首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hulme  Philip E.  Borelli  Teresa 《Plant Ecology》1999,145(1):149-156
The considerable variability found in post-dispersal seed predation and the absence of consistent directional trends (e.g., with reference to seed size) has made it difficult to predict accurately the impact of seed predators on plant communities. We examined the variation attributable to location, seed density and seed burial on the removal of seeds of three tree species: Fraxinus excelsior, Taxus baccata and Ulmus glabra. Experiments were undertaken in five deciduous woodlands in Durham, U.K., and the relative importance of vertebrate and invertebrate seed predators was assessed using selective exclosures. In all five woodlands, seed removal was greatest from treatments to which vertebrates had access, and losses attributable to invertebrates were negligible. Rodents, in particular Apodemus sylvaticus (Muridae) and Clethrionomys glareolus (Cricetidae), were the principal seed consumers in these woodlands. Unidentified vertebrate seed predators (probably birds, rabbits and/or squirrels) appeared to be significant seed removers in three of the five woodlands. Rates of removal differed among the three tree species, increasing in the following order Fraxinus < Taxus < Ulmus but were not related to seed mass. The major effect influencing rates of seed removal was seed burial, which halved rates of seed removal overall. The effect of seed burial was a function of seed size. The larger seeds of Taxus realising little benefit from seed burial whereas encounter of the smaller Ulmus seeds fell by almost two-thirds. Removal was density-dependent for all three species. However, the relative increase in seed encounter through an increase in seed density was a negative function of seed size. This suggests that, for large seeds, the opportunity to escape seed predation via burial or reduced seed density is limited. These results reveal a number of parallels with other studies of post-dispersal predation and identify several generalities regarding the interaction between plants and post-dispersal seed predators. Comparison of the seed predation results with actual seedling distributions suggests that seed predators may influence regeneration of Ulmus glabra but probably play a lesser role in the dynamics of Taxus baccata and Fraxinus excelsior.  相似文献   

2.
Predation by visual predators is often affected by light conditions and may therefore exhibit strong diel variation. The dominant predators on grass shrimp, Palaemonetes pugio, are finfish predators that are thought to locate their prey by visual cues. We examined the response of grass shrimp to diel variation in predation risk in the nearshore shallow waters of the Chesapeake Bay. We used diel shoreline seines to assess the relative abundance of predators. We assessed the relative risk of predation with shrimp tethered at refuge (30 cm) and nonrefuge (60 cm) depths. To measure grass shrimp response to predation risk, we used dipnets to monitor habitat use. Four predominantly visual predators dominated the shoreline seine catches, Fundulus heteroclitus, Micropogonias undulatus, Morone americana and Morone saxatilis. Total predator abundance had a diel component, with dramatic nighttime decreases in total abundance, whereas guild composition and relative abundance remained unchanged. Relative predation risk for tethered shrimp exhibited significant time by habitat interaction. During the day, depth negatively affected survivorship of tethered shrimp while at night overall survivorship increased and there was no effect of depth. Shrimp habitats use reflected diel predation risks. Abundances in the near shore were highest during the day with decreased abundances at night. Together, the seine and tethering data highlight the importance for a refuge (e.g., shallow water) from predation during the daytime and a relaxation of predation pressure at night.  相似文献   

3.
Rodent seed predation and seedling recruitment in mesic grassland   总被引:11,自引:0,他引:11  
Seedling recruitment of two grasses (Arrhenatherum elatius and Festuca rubra) and two herbs (Centaurea nigra and Rumex acetosa) was measured in areas with and without rodents to which seeds of each species were sown at three seed densities (1000, 10,000 and 50,000 seeds m−2) in two seasons (spring and autumn 1995). Seed removal was measured for 10-day periods and the fate of seedlings was followed for 15 months after sowing. The proportion of seed removed ranged from 6 to 85% and increased with increasing seed density for each species. Rodents had no effect on seedling emergence or survival in the spring sowing. In the autumn sowing, rodents reduced seedling emergence of all four species sown at 1000 and 10,000 seeds m−2 but had no impact at 50,000 seeds m−2, presumably because of microsite limitation. We suggest the difference between spring and autumn arose because emergence was seed limited in autumn but microsite limited in spring; microsite availability was higher in autumn because a summer drought killed plants, reduced plant biomass and opened up the sward. Fifteen months after the autumn sowing, fewer A. elatius and C. nigra seedlings survived on plots exposed to rodents. This result reflected not only the reduced seedling emergence but also increased seedling mortality (seedling herbivory) in sites exposed to rodents. In contrast, F. rubra and R.acteosa showed density-dependent seedling survival which compensated for initial differences in seedling emergence, so that no effect of rodents remained after 15 months. The results suggest that rodent seed predation and seedling herbivory exert strong effects on seedling recruitment of A.elatius and C. nigra when recruitment conditions are favourable (conditions that lead to high microsite availability) and may contribute to both species being maintained at low densities in the grassland. The results also demonstrate that highly significant impacts of rodent seed predation at the seedling emergence stage can disappear by the time of plant maturation. Received: 2 March 1998 / Accepted: 28 September 1998  相似文献   

4.
We tested the relative and combined effects of prey density and patch size on the functional response (number of attacks per unit time and duration of attacks) of a predatory reef fish (Cheilodactylus nigripes (Richardson)) to their invertebrate prey. Fish attacked prey at a greater rate and for longer time in large than small patches of prey, but large patches had naturally greater densities of prey. We isolated the effects of patch size and prey density by reducing the density of prey in larger patches to equal that of small patches; thereby controlling for prey density. We found that the intensity at which fish attacked prey (combination of attack rate and duration) was primarily a response to prey density rather than the size of patch they occupied. However, there was evidence that fish spent more time foraging in larger than smaller patches independent of prey density; presumably because of the greater total number of prey available. These experimental observations suggest that fish can distinguish between different notions of prey abundance in ways that enhance their rate of consumption. Although fish may feed in a density dependent manner, a critical issue is whether their rate of consumption outstrips the rate of increase in prey abundance to cause density dependent mortality of prey.  相似文献   

5.
1. First known for their shredding activity, freshwater amphipods also behave as active predators with consequences for prey population regulation and amphipod coexistence in the context of biological invasions. 2. A way to quantify predation is to determine the average consumption rate per predator, also known as its functional response (FR). 3. Although amphipods are gregarious and can display social interactions that can alter per capita consumption rates, previous studies using the FR approach to investigate amphipod predation ignored such potential mutual interference because they did not consider variations in predator density. 4. We investigated the FR of Echinogammarus berilloni feeding on dipteran larvae with joint variations in prey and predator densities. This bivariate experimental design allowed us to estimate interference and to compare the fits of the three main classes of theoretical FR models, in which the predation rate is a function of prey density alone (prey‐dependent models), of both prey and predator densities (predator‐dependent models) or of the prey‐to‐predator ratio (ratio‐dependent models). 5. The Arditi–Ginzburg ratio‐dependent FR model provided the best representation of the FR of E. berilloni, whose predation rate showed a decelerating rise to a horizontal asymptote as prey abundance increased. 6. Ratio dependence means that mutual interference between amphipods leads to prey sharing. Mutual interference is likely to vary between amphipod species, depending on their level of aggressiveness.  相似文献   

6.
The predation rate and selection of specific prey byMysis relicta in Lake Tahoe depends on both the total and the relative densities of prey classes. Functional responses of mysids to changes in the density of two species of calanoid copepod prey were curvilinear in laboratory experiments. In the field and in 2-prey treatments, preference was usually positive forEpischura and negative forDiaptomus. However, the preference forEpischura was greatest at the lowest combined densities of prey in the laboratory and decreased at densities >100Epischura / m3 in the field. Several hypotheses to explain the inverse relationship between selectivity and prey density are discussed. Field assemblages of prey vary vertically, horizontally and seasonally. Potential effects of this hetrogeneity on both predator and prey populations are examined.  相似文献   

7.
Velho N  Isvaran K  Datta A 《Oecologia》2012,169(4):995-1004
Tropical tree species vary widely in their pattern of spatial dispersion. We focus on how seed predation may modify seed deposition patterns and affect the abundance and dispersion of adult trees in a tropical forest in India. Using plots across a range of seed densities, we examined whether seed predation levels by terrestrial rodents varied across six large-seeded, bird-dispersed tree species. Since inter-specific variation in density-dependent seed mortality may have downstream effects on recruitment and adult tree stages, we determined recruitment patterns close to and away from parent trees, along with adult tree abundance and dispersion patterns. Four species (Canarium resiniferum, Dysoxylum binectariferum, Horsfieldia kingii, and Prunus ceylanica) showed high predation levels (78.5-98.7%) and increased mortality with increasing seed density, while two species, Chisocheton cumingianus and Polyalthia simiarum, showed significantly lower seed predation levels and weak density-dependent mortality. The latter two species also had the highest recruitment near parent trees, with most abundant and aggregated adults. The four species that had high seed mortality had low recruitment under parent trees, were rare, and had more spaced adult tree dispersion. Biotic dispersal may be vital for species that suffer density-dependent mortality factors under parent trees. In tropical forests where large vertebrate seed dispersers but not seed predators are hunted, differences in seed vulnerability to rodent seed predation and density-dependent mortality can affect forest structure and composition.  相似文献   

8.
9.
Post-dispersal seed predation is only one of many factors underlying plant demography and evolution. Nevertheless, the generalist feeding habits of many post-dispersal seed predators and the limited ability of plants either to compensate for or to respond to post-dispersal seed losses directly suggest that post-dispersal seed predation may have a considerable impact on plant populations. Seed predators probably have little direct influence on the demography of plants that regenerate exclusively by vegetative means or are buffered by a large active seed bank, but such species are only a minority in most plant communities.In general, ants are significant post-dispersal seed predators in arid and semi-arid ecosystems while they act mainly as seed dispersers rather than as predators in temperate ecosystems. Although studies have probably underestimated the importance of invertebrates and birds as seed predators, rodents appear to have greater potential to influence seed dynamics, and are particularly important in temperate ecosystems. For example, production of mast seed crops is more effective at satiating specialist invertebrate seed predators than generalist vertebrates, and recruitment may be limited by post-dispersal seed predation even during mast years.Both spatial variation in post-dispersal seed predation and differences in predation between species are important elements which facilitate the coexistence of different plant species. Where microsites are limiting, selective post-dispersal seed predators can influence pre-emptive competition for these microsites. Seed size determines the extent of density-dependent predation and the exploitation of buried seed. This suggests that post-dispersal seed predators may also play a role in the evolution of seed characteristics. However, conclusions regarding the ecological and evolutionary impact of post-dispersal seed predators will remain speculative without a more substantial empirical base.  相似文献   

10.
To select appropriate recovery strategies for endangered populations, we must understand the dynamics of small populations and distinguish between the possible causes that drive such populations to low numbers. It has been suggested that the pattern of population decline may be inversely density-dependent with population growth rates decreasing as populations become very small; however, empirical evidence of such accelerated declines at low densities is rare. Here we analyzed the pattern of decline of a threatened population of woodland caribou (Rangifer tarandus caribou) in British Columbia, Canada. Using information on the instantaneous rate of increase relative to caribou density in suitable winter foraging habitat, as well as on pregnancy rates and on causes and temporal distribution of mortalities from a sample of 349 radiocollared animals from 15 subpopulations, we tested 3 hypothesized causes of decline: (a) food regulation caused by loss of suitable winter foraging habitat, (b) predation-sensitive foraging caused by loss of suitable winter foraging habitat and (c) predation with caribou being secondary prey. Population sizes of caribou subpopulations ranged from <5 to >500 individuals. Our results showed that the rates of increase of these subpopulations varied from −0.1871 to 0.0496 with smaller subpopulations declining faster than larger subpopulations. Rates of increase were positively related to the density of caribou in suitable winter foraging habitat. Pregnancy rates averaged 92.4% ±2.24 and did not differ among subpopulations. In addition, we found predation to be the primary cause of mortality in 11 of 13 subpopulations with known causes of mortality and predation predominantly occurred during summer. These results are consistent with predictions that caribou subpopulations are declining as a consequence of increased predation. Recovery of these woodland caribou will thus require a multispecies perspective and an appreciation for the influence of inverse density dependence on population trajectories.  相似文献   

11.
Behavioral responses by three acarine predators, Phytoseiulus persimilis, Typhlodromus occidentalis, and Amblyseius andersoni (Acari: Phytoseiidae), to different egg and webbing densities of the spider mite Tetranychus urticae (Acari: Tetranychidae) on rose leaflets were studied in the laboratory. Prey patches were delineated by T. urticae webbing and associated kairomones, which elicit turning back responses in predators near the patch edge. Only the presence of webbing affected predator behavior; increased webbing density did not increase patch time. Patch time increased with increased T. urticae egg density in the oligophagous P. persimilis, but was density independent in the polyphagous species T. occidentalis and A. andersoni. Patch time in all three species was more strongly correlated with the number of prey encounters and attacks than with the actual prey number present in the patch. Patch time was determined by (a) the turning back response near the patch edge; this response decayed through time and eventually led to the abandonment of the patch, and (b) encounters with, and attacks upon, prey eggs; these prolonged patch time by both an increment of time spent in handling or rejecting prey and an increment of time spent searching between two successive prey encounters or attacks. Although searching efficiency was independent of prey density in all three species, the predation rate by P. persimilis decreased with prey density because its searching activity (i.e. proportion of total patch time spent in searching) decreased with prey density. Predation rates by T. occidentalis and A. andersoni decreased with prey density because their searching activity and success ratio both decreased with prey density. The data were tested against models of predator foraging responses to prey density. The effects of the degree of polyphagy on predator foraging behavior were also discussed.  相似文献   

12.
Laboratory experiments were performed to determine the potential of dominant spider species in winter wheat in Germany,Erigone atra (Blackwall),Lepthyphantes tenuis (Blackwall) andPardosa agrestis (Westring) adults and youngs, in suppressing the population ofRhopalosiphum padi (L.) on wheat plants and their functional response to different aphid densities. The presence of spiders significantly caused between 34 and 58% reduction in aphid population development on wheat plants compared to the aphid population in the absence of spiders. The functional response curves for these spiders as predators ofR. padi seem to descrive a typical type II functional response with the prey consumed increasing to a plateau as aphid densities increased. Prey killed without eating was linear on prey density.  相似文献   

13.
14.
The effect of predator and prey density on the induced defence of a ciliate   总被引:4,自引:0,他引:4  
1. The level of antipredator defence should be proportional to the actual attack probability to minimize the cost of defence and maximize the net benefit.
2. The hypothesis that the induced antipredator morphology of Euplotes octocarinatus is a graded response to the actual risk of predation by Stylonychia mytilus was tested by manipulating the density of both prey and predator populations.
3. The magnitude of the response was graded according to both predator and prey density. A dense prey population may be protective since a prey is more exposed to a predator's attack as a solitary individual.
4. The results suggest that Euplotes is able to 'estimate' the real risk of predation and respond appropriately, without mobilizing more resources than needed.
5. Separation of the prey and predator with a nylon net revealed that the response was not induced by a water-transmitted factor but that direct cell-to-cell contacts were important. This finding departs from those of other studies.  相似文献   

15.
Post‐dispersal seed predation is a crucial phenomenon for plant recruitment, and its incidence can be hypothesized to increase in ecologically and geographically marginal populations of threatened species, such as yew (Taxus baccata). Here we examine the among‐ and within‐population patterns of seed consumption by rodents and evaluate to what extent they are linked to marginality in Mediterranean low‐density yew stands. Among populations we tested: (i) whether the rates of seed predation found in our marginal sites were consistently higher than in populations from core regions; (ii) within populations we evaluated whether rodents preferred microhabitats with greater seed availability (beneath female yew trees) or with lower predation risk (shrubs) in two seeding seasons (fall–winter 2005 and 2006). Predation rates were extremely high (92.5%) and they were well above values reported for core populations (65.4%), to the extent that rodents almost completely depleted the experimental seeds in all populations and years. Our expectation of lower predation rates with decreasing vegetation cover was also confirmed for all years and populations, suggesting that rodent foraging was risk‐sensitive. This microhabitat effect outweighed the effect of seed availability under female yew trees, implying also that rodents selectively consumed the most valuable seeds in terms of their recruitment prospects. Overall, our results suggest that the mechanisms underlying seed depletion and its demographic consequences are linked to the effects of reduced yew performance in ecologically marginal habitats.  相似文献   

16.
17.
Abstract Oryza meridionalis is an annual emergent wetland grass which produces between 26 and 260 kg seeds ha-1 annually. Seed shed occurs at the end of the wet season, when the plains are usually still partially flooded. The juvenile recruitment of key native vertebrate species, such as the Magpie Goose (Anseranus semipalmata) and the Dusky Plains Rat (Rattus colletti), coincides with seed shed. This study investigated predation of O. meridionalis seeds at two sites on the South Alligator River floodplain in monsoonal Australia. The effects of inundation and the presence of a background density of seeds on seed removal were investigated by stratified sampling with respect to position down the topographic slope, to include the ‘dry’ floodplain margin, ‘damp’Oryza zone, and ‘flooded’Oryza zone. The effect of seed lot size on the proportion of seed removed was also investigated, and exclosures were used to identify the principal predator group. The proportion of seeds removed was not affected by the presence/absence of a background of seeds nor the number of seeds placed in experimental ‘lots’. The majority of seeds (75%) was consumed by vertebrate predators (most likely the abundant Dusky Plains Rat). Inundation afforded some protection from predation. Despite high losses of seeds exposed to predators, O. meridionalis is an abundant and widespread species on these floodplains, possibly because of the protection from predation afforded by inundation to those seeds which are shed into the water column. It is likely that there is a complex interaction between topography, rainfall and predator and prey relationships, which ultimately determines the importance of seed removal for the maintenance of populations of O. meridionalis. These high losses of seeds to predation have implications for wetland rehabilitation where seed broadcasting is proposed.  相似文献   

18.
Gynodioecy, the co‐occurrence of hermaphrodite and female individuals within a species, is maintained by differential reproductive success between sexes. Recently, researchers recognized that not only pollinators but also herbivores are important agents in the evolution and maintenance of gynodioecy, when herbivory is hermaphrodite biased. In this study, we investigated whether there is hermaphrodite‐biased herbivory in a gynodioecious plant, Dianthus superbus var. longicalycinus, and if so, what floral traits influenced hermaphrodite‐biased herbivory. We measured flower morphology (flower diameter, calyx tube length, corolla height and petal width) and phenology of flowers of female individuals, hermaphrodites and gynomonoecious individuals in a natural population. We also investigated seed predation and predator species. At the study site, Sibinia weevils (Curculionidae; Coleoptera) and Coleophora moths (Coleophoridae; Lepidoptera) were common pre‐dispersal seed predators in this species. The weevil appeared early in the flowering season, and weevil predation correlated with flower phenology. Because female individuals did not flower early in the season, weevil predation was less frequent in female individuals. Moth predation correlated with calyx length. The calyx length of flowers of female individuals was smaller than those of hermaphrodites, but a direct comparison of moth predation rates failed to find a significant difference among sex morphs. We found that the two seed predators had different effects on floral traits in D. superbus var. longicalycinus. We suggest that weevil predation contributes to the maintenance of gynodioecy because female individuals successfully escaped weevil predation by flowering late. It remains unclear why flower phenology is different among sex morphs.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号