首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Reciprocal defects in signaling between the myotome and the sclerotome compartments of the somites in PDGFRalpha and Myf5 mutant embryos lead to alterations in the formation of the vertebrae and the ribs. To investigate the significance of these observations, we have examined the role of PDGF signaling in the developing somite. PDGFA ligand expression was not detected in the myotome of Myf5 null mutant embryos and PDGFA promoter activity was regulated by Myf5 in vitro. PDGFA stimulated chondrogenesis in somite micromass cultures as well as in embryos when PDGFA was knocked into the Myf5 locus, resulting in increased vertebral and rib development. PDGFA expression in the myotome was fully restored in embryos in which MyoD has been introduced at the Myf5 locus but to a lesser extent in similar myogenin knock-in embryos. These results underscore the importance of growth factor signaling within the developing somite and suggest an important role for myogenic determination factors in orchestrating normal development of the axial skeleton.  相似文献   

3.
4.
Muscles of the body and bones of the axial skeleton derive from specialized regions of somites. Somite development is influenced by adjacent structures. In particular, the dorsal neural tube and the overlying ectoderm have been shown to be necessary for the induction of myogenic precursor cells in the dermomyotome. Members of the Wnt family of signaling molecules, which are expressed in the dorsal neural tube and the ectoderm, are postulated to be responsible for this process. It is shown here that ectopically implanted Wnt-1-, -3a-, and -4-expressing cells alter the process of somite compartmentalization in vivo. An enlarged dorsal compartment results from the implantation of Wnt-expressing cells ventrally between the neural tube/notochord and epithelial somites, at the expense of the ventral compartment, the sclerotome. Thus, ectopic Wnt expression is able to override the influence of ventralizing signals arising from notochord and floor plate. This shift of the border between the two compartments was identified by an increase in the domain of Pax-3 expression and a complete loss of Pax-1 expression in somites close to the ectopic Wnt signal. The expanded expression of MyoD and desmin provides evidence that it is the myotome which increases as a result of Wnt signaling. Paraxis expression is also drastically amplified after implantation of Wnt-expressing cells indicating that Wnts are involved in the formation and maintenance of somite epithelium and suggesting that Paraxis is activated through Wnt signaling pathways. Taken together these results suggest that ectopic Wnts disturb the normal balance of signaling molecules within the somite, resulting in an enhanced recruitment of somitic cells into the myogenic lineage.  相似文献   

5.
We prepared a specific antiserum to the qBrn-2 protein and examined the developmental distribution of this protein during quail somitic myogenesis. In contrast to its mammalian homolog N-Oct-3, qBrn-2 exhibited an impressive spatio-temporal profile in somitic myogenesis, in addition to the orthodox expression observed in the developing neural tube. In somites, qBrn-2 was expressed in the outer epithelial cells, but not in the core cells. During the somite differentiation, qBrn-2 expression was enhanced and restricted to myotome. The location of qBrn-2 expression seemed to overlap with that of myf5 and myoD in myotome. However, in cells that just began to express myf5 or myoD, qBrn-2 expression was not obvious. As embryonic development proceeded, qBrn-2 positive cells in myotome migrated dorsally and ventrally, and qBrn-2 expression was still observed at dorsal and ventral muscle masses in the forelimb. On the basis of our observations, it seems that qBrn-2 may play important roles in the determination, differentiation and migration of muscle precursor cells, in addition to its known roles in neurogenesis.  相似文献   

6.
7.
The dorsomedial lip (DML) of the somite dermomyotome is the source of cells for the early growth and morphogenesis of the epaxial primary myotome and the overlying dermomyotome epithelium. We have used quail-chick transplantation to investigate the mechanistic basis for DML activity. The ablated DML of chick wing-level somites was replaced with tissue fragments from various mesoderm regions of quail embryos and their capacity to form myotomal tissue assessed by confocal microscopy. Transplanted fragments from the epithelial sheet region of the dermomyotome exhibited full DML growth and morphogenetic capacity. Ventral somite fragments (sclerotome), head paraxial mesoderm or non-paraxial (lateral plate) mesoderm tested in this assay were each able to expand mitotically in concert with the surrounding paraxial mesoderm, although no myogenic potential was evident. When ablated DMLs were replaced with fragments of the dermomyotome ventrolateral lip of wing-level somites or pre-somitic mesoderm (segmental plate), myotome development was evident but was delayed or otherwise limited in some cases. Timed DML ablation-replacement experiments demonstrate that DML activity is progressive throughout the embryonic period (to at least E7) and its continued presence is necessary for the complete patterning of each myotome segment. The results of serial transplantation and BrdU pulse-chase experiments are most consistent with the conclusion that the DML consists of a self-renewing population of progenitor cells that are the primary source of cells driving the growth and morphogenesis of the myotome and dermomyotome in the epaxial domain of the body.  相似文献   

8.
9.
10.
11.
This study is concerned with establishing a morphological basis for the initiation of migration of putative myogenic cells from the somites into the presumptive wing bud in avian embryos. At the 22 somite stage (stage 14) vasculogenesis is a prevalent activity. By use of a quail specific monoclonal antibody to vascular endothelial cells, vascular cells are recognized in the lateral plate, on the intermediate mesoderm, and on somite surfaces. Cells that are found between the lateral plate mesoderm and somites are shown to be vascular endothelial cells. The lateral body folds progressively bring the lateral plate mesoderm close to the lateral margin of the somites and vascular elements disappear from surface view. It is not until the 24 somite stage (stage 15) that some cells in the ventral lateral margin of somites at the wing level can be seen in scanning electron micrographs to extend basal cell processes toward adjacent vascular tubes. These results provide a morphological basis for the early migratory behavior of myogenic cells and demonstrate their close proximity to the prepatterned vascular network.  相似文献   

12.
Borders are essential for demarcating repeated structures such as somites during vertebrate development. Two recent articles describe roles for Integrinalpha5 and its ligand Fibronectin1 in zebrafish anterior intersomitic boundary formation and link them to Notch and Eph-Ephrin pathways in epithelialization of somite boundary cells. Together with these pathways, Integrinalpha5 and Fibronectin1 orchestrate the orderly formation of somite and later myotome borders. These studies shed light on components downstream of the periodic segmentation mechanism - the 'segmentation clock' - in somitogenesis.  相似文献   

13.
The most obvious segmental structures in the vertebrate embryo are somites: transient structures that give rise to vertebrae and much of the musculature. In zebrafish, most somitic cells give rise to long muscle fibers that are anchored to intersegmental boundaries. Therefore, this boundary is analogous to the mammalian tendon in that it transduces muscle-generated force to the skeletal system. We have investigated interactions between somite boundaries and muscle fibers. We define three stages of segment boundary formation. The first stage is the formation of the initial epithelial somite boundary. The second "transition" stage involves both the elongation of initially round muscle precursor cells and somite boundary maturation. The third stage is myotome boundary formation, where the boundary becomes rich in extracellular matrix and all muscle precursor cells have elongated to form long muscle fibers. It is known that formation of the initial epithelial somite boundary requires Notch signaling; vertebrate Notch pathway mutants show severe defects in somitogenesis. However, many zebrafish Notch pathway mutants are homozygous viable suggesting that segmentation of their larval and adult body plans at least partially recovers. We show that epithelial somite boundary formation and slow-twitch muscle morphogenesis are initially disrupted in after eight (aei) mutant embryos (which lack function of the Notch ligand, DeltaD); however, myotome boundaries form later ("recover") in a Hedgehog-dependent fashion. Inhibition of Hedgehog-induced slow muscle induction in aei/deltaD and deadly seven (des)/notch1a mutant embryos suggests that slow muscle is necessary for myotome boundary recovery in the absence of initial epithelial somite boundary formation. Because we have previously demonstrated that slow muscle migration triggers fast muscle cell elongation in zebrafish, we hypothesize that migrating slow muscle facilitates myotome boundary formation in aei/deltaD mutant embryos by patterning coordinated fast muscle cell elongation. In addition, we utilized genetic mosaic analysis to show that somite boundaries also function to limit the extent to which fast muscle cells can elongate. Combined, our results indicate that multiple interactions between somite boundaries and muscle fibers mediate zebrafish segmentation.  相似文献   

14.
15.
The enteric nervous system (ENS) is mainly derived from vagal neural crest cells (NCC) that arise at the level of somites 1-7. To understand how the size and composition of the NCC progenitor pool affects ENS development, we reduced the number of NCC by ablating the neural tube adjacent to somites 3-6 to produce aganglionic gut. We then back-transplanted various somite lengths of quail neural tube into the ablated region to determine the 'tipping point', whereby sufficient progenitors were available for complete ENS formation. The addition of one somite length of either vagal, sacral or trunk neural tube into embryos that had the neural tube ablated adjacent to somites 3-6, resulted in ENS formation along the entire gut. Although these additional cells contributed to the progenitor pool, the quail NCC from different axial levels retained their intrinsic identities with respect to their ability to form the ENS; vagal NCC formed most of the ENS, sacral NCC contributed a limited number of ENS cells, and trunk NCC did not contribute to the ENS. As one somite length of vagal NCC was found to comprise almost the entire ENS, we ablated all of the vagal neural crest and back-transplanted one somite length of vagal neural tube from the level of somite 1 or somite 3 into the vagal region at the position of somite 3. NCC from somite 3 formed the ENS along the entire gut, whereas NCC from somite 1 did not. Intrinsic differences, such as an increased capacity for proliferation, as demonstrated in vitro and in vivo, appear to underlie the ability of somite 3 NCC to form the entire ENS.  相似文献   

16.
Fgf-8 encodes a secreted signaling molecule mediating key roles in embryonic patterning. This study analyzes the expression pattern, regulation, and function of this growth factor in the paraxial mesoderm of the avian embryo. In the mature somite, expression of Fgf-8 is restricted to a subpopulation of myotome cells, comprising most, but not all, epaxial and hypaxial muscle precursors. Following ablation of the notochord and floor plate, Fgf-8 expression is not activated in the somites, in either the epaxial or the hypaxial domain, while ablation of the dorsal neural tube does not affect Fgf-8 expression in paraxial mesoderm. Contrary to the view that hypaxial muscle precursors are independent of regulatory influences from axial structures, these findings provide the first evidence for a regulatory influence of ventral, but not dorsal axial structures on the hypaxial muscle domain. Sonic hedgehog can substitute for the ventral neural tube and notochord in the initiation of Fgf-8 expression in the myotome. It is also shown that Fgf-8 protein leads to an increase in sclerotomal cell proliferation and enhances rib cartilage development in mature somites, whereas inhibition of Fgf signaling by SU 5402 causes deletions in developing ribs. These observations demonstrate: (1) a regulatory influence of the ventral axial organs on the hypaxial muscle compartment; (2) regulation of epaxial and hypaxial expression of Fgf-8 by Sonic hedgehog; and (3) independent regulation of Fgf-8 and MyoD in the hypaxial myotome by ventral axial organs. It is postulated that the notochord and ventral neural tube influence hypaxial expression of Fgf-8 in the myotome and that, in turn, Fgf-8 has a functional role in rib formation.  相似文献   

17.
During Drosophila myogenesis, Notch signalling acts at multiple steps of the muscle differentiation process. In vertebrates, Notch activation has been shown to block MyoD activation and muscle differentiation in vitro, suggesting that this pathway may act to maintain the cells in an undifferentiated proliferative state. In this paper, we address the role of Notch signalling in vivo during chick myogenesis. We first demonstrate that the Notch1 receptor is expressed in postmitotic cells of the myotome and that the Notch ligands Delta1 and Serrate2 are detected in subsets of differentiating myogenic cells and are thus in position to signal to Notch1 during myogenic differentiation. We also reinvestigate the expression of MyoD and Myf5 during avian myogenesis, and observe that Myf5 is expressed earlier than MyoD, consistent with previous results in the mouse. We then show that forced expression of the Notch ligand, Delta1, during early myogenesis, using a retroviral system, has no effect on the expression of the early myogenic markers Pax3 and Myf5, but causes strong down-regulation of MyoD in infected somites. Although Delta1 overexpression results in the complete lack of differentiated muscles, detailed examination of the infected embryos shows that initial formation of a myotome is not prevented, indicating that exit from the cell cycle has not been blocked. These results suggest that Notch signalling acts in postmitotic myogenic cells to control a critical step of muscle differentiation.  相似文献   

18.
Patterns of early embryonic development have traditionally been viewed as invariant within vertebrate taxa. It has been argued that the specific differences which are found arise during the later stages of development. These differences may be a result of allometry, heterochrony or changes in relative growth rates. To test whether early embryonic development is indeed invariant, or whether selection of adult characteristics can alter embryonic growth, we compared embryonic development in birds selected for different patterns of postnatal growth. Using quail lines selected for high and low body mass, we compared somite formation, and muscle and feather development. We obtained data that showed changes in the rate of myotome formation in the brachial somites which contribute to muscle formation in the limbs and thorax. We think these observations are connected with intraspecific changes in adult morphology, ie., breast muscle size. Our findings suggest that selection for late ontogenetic/adult stages affects early embryonic development.  相似文献   

19.
Somites represent the first visual evidence of segmentation in the developing vertebrate embryo and it is becoming clear that this segmental pattern of the somites is used in the initial stages of development of other segmented systems such as the peripheral nervous system. However, it is not known whether the somites continue to contribute to the maintenance of the segmental pattern after the dispersal of the somitic cells. In particular, the extent to which cells from a single somite contribute to all of the tissues of a single body segment and the extent to which they mix with cells from adjacent segments during their migration is not known. In this study, we have replaced single somites in the future cervical region of 2-day-old chick embryos with equivalent, similarly staged quail somites. The chimerae were then allowed to develop for a further 6 days when they were killed. The cervical region was dissected and serially sectioned. The sections were stained with the Feulgen reaction for DNA to differentiate between the chick and quail cells. The results showed that the cells from a single somite remained as a clearly delimited group throughout their migration. Furthermore, the sclerotome, dermatome and myotome portions from the single somites could always be recognised as being separate from similar cells from other somites. The somitic cells formed all of the tissues within a body segment excluding the epidermis, notochord and neural tissue. There was very little mixing of the somitic cells between adjacent segments. The segmental pattern of the somites is therefore maintained during the migration of the somitic cells and this might be fundamental to a mechanism whereby the segmentation of structures, such as the peripheral nervous system, is also maintained during development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号