughout oogenesis and this association is essential for normal oocyte and follicular development. This review summarizes current concepts of the role of the somatic cells in the regulation of mammalian oocyte growth, the maintenance of meiotic arrest, the induction of oocyte maturation, and the acquisition of full embryonic developmental competence during oocyte maturation in vitro. Gap junctions appear to mediate these regulatory processes. The regulatory interaction of oocytes and somatic cells, however, is not unidirectional; the oocyte participates in the proliferation, development, and function of the follicular somatic cells. The oocyte secretes factors that enable the cumulus cells to synthesize hyaluronic acid and undergo cumulus expansion in response to hormonal stimulation. In addition, the oocyte produces factors that promote the proliferation of granulosa cells. These interactions in vitro do not appear to require the mediation of gap junctions. The oocyte also promotes the differentiation of granulosa cells into functional cumulus cells, but this function of the oocyte appears to require the continued presence and close association of the oocyte and granulosa cells. Therefore, oocytes and follicular somatic cells are interdependent for development and function.  相似文献   

2.
Summary The ultrastructure of the follicle cells during previtellogenesis and early vitellogenesis have been studied. In previtellogenesis follicle cells are columnar with numerous bundles of microtubules located along the lateral plasma membranes. Oocyte-follicle cell gap junctions are not found in this stage. At the onset of vitellogenesis, the bundles of microtubules disappear and are replaced by an apically located ring of microtubules. The modification of microtubular cytoskeleton is not followed by the development of intercellular spaces between the follicle cells. Concurrently, numerous gap junctions are formed between specialized follicle cell processes and oocyte microvilli, which are arranged in characteristic cone-shaped aggregations. It is suggested that cytoskeletal changes and formation of heterologous gap junctions, occurring at the onset of vitellogenesis, are induced by juvenile hormone.  相似文献   

3.
Summary Oocyte-follicle cell gap junctions inTribolium occur in all oogenetic stages studied. During early previtellogenesis the junctions are found exclusively between lateral membranes of oocyte microvilli and the membrane of prefollicle cells. In late previtellogenesis and vitellogenesis the junctions are located between the tips of oocyte microvilli and the flat membranes of the follicle cells. During previtellogenesis gap junctions are infrequent, whereas in the phase of yolk accumulation their number increases considerably, exceeding 17 junctions/m2 of the follicle cell membrane. It could be shown by microinjection of a fluorescent dye that gap junctions are in a functional state during vitellogenesis. Possible roles of heterologous gap junctions in oogenesis are discussed.  相似文献   

4.
The relatively undifferentiated cells comprising the prefollicular epithelium of the fourth and fifth instar of the reduvid bug Rhodninus prolixus are flattened and contain the regularly occurring organelles, lipid droplets, and aggregates of glycogen-like particles. These cells transform into the adult prefollicular tissue. During vitellogenesis there is a gradual shortening of the cells of the follicular epithelium and an increase in the size of the intercellular space between them and between follicle cells and oocyte. The follicle cells are binucleate, contain numerous microtubules, rough endoplasmic reticulum, many free and aggregate ribosomes, and Golgi complexes. They are associated with each other by gap junctions. Only the follicle cells on the lateral aspects of the oocyte exhibit the development of large extracellular spaces while those at the apical end, that produces the cap, remain tall and closely apposed to each other during vitellogenesis. The normal morphology of the follicle cells over various areas of the oocyte suggests that shape and/or volume changes of these cell may be important in regulating the access of yolk proteins to the colemma. Subsequent to vitellogenesis the follicle cells become cuboidal and once again become closely apposed to each other. They contain much rough endoplasmic reticulum and produce the secondary coat.  相似文献   

5.
Each oocyte in the ovary of Acerentomon is surrounded by a layer of follicle cells (FC) and possesses a group of specialized, so-called chorion-producing cells (CPC). The FCs lying immediately under the CPCs form processes which make contact with the oocyte. Gap junctions occur at the points of contact between the oolemma and the membrane of the processes. A possible role of the heterocellular gap junctions in Acerentomon ovary is the coordination of development of the oocyte and CPCs.  相似文献   

6.
An ovarian follicle of Drosophila consists of an oocyte, 15 nurse cells, and hundreds of follicular epithelial cells. A freeze-fracture analysis of the surfaces between glutaraldehyde-fixed ovarian cells showed that all three cell types were interconnected by gap junctions. This is the first report of gap junctions between adjacent nurse cells, between nurse cells and oocytes, and between follicle cells and oocytes in Drosophila. Since we did not observe intramembranous particle clumping into crystalline patterns and since structurally different gap junctions occurred at different times in development and at different cell-cell interfaces, it is unlikely that fixation artifacts influenced particle distribution in our experiments. A computer-assisted morphometric analysis showed that the extent, size, and morphology of gap junctions varied with development and that these junctions can cover up to 9% of the cell surfaces. To test the role of gap junctions in follicular maturation, we studied ovaries from flies homozygous for the female sterile mutation fs(2)A17, in which follicles develop normally until yolk deposition commences. During the development of mutant follicles, gap junctions became abnormal before any other morphological aspect of the follicle. These studies show that gap junctions are available to play an important role in coordinating intercellular activities between all three cell types in ovarian follicles of Drosophila.  相似文献   

7.
Summary In telotrophic insect ovaries, the oocytes develop in association with two kinds of supporting cells. Each ovary contains five to seven ovarioles. An ovariole consists of a single strand of several oocytes. At the apex of each ovariole is a syncytium of nurse cells (the tropharium), which connects by strands of cytoplasm (the trophic cords) to four or more previtellogenic oocytes. In addition, each oocyte is surrounded by an epithelium of follicle cells, with which it may form gap junctions. To study the temporal and spatial patterns of these associations, Lucifer yellow was microinjected into ovaries of the red cotton bug, Dysdercus intermedius. Freeze-fracture replicas were examined to analyze the distribution of gap junctions between the oocyte and the follicle cells. Dye-coupling between oocytes and follicle cells was detectable early in previtellogenesis and was maintained through late vitellogenesis. It was restricted to the lateral follicle cells. The anterior and posterior follicle cells were not dye-coupled. Freeze-fracture analysis showed microvilli formed by the oocyte during mid-previtellogenesis, and the gap junctions became located at the tips of these. As the microvilli continued to elongate until late vitellogenesis, gap junction particles between them and follicle cell membranes became arranged in long arrays. The morphological findings raise questions about pathways for the intrafollicular phase of the ion currents known to surround the previtellogenic and vitellogenic growth zones of the ovariole.Supported by the Deutsche Forschungsgemeinschaft (Schwerpunkt Differenzierung)  相似文献   

8.
9.
Most research on the control of oocyte maturation by luteinizing hormone (LH) in teleosts and amphibians has focused on the production and action of maturation-inducing hormone (MIH), the follicular hormone that directly triggers the resumption of oocyte meiosis. However, current information indicates that LH regulates maturation in two stages, and that 'oocyte maturation' can be appropriately described within the broader context of 'ovarian follicle maturation'. During the first stage of maturation the follicle (somatic) cells acquire the ability to produce MIH and the oocyte to respond to MIH (i.e. oocyte maturational competence, OMC), whereas in the second stage the follicle cells produce MIH and, consequently, the oocyte is released from meiotic arrest. A number of factors such as insulin-like growth factor-I, serotonin, and others may mediate or modulate the OMC-inducing action of LH. Like the acquisition of MIH-producing ability, the acquisition of OMC requires activation of the protein kinase A pathway. Two major cellular events associated with OMC acquisition are increases in homologous and heterologous gap junction contacts and in oocyte MIH receptor activity. The increased oocyte MIH receptor activity is presumably associated with OMC acquisition, but the significance of changes in gap junction contacts is at present uncertain. To eliminate inconsistency and ambiguity associated with current terminology we propose that the term, ovarian follicle (or oocyte) maturation be used for teleosts without qualifiers such as 'final' to define the first and second stages of follicular maturation.  相似文献   

10.
It has been demonstrated in Bufo arenarum that fully grown oocytes are capable of meiotic resumption in the absence of a hormonal stimulus if they are deprived of their follicular envelopes. This event, called spontaneous maturation, only takes place in oocytes collected during the reproductive period, which have a metabolically mature cytoplasm. In Bufo arenarum, progesterone acts on the oocyte surface and causes modifications in the activities of important enzymes, such as a decrease in the activity of adenylate cyclase (AC) and the activation of phospholipase C (PLC). PLC activation leads to the formation of diacylglycerol (DAG) and inositol triphosphate (IP(3)), second messengers that activate protein kinase C (PKC) and cause an increase in intracellular Ca(2+). Recent data obtained from Bufo arenarum show that progesterone-induced maturation causes significant modifications in the level and composition of neutral lipids and phospholipids of whole fully grown ovarian oocytes and of enriched fractions in the plasma membrane. In amphibians, the luteinizing hormone (LH) is responsible for meiosis resumption through the induction of progesterone production by follicular cells. The aim of this work was to study the importance of gap junctions in the spontaneous and LH-induced maturation in Bufo arenarum oocytes. During the reproductive period, Bufo arenarum oocytes are capable of undergoing spontaneous maturation in a similar way to mammalian oocytes while, during the non-reproductive period, they exhibit the behaviour that is characteristic of amphibian oocytes, requiring progesterone stimulation for meiotic resumption (incapable oocytes). This different ability to mature spontaneously is coincident with differences in the amount and composition of the phospholipids in the oocyte membranes. Capable oocytes exhibit in their membranes higher quantities of phospholipids than incapable oocytes, especially of PC and PI, which are precursors of second messengers such as DAG and IP(3). The uncoupling of the gap junctions with 1-octanol or halothane fails to induce maturation in follicles from the non-reproductive period, whose oocytes are incapable of maturing spontaneously. However, if the treatment is performed during the reproductive period, with oocytes capable of undergoing spontaneous maturation, meiosis resumption occurs in high percentages, similar to those obtained by manual defolliculation. Interestingly, results show that LH is capable of inducing GVBD in both incapable oocytes and in oocytes capable of maturing spontaneously as long as follicle cells are present, which would imply the need for a communication pathway between the oocyte and the follicle cells. This possibility was analysed by combining LH treatment with uncoupling agents such as 1-octanol or halothane. Results show that maturation induction with LH requires a cell-cell coupling, as the uncoupling of the gap junctions decreases GVBD percentages. Experiments with LH in the presence of heparin, BAPTA/AM and theophylline suggest that the hormone could induce GVBD by means of the passage of IP(3) or Ca(2+) through the gap junctions, which would increase the Ca(2+) level in the oocyte cytoplasm and activate phosphodiesterase (PDE), thus contributing to the decrease in cAMP levels and allowing meiosis resumption.  相似文献   

11.
Previous studies have indicated that pituitary-initiated oocyte maturation in the amphibian is mediated by steroidogenesis in the somatic portion of the follicle. This study compares the ability of (1) oocytes surrounded by a single layer of follicle cells, (2) denuded oocytes, and (3) isolated follicle cells to metabolize Δ5-pregnenolone, the common precursor of the steroids. Use of radiolabeled compounds demonstrates that the conversion of Δ5-pregnenolone to progesterone is confined to the follicle cells, while further reduction of progesterone takes place in the oocyte. The follicle cells also convert Δ5-pregnenolone to a form more potent in inducing meiotic maturation. Thus, the behavior of follicle cells in isolation is consistent with the suggested site of pituitary action leading to meiotic maturation as proposed by an earlier theory.  相似文献   

12.
Morphological changes of the oocyte, follicle cells and nurse cells of the ovaries of the viviparous fly Glossina austeni during vitellogenesis and postvitellogenesis are outlined. During vitellogenesis, material is pinocytosed and incorporated into yolk spheres by subsequent fusions. Various lines of evidence are presented that indicate much of this material is derived from the follicular epithelium. The ultrastructure of the follicular cells throughout the 9 day cycle and their role in protein synthesis is presented. Subsequent to vitellogenesis, the follicle cells synthesize the secondary envelopes.  相似文献   

13.
Treatment of isolated amphibian ovarian follicles with frog pituitary homogenate (FPH) increases follicular progesterone levels, which, in turn, initiate oocyte maturation. Recent studies have demonstrated that follicular progesterone production requires concomitant protein synthesis at some stage preceding pregnenolone formation. Experiments were carried out to determine whether cholesterol metabolism plays a role in mediating these biochemical and physiological processes. Aminoglutethimide (AGI, and inhibitor of P450 side-chain cleavage enzyme) inhibited FPH-induced intrafollicular progesterone accumulation and oocyte maturation (or germinal vesicle breakdown, GVBD) in a dose-dependent manner. Follicular progesterone accumulation and GVBD were both stimulated, in the absence of FPH, after addition of 25-OH-cholesterol, but not cholesterol, to the culture medium. Higher levels of progesterone were present in defolliculated oocytes as compared to intact ovarian follicles after incubation with 25-OH-cholesterol. The results indicate that the surface epithelium and theca layer in the follicle wall retard 25-OH-cholesterol access to steroid-producing follicle cells. AGI blocked 25-OH-cholesterol-induced accumulation of progesterone and GVBD in defolliculated oocytes, suggesting that 25-OH-cholesterol does not directly induce GVBD and is metabolized by the follicle cells. The capacity of follicles to accumulate progesterone following preincubation with FPH or 25-OH-cholesterol along with AGI was compared. Intrafollicular levels of progesterone increased after AGI- and 25-OH-cholesterol-treated follicles were washed. In contrast, progesterone levels decreased in follicles pretreated with AGI and FPH after washing. The results indicate that considerable 25-OH-cholesterol, but not endogenous cholesterol (FPH stimulation), remains available for steroidogenesis after removal of AGI. A significant, but incomplete, inhibition of progesterone accumulation occurred when follicles were incubated in the presence of 25-OH-cholesterol and cycloheximide. This partial blockage produced by the protein synthesis inhibitor indicates that some basal protein synthesis is required for progesterone accumulation from exogenous 25-OH-cholesterol. We conclude that intracellular cholesterol stores in the follicle wall are utilized to mediate FPH induction of progesterone accumulation and oocyte maturation in amphibian follicles.  相似文献   

14.
As a response to gonadotropin, amphibian ovarian follicles primarily synthesize and secrete estradiol-17 β (E2) during vitellogenesis and progesterone (P) when fully grown. Stage IV (vitellogenic) and stage VI (full-grown) ovarian follicles from Xenopus laevis, as well as intermediate sizes, were used to explore this change in steroidogenesis. Optimum steroidogenesis occurred in both stage IV and stage VI follicles exposed for 6 h to 20 IU human chorionic gonadotropin/mL. Although the total amounts of steroid found were about the same, the E2/P ratios ranged from 26 to 35 for intact stage IV follicles, but only 0.02–0.03 for intact stage VI follicles. Steroid-producing follicle cells were isolated from stage IV and stage VI follicles by non-enzymatic procedures, were washed and were tested for steroidogenic activity in the absence of oocytes. In both cases, P was the predominant steroid produced (E2/P = 0.004–0.04), so the presence of stage IV, but not stage VI, oocytes appears to be necessary for E2 production as a response to gonadotropin. Octanol had no significant effect on the E2/P ratio of intact stage IV follicles. Dissected oocyte/follicle cell preparations from stage IV follicles were also periodically challenged with gonadotropin over 72 h, during which time most follicle cells detached from the oocyte and formed a monolayer over the bottom of the culture dish. The relatively high E2/P ratios for such preparations showed no significant change when stimulated with gonadotropin at various times over the 72 h, as long as the medium was not replaced. We conclude that the estrogenic effect of stage IV oocytes is most likely mediated by a secretory product rather than by gap junctions or by cell contact. Because the X. laevis oocyte has been shown to be a self-differentiating cell, the steroidogenic shift that occurs in developing ovarian follicles appears to be fundamentally regulated by the growing oocyte as it undergoes a physiological change rather than by different gonadotropins.  相似文献   

15.
The cell contacts between follicle cells, and follicle cells and oocytes of egg-laying populations of Helisoma duryi and non-egg-laying populations of H. trivcolvis have been studied. Scanning electron microscopy reveals that four to six follicle cells envelop a single developing oocyte. Thin sections and lanthanum impregnations demonstrate apical zonulae adherentes followed by winding pleated-type septate junctions between follicle cells. Gap junctions and septate junctions have been found between follicle cells and vitellogenic oocytes. Freeze-fracture replicas show relatively wide sinuous rows of septate junctional particles, and nemerous large gap junctional particle aggregates on the P-face between vitellogenic oocytes and follicle cells. Septate and gap junctions between immature or nonvitellogenic oocytes and follicle cells are fewer compared to those in vitellogenic oocytes. Similarly, the junctional complexes are less developed in non-egg-laying H. trivolvis compared to those in egg-laying H. duryi. It is possible that intimate interaction between follicle cells and a developing oocyte is necessary for the maturation of the oocyte. The junctional complexes could be involved in the interaction of the follicle cells and the oocyte, and they must disassemble at the onset of ovulation. Rhombic particle arrays and nonjunctional ridges of particles have been found in the basal part of the oolemma.  相似文献   

16.
Oogenesis has been investigated utilizing both light and electron microscopical techniques in the squid, Loligo pealei. This complex process has been divided into five stages according to the structure of the follicle. Because of the highly coordinated differentiation of the follicle cells (and follicular syncytium) and the oocyte, their development is described in concert. Specific attention is given to the contribution of the follicular syncytium to vitellogenesis and the formation of the extracellular egg envelope or chorion. Our observations indicate heterosynthetic yolk production and the synthesis of the secondary envelope by the follicular syncytium.  相似文献   

17.
为了丰富拟目乌贼(Sepia lycidas)生物学资料, 为人工育苗与养殖提供理论依据, 采用解剖学和组织学的方法, 对水泥池养殖条件下拟目乌贼卵子发生和卵巢发育进行了研究。结果表明: 经过6个月水泥池养殖, 平均体重为256.34 g, 最大体重达到457.08 g, 个别发育成熟, 绝大部分未达性成熟。卵子发生不同步, 根据细胞形态、细胞大小、滤泡细胞形态和卵黄形成情况可分为卵原细胞阶段(卵原细胞期)、原生质生长阶段(无滤泡期、单层滤泡期和双层滤泡期)、间质生长阶段(滤泡内折早期、滤泡内折中期和滤泡内折晚期)和营养质生长阶段(卵黄发生早期、卵黄发生晚期和成熟期), 共4个阶段10个时期。卵巢发育根据外观形态、性腺指数变化和切面上各期细胞所占的比例, 可分为形成前期、形成期、小生长期、大生长期、成熟前期和成熟期6个时期。拟目乌贼繁殖周期为一年。    相似文献   

18.
Developing ovarian follicles of Bacillus rossius have been examined ultrastructurally in an attempt to understand how inception of vitel-logenesis is controlled. Early vitellogenic follicles are characterized by a thick cuboidal epithelium that is highly interlocked with the oocyte plasma membrane. Gap junctional contacts are present both at the follicle cell/oocyte interface and in between adjacent follicle cells. In addition, microvilli of follicle cells protrude deeply into the cortical ooplasm of these early vitellogenic oocytes. With the onset of vitellogenesis, wide intercellular spaces appear in the follicle cell epithelium and at the follicle cell/oocyte interface. Gap junctions become progressively reduced both on the follicle cell surface and on the oocyte plasma membrane. Microvilli from the two cell types no longer interlock. From a theoretical standpoint each of the two structural differentiations present at the follicle cell/oocyte interface—gap junctions and follicle cell microvilli—could potentially trigger inception of vitellogenesis. Gap junctions might permit the passage of a regulatory molecule, transferring from follicle cells to oocyte, which would control the assembly of coated pits on the oocyte plasma membrane. Alternatively cell interaction via microvilli might induce the appearance of coated pits, thus creating a membrane focus for vitellogenin receptors. Both possibilities are discussed in relation to current literature.  相似文献   

19.
Pituitary gonadotropins are believed to induce the somatic cell portion of the amphibian follicle to synthesize and release progesterone which, in turn, induces the resumption of the meiotic divisions in the follicular oocyte. We report here that pituitary extract, at concentrations that induce ovulation and meiosis, causes a rapid hyperpolarization of the follicular oocyte. A similar hyperpolarization is seen in response to porcine LH but not FSH. Voltage clamp studies indicate that this is due to an increase in follicle K+ conductance. An electrical model of the amphibian follicle suggests that pituitary factors act by increasing the K+ conductance of the oolemma, by increasing the extent of oocyte-follicle cell ionic coupling, or by increasing the conductance of follicle cell plasma membrane. The conductance change does not occur in the absence of follicle cells, is not mediated by progesterone, and is not necessary for meiotic maturation, per se , but may play a role in processes which accompany or follow maturation.  相似文献   

20.
Homologous gap junctions are generally recognized as a means of coordinating cellular behavior under developmental and homeostatic conditions. In the mammalian ovary, heterologous gap junctions between the oocyte and the granulosa cells have been widely implicated in the regulation of meiotic maturation late in oogenesis. However, the role of oocyte-granulosa cell gap junctions at earlier stages of oogenesis is poorly understood. Stage-specific defects in both oocyte and follicle development have been identified in juvenile mice deficient in heterologous oocyte-granulosa cell gap junctions due to targeted deletion of Gja4, the gene encoding connexin-37. Follicle development arrests at the type 4 preantral stage and although oocytes commence growth, oocyte growth ceases at a diameter of 52 microm (74.3% of control size). Analysis of cell cycle and cytoskeletal markers indicates that oocytes arrest in a G(2) state based on uniform decondensed GV chromatin, interphase microtubule arrays, and nonphosphorylated cytoplasmic centrosomes. Functional assays of meiotic competence confirm that oocytes from connexin-37-deficient mice are unable to enter M phase (initiate meiotic maturation) unless treated with the phosphatase inhibitor okadaic acid (OA). Unlike growing oocytes from heterozygous control animals, OA-treated oocytes from connexin-37-deficient mice respond acutely and progress rapidly to the circular bivalent stage of meiosis I and upon removal from OA rapidly revert to an interphase state. In contrast, OA-treated control incompetent oocytes are slow to respond, exhibit a lower proportion of chromosomal bivalent stage oocytes, but remain in and progress into meiotic M phase upon removal from OA. This study demonstrates that heterologous gap-junctional communication is required for the completion of oocyte growth and the acquisition of cytoplasmic meiotic competence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号