首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the mechanism whereby ions cross dihydropyridine- sensitive (L-type) Ca channels in guinea pig ventricular myocytes. At the single-channel level, we found no evidence of an anomalous mole- fraction effect like that reported previously for whole-cell currents in mixtures of Ba and Ca. With the total concentration of Ba + Ca kept constant at 10 (or 110) mM, neither conductance nor absolute unitary current exhibits a paradoxical decrease when Ba and Ca are mixed, thereby weakening the evidence for a multi-ion permeation scheme. We therefore sought independent evidence to support or reject the multi- ion nature of the L-type Ca channel by measuring conductance at various permeant ion concentrations. Contrary to the predictions of models with only one binding site in the permeation pathway, single-channel conductance does not follow Michaelis-Menten kinetics as Ba activity is increased over three orders of magnitude. Two-fold variation in the Debye length of permeant ion solutions has little effect on conductance, making it unlikely that local surface charge effects could account for these results. Instead, the marked deviation from Michaelis- Menten behavior was best explained by supposing that the permeation pathway contains three or more binding sites that can be occupied simultaneously. The presence of three sites helps explain both a continued rise in conductance as [Ba2+] is increased above 110 mM, and the high single-channel conductance (approximately 7 pS) with 1 mM [Ba2+] as the charge carrier; the latter feature enables the L-type channel to carry surprisingly large currents at physiological divalent cation concentrations. Thus, despite the absence of an anomalous mole- fraction effect between Ba and Ca, we suggest that the L-type Ca channel in heart cells supports ion flux by a single-file, multi-ion permeation mechanism.  相似文献   

2.
Planar lipid bilayer recordings were used to study Ca channels from bovine cardiac sarcolemmal membranes. Ca channel activity was recorded in the absence of nucleotides or soluble enzymes, over a range of membrane potentials and ionic conditions that cannot be achieved in intact cells. The dihydropyridine-sensitive L-type Ca channel, studied in the presence of Bay K 8644, was identified by a detailed comparison of its properties in artificial membranes and in intact cells. L-type Ca channels in bilayers showed voltage dependence of channel activation and inactivation, open and closed times, and single-channel conductances in Ba2+ and Ca2+ very similar to those found in cell-attached patch recordings. Open channels were blocked by micromolar concentrations of external Cd2+. In this cell-free system, channel activity tended to decrease during the course of an experiment, reminiscent of Ca2+ channel "rundown" in whole-cell and excised-patch recordings. A purely voltage-dependent component of inactivation was observed in the absence of Ca2+ stores or changes in intracellular Ca2+. Millimolar internal Ca2+ reduced unitary Ba2+ influx but did not greatly increase the rate or extent of inactivation or the rate of channel rundown. In symmetrical Ba2+ solutions, unitary conductance saturated as the Ba2+ concentration was increased up to 500 mM. The bilayer recordings also revealed activity of a novel Ca2+-permeable channel, termed "B-type" because it may contribute a steady background current at negative membrane potentials, which is distinct from L-type or T-type Ca channels previously reported. Unlike L-type channels, B-type channels have a small unitary Ba2+ conductance (7 pS), but do not discriminate between Ba2+ and Ca2+, show no obvious sensitivity to Bay K 8644, and do not run down. Unlike either L- or T-type channels, B-type channels did not require a depolarization for activation and displayed mean open times of greater than 100 ms.  相似文献   

3.
Ba2+ currents through L-type Ca2+ channels were recorded from cell- attached patches on mouse pancreatic beta cells. In 10 mM Ba2+, single- channel currents were recorded at -70 mV, the beta cell resting membrane potential. This suggests that Ca2+ influx at negative membrane potentials may contribute to the resting intracellular Ca2+ concentration and thus to basal insulin release. Increasing external Ba2+ increased the single-channel current amplitude and shifted the current-voltage relation to more positive potentials. This voltage shift could be modeled by assuming that divalent cations both screen and bind to surface charges located at the channel mouth. The single- channel conductance was related to the bulk Ba2+ concentration by a Langmuir isotherm with a dissociation constant (Kd(gamma)) of 5.5 mM and a maximum single-channel conductance (gamma max) of 22 pS. A closer fit to the data was obtained when the barium concentration at the membrane surface was used (Kd(gamma) = 200 mM and gamma max = 47 pS), which suggests that saturation of the concentration-conductance curve may be due to saturation of the surface Ba2+ concentration. Increasing external Ba2+ also shifted the voltage dependence of ensemble currents to positive potentials, consistent with Ba2+ screening and binding to membrane surface charge associated with gating. Ensemble currents recorded with 10 mM Ca2+ activated at more positive potentials than in 10 mM Ba2+, suggesting that external Ca2+ binds more tightly to membrane surface charge associated with gating. The perforated-patch technique was used to record whole-cell currents flowing through L-type Ca2+ channels. Inward currents in 10 mM Ba2+ had a similar voltage dependence to those recorded at a physiological Ca2+ concentration (2.6 mM). BAY-K 8644 (1 microM) increased the amplitude of the ensemble and whole-cell currents but did not alter their voltage dependence. Our results suggest that the high divalent cation solutions usually used to record single L-type Ca2+ channel activity produce a positive shift in the voltage dependence of activation (approximately 32 mV in 100 mM Ba2+).  相似文献   

4.
Although L-type Ca2+ channels have been shown to play a central role in cardiac excitation-contraction (E-C) coupling, little is known about the role of T-type Ca2+ channels in this process. We used the amphotericin B perforated patch method to study the possible role of T-type Ca2+ current in E-C coupling in isolated canine Purkinje myocytes where both Ca2+ currents are large. T-type Ca2+ current was separated from L-type Ca2+ current using protocols employing the different voltage dependencies of the channel types and their different sensitivities to pharmacological blockade. We showed that Ca2+ admitted through either T- or L-type Ca2+ channels is capable of initiating contraction and that the contractions depended on Ca2+-induced Ca2+ release from the sarcoplasmic reticulum (SR). The contractions, however, had different properties. Those initiated by Ca2+ entry through T-type Ca2+ channels had a longer delay to the onset of shortening, slower rates of shortening and relaxation, lower peak shortening, and longer time to peak shortening. These differences were present even when L-type Ca2+ current amplitude, or charge entry, was less than that of T-type Ca2+ current, suggesting that Ca2+ entry through the T-type Ca2+ channel is a less effective signal transduction mechanism to the SR than is Ca2+ entry through the L-type Ca2+ channel. We conclude that under our experimental conditions in cardiac Purkinje cells Ca2+ entry through the T-type Ca2+ channel can activate cell contraction. However, Ca2+ entry through the L-type Ca2+ channel is a more effective signal transduction mechanism. Our findings support the concept that different structural relationships exist between these channel types and the SR Ca2+ release mechanism.  相似文献   

5.
Several types of structurally homologous high voltage-gated Ca2+ channels (L-, P-and N-type) have been identified via biochemical, pharmacological and electrophysiological techniques. Among these channels, the cardiac L-type and the brain BI-2 Ca2+ channel display significantly different biophysical properties. The BI-2 channel exhibits more rapid voltage-dependent current activation and inactivation and smaller single-channel conductance compared to the L-type Ca2+ channel. To examine the molecular basis for the functional differences between the two structurally related Ca2+ channels, we measured macroscopic and single-channel currents from oocytes injected with wild-type and various chimeric channel 1 subunit cRNAs. The results show that a chimeric channel in which the segment between S5-SS2 in repeat IV of the cardiac L-type Ca2+ channel, was replaced by the corresponding region of the BI-2 channel, exhibited macroscopic current activation and inactivation time-courses and single-channel conductance, characteristic of the BI-2 Ca2+ channel. The voltage-dependence of steady-state inactivation was not affected by the replacement. Chimeras, in which the SS2-S6 segment in repeat III or IV of the cardiac channel was replaced by the corresponding BI-2 sequence, exhibited altered macroscopic current kinetics without changes in single-channel conductance. These results suggest that part of the S5-SS2 segment plays a critical role in determining voltage-dependent current activation and inactivation and single-channel conductance and that the SS2-S6 segment may control voltage-dependent kinetics of the Ca2+ channel.  相似文献   

6.
Using the cell-attached configuration of the patch clamp technique, we have identified two different types of Ca channels in rat pancreatic beta-cell membranes. The two channels differ in single channel conductance, voltage dependence, and inactivation properties. The single-channel conductance, measured with 100 mM Ba2+ in the pipette, was 21.8 pS for the large channel and 6.4 pS for the small channel. The large-conductance channel is similar to the fast deactivating or L-type Ca channel described in other preparations. It is voltage dependent, has a threshold for activation around -30 mV, and can be activated from a holding potential of -40 mV. On the other hand, the small-conductance Ca channel is similar to the SD or T type Ca channel; it has a lower activation threshold, around -50 mV, and it can be inactivated by holding the membrane potential at -40 mV.  相似文献   

7.
We report transient expression of a full-length cDNA encoding the Ca2+ release channel of rabbit skeletal muscle sarcoplasmic reticulum (ryanodine receptor) in HEK-293 cells. The single-channel properties of the 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate-solubilized and sucrose gradient-purified recombinant Ca2+ release channels were investigated by using single-channel recordings in planar lipid bilayers. The recombinant Ca2+ release channel exhibited a K+ conductance of 780 pS when symmetrical 250 mM KCl was used as the conducting ion and a Ca2+ conductance of 116 pS in 50 mM luminal Ca2+. Opening events of the recombinant channels were brief, with an open time constant of approximately 0.22 ms. The recombinant Ca2+ release channel was more permeable to Ca2+ than to K+, with a pCa2+/pK+ ratio of 6.8. The response of the recombinant Ca2+ release channel to various concentrations of Ca2+ was biphasic, with the channel being activated by micromolar Ca2+ and inhibited by millimolar Ca2+. The recombinant channels were activated by ATP and caffeine, inhibited by Mg2+ and ruthenium red, and modified by ryanodine. Most recombinant channels were asymmetrically blocked, conducting current unidirectionally from the luminal to the cytoplasmic side of the channel. These data demonstrate that the properties of recombinant Ca2+ release channel expressed in HEK-293 cells are very similar, if not identical, to those of the native channel.  相似文献   

8.
The currents through single Ca2+-activated K+ channels were studied in excised inside-out membrane patches of human erythrocytes. The effects of temperature on single-channel conductance, on channel gating and on activation by Ca2+ were investigated in the temperature range from 0 up to 47 degrees C. The single-channel conductance shows a continuous increase with increasing temperature; an Arrhenius plot of the conductance gives the activation energy of 29.6 +/- 0.4 kJ/mol. Reducing the temperature alters channel-gating kinetics which results in a significant increase of the probability of the channel being open (Po). The calcium dependence of Po is affected by temperature in different ways; the threshold concentration for activation by Ca2+ is not changed, the Ca2+ concentration of half-maximal channel activation is reduced from 2.1 mumol/l at 20 degrees C to 0.3 mumol/l at 0 degrees C, the saturation level of the dependence is reduced for temperatures higher then about 30 degrees C. The relevance of the obtained data for the interpretation of the results known from flux experiments on cells in suspensions is discussed.  相似文献   

9.
A Mathie  L Bernheim  B Hille 《Neuron》1992,8(5):907-914
Modulation of N- and L-type Ca2+ channels by oxotremorine-M (oxo-M) acting on muscarinic receptors and norepinephrine (NE) acting on alpha-adrenergic receptors was studied in superior cervical ganglion neurons. Oxo-M depresses dihydropyridine-augmented tail currents in whole-cell recordings, whereas NE does not. This modulation of L-type Ca2+ channels by oxo-M is abolished by adding 20 mM BAPTA to the pipette solution. Oxo-M, acting via a diffusible messenger, reduces the probability of opening of single N- and L-type channels recorded in cell-attached patches. We conclude that a diffusible messenger signaling pathway activated by oxo-M inhibits both N- and L-type Ca2+ channels, whereas a membrane-delimited pathway activated by oxo-M and NE inhibits only N-type Ca2+ channels.  相似文献   

10.
We have previously reported that, in venous myocytes, Gbetagamma scavengers inhibit angiotensin AT1A receptor-induced stimulation of L-type Ca2+ channels (1). Here, we demonstrate that intracellular infusion of purified Gbetagamma complexes stimulates the L-type Ca2+ channel current in a concentration-dependent manner. Additional intracellular dialysis of GDP-bound inactive Galphao or of a peptide corresponding to the Gbetagamma binding region of the beta-adrenergic receptor kinase completely inhibited the Gbetagamma-induced stimulation of Ca2+ channel currents. The gating properties of the channel were not affected by intracellular application of Gbetagamma, suggesting that Gbetagamma increased the whole-cell calcium conductance. In addition, both the angiotensin AT1A receptor- and the Gbetagamma-induced stimulation of L-type Ca2+ channels were blocked by pretreatment of the cells with wortmannin, at nanomolar concentrations. Correspondingly, intracellular infusion of an enzymatically active purified recombinant Gbetagamma-sensitive phosphoinositide 3-kinase, PI3Kgamma, mimicked Gbetagamma-induced stimulation of Ca2+ channels. Both Gbetagamma- and PI3Kgamma-induced stimulations of Ca2+ channel currents were reduced by protein kinase C inhibitors suggesting that the Gbetagamma/PI3Kgamma-activated transduction pathway involves a protein kinase C. These results indicate for the first time that Gbetagamma dimers stimulate the vascular L-type Ca2+ channels through a Gbetagamma-sensitive PI3K.  相似文献   

11.
Modulation of smooth muscle, L-type Ca(2+) channels (class C, Ca(V)1.2b) by thionitrite S-nitrosoglutathione (GSNO) was investigated in the human embryonic kidney 293 expression system at the level of whole-cell and single-channel currents. Extracellular administration of GSNO (2 mM) rapidly reduced whole-cell Ba(2+) currents through channels derived either by expression of alpha1C-b or by coexpression of alpha1C-b plus beta2a and alpha2-delta. The non-thiol nitric oxide (NO) donors 2,2-diethyl-1-nitroso-oxhydrazin (2 mM) and 3-morpholinosydnonimine-hydrochloride (2 mM), which elevated cellular cGMP levels to a similar extent as GSNO, failed to affect Ba(2+) currents significantly. Intracellular administration of copper ions, which promote decomposition of the thionitrite, antagonized its inhibitory effect, and loading of cells with high concentrations of dithiothreitol (2 mM) prevented the effect of GSNO on alpha1C-b channels. Intracellular loading of cells with oxidized glutathione (2 mM) affected neither alpha1C-b channel function nor their modulation by GSNO. Analysis of single-channel behavior revealed that GSNO inhibited Ca(2+) channels mainly by reducing open probability. The development of GSNO-induced inhibition was associated with the transient occurrence of a reduced conductance state of the channel. Our results demonstrate that GSNO modulates the alpha1 subunit of smooth muscle L-type Ca(2+) channels by an intracellular mechanism that is independent of NO release and stimulation of guanylyl cyclase. We suggest S-nitrosation of intracellularly located sulfhydryl groups as an important determinant of Ca(2+) channel gating and conductance.  相似文献   

12.
Hormonal stimulation of voltage-dependent Ca2+ channels in pituitary cells is thought to contribute to the sustained phase of Ca2+ entry and secretion induced by secretion stimulating hormones and has been suggested as a mechanism for refilling the Ca2+ stores. Using the cell-attached patch-clamp technique, we studied the stimulation of single Ca2+ channels by thyrotropin-releasing hormone (TRH) in rat GH3 cells. We show that TRH applied from the bath switched the activity of single L-type Ca2+ channels from a gating mode with very low open probability (po) to a gating mode with slightly smaller conductance but 10 times higher po. Interconversions between these two gating modes were also observed under basal conditions, where the equilibrium was shifted towards the low po mode. TRH applied from the pipette had no effect, indicating the involvement of a cytosolic compound in the stimulatory pathway. We show that TRH does not potentiate all the L-type Ca2+ channels in a given membrane patch and report evidence for co-expression of two functionally different L-type Ca2+ channels. Our results uncover the biophysical mechanism of hormonal stimulation of voltage-dependent Ca2+ channels in GH3 cells and are consistent with differential modulation of different subtypes of dihydropyridine-sensitive Ca2+ channels.  相似文献   

13.
The effects of changes in membrane cholesterol on ion currents were investigated in pituitary GH3 cells. Depletion of membrane cholesterol by exposing cells to methyl-beta-cyclodextrin (MbetaCD), an oligosaccharide, resulted in an increase in the density of Ca2+-activated K+ current (IK(Ca)). However, no significant change in IK(Ca) density was demonstrated in GH3 cells treated with a mixture of MbetaCD and cholesterol. Cholesterol depletion with MbetaCD (1.5 mg/ml) slightly suppressed the density of voltage-dependent L-type Ca2+ current. In inside-out patches recorded from MbetaCD-treated cells, the activity of large-conductance Ca2+-activated K+ (BK(Ca)) channels was enhanced with no change in single-channel conductance. In MbetaCD-treated cells, voltage-sensitivity of BK(Ca) channels was increased; however, no change in Ca2+-sensitivity could be demonstrated. A negative correlation between adjacent closed and open times in BK(Ca) channels was observed in MbetaCD-treated cells. In inside-out patches from MbetaCD-treated cells, dexamethasone (30 microM) applied to the intracellular surface did not increase BK(Ca)-channel activity, although caffeic acid phenethyl ester and cilostazol still opened its probability effectively. However, no modification in the activity of ATP-sensitive K+ channels could be seen in MbetaCD-treated cells. Current-clamp recordings demonstrated that the cholesterol depletion maneuver with MbetaCD reduced the firing of action potentials. Therefore, the increase in BK(Ca)-channel activity induced by membrane depletion may influence the functional activities of neurons or neuroendocrine cells if similar results occur in vivo.  相似文献   

14.
Using the whole-cell patch-clamp technique, Ca2+ channel currents were examined in three distinct types of neurons derived from rat primary visual cortex. Callosal-projecting and superior colliculus-projecting neurons were identified following in vivo retrograde labeling with fluorescent "beads." A subset of intrinsic GABAergic visual cortical neurons was identified with the monoclonal antibody VC1.1. Although high voltage-activated Ca2+ channel currents were measured in all three cell types, clear differences in the densities of these channels were observed. There were also marked variations in the relative amplitudes of the inactivating and noninactivating components of the high voltage-activated currents, suggesting that N- and L-type Ca2+ channels are differentially distributed. Although low voltage-activated or T-type currents were measured in subsets of both types of projection neurons, they were not observed in VC1.1-positive cells. These results provide a direct demonstration that voltage-gated Ca2+ channels are expressed in neurons of the mammalian visual cortex and reveal that the distribution and densities of different Ca2+ channel types in diverse classes of visual cortical neurons are distinct.  相似文献   

15.
In guinea pig gallbladder epithelial cells, an increase in intracellular cAMP levels elicits the rise of anion channel activity. We investigated by patch-clamp techniques whether K(+) channels were also activated. In a cell-attached configuration and in the presence of theophylline and forskolin or 8-Br-cAMP in the cellular incubation bath, an increase of the open probability (P(o)) values for Ca(2+)-activated K(+) channels with a single-channel conductance of about 160 pS, for inward current, was observed. The increase in P(o) of these channels was also seen in an inside-out configuration and in the presence of PKA, ATP, and cAMP, but not with cAMP alone; phosphorylation did not influence single-channel conductance. In the inside-out configuration, the opioid loperamide (10(-5) M) was able to reduce P(o) when it was present either in the microelectrode filling solution or on the cytoplasmic side. Detection in the epithelial cells by RT-PCR of the mRNA corresponding to the alpha subunit of large-conductance Ca(2+)-activated K(+) channels (BK(Ca)) indicates that this gallbladder channel could belong to the BK family. Immunohistochemistry experiments confirm that these cells express the BK alpha subunit, which is located on the apical membrane. Other K(+) channels with lower conductance (40 pS) were not activated either by 8-Br-cAMP (cell-attached) or by PKA + ATP + cAMP (inside-out). These channels were insensitive to TEA(+) and loperamide. The data demonstrate that under conditions that induce secretion, phosphorylation activates anion channels as well as Ca(2+)-dependent, loperamide-sensitive K(+) channels present on the apical membrane.  相似文献   

16.
Molecular basis of proton block of L-type Ca2+ channels   总被引:2,自引:0,他引:2       下载免费PDF全文
Hydrogen ions are important regulators of ion flux through voltage- gated Ca2+ channels but their site of action has been controversial. To identify molecular determinants of proton block of L-type Ca2+ channels, we combined site-directed mutagenesis and unitary current recordings from wild-type (WT) and mutant L-type Ca2+ channels expressed in Xenopus oocytes. WT channels in 150 mM K+ displayed two conductance states, deprotonated (140 pS) and protonated (45 pS), as found previously in native L-type Ca2+ channels. Proton block was altered in a unique fashion by mutation of each of the four P-region glutamates (EI-EIV) that form the locus of high affinity Ca2+ interaction. Glu(E)-->Gln(Q) substitution in either repeats I or III abolished the high-conductance state, as if the titration site had become permanently protonated. While the EIQ mutant displayed only an approximately 40 pS conductance, the EIIIQ mutant showed the approximately 40 pS conductance plus additional pH-sensitive transitions to an even lower conductance level. The EIVQ mutant exhibited the same deprotonated and protonated conductance states as WT, but with an accelerated rate of deprotonation. The EIIQ mutant was unusual in exhibiting three conductance states (approximately 145, 102, 50 pS, respectively). Occupancy of the low conductance state increased with external acidification, albeit much higher proton concentration was required than for WT. In contrast, the equilibrium between medium and high conductance levels was apparently pH-insensitive. We concluded that the protonation site in L-type Ca2+ channels lies within the pore and is formed by a combination of conserved P-region glutamates in repeats I, II, and III, acting in concert. EIV lies to the cytoplasmic side of the site but exerts an additional stabilizing influence on protonation, most likely via electrostatic interaction. These findings are likely to hold for all voltage-gated Ca2+ channels and provide a simple molecular explanation for the modulatory effect of H+ ions on open channel flux and the competition between H+ ions and permeant divalent cations. The characteristics of H+ interactions advanced our picture of the functional interplay between P-region glutamates, with important implications for the mechanism of Ca2+ selectivity and permeation.  相似文献   

17.
K+-selective ion channels from a mammalian brain synaptosomal membrane preparation were inserted into planar phospholipid bilayers on the tips of patch-clamp pipettes, and single-channel currents were measured. Multiple distinct classes of K+ channels were observed. We have characterized and described the properties of several types of voltage-dependent, Ca2+-activated K+ channels of large single-channel conductance (greater than 50 pS in symmetrical KCl solutions). One class of channels (Type I) has a 200-250-pS single-channel conductance. It is activated by internal calcium concentrations greater than 10(-7) M, and its probability of opening is increased by membrane depolarization. This channel is blocked by 1-3 mM internal concentrations of tetraethylammonium (TEA). These channels are similar to the BK channel described in a variety of tissues. A second novel group of voltage-dependent, Ca2+-activated K+ channels was also studied. These channels were more sensitive to internal calcium, but less sensitive to voltage than the large (Type I) channel. These channels were minimally affected by internal TEA concentrations of 10 mM, but were blocked by a 50 mM concentration. In this class of channels we found a wide range of relatively large unitary channel conductances (65-140 pS). Within this group we have characterized two types (75-80 pS and 120-125 pS) that also differ in gating kinetics. The various types of voltage-dependent, Ca2+-activated K+ channels described here were blocked by charybdotoxin added to the external side of the channel. The activity of these channels was increased by exposure to nanomolar concentrations of the catalytic subunit of cAMP-dependent protein kinase. These results indicate that voltage-dependent, charybdotoxin-sensitive Ca2+-activated K+ channels comprise a class of related, but distinguishable channel types. Although the Ca2+-activated (Type I and II) K+ channels can be distinguished by their single-channel properties, both could contribute to the voltage-dependent Ca2+-activated macroscopic K+ current (IC) that has been observed in several neuronal somata preparations, as well as in other cells. Some of the properties reported here may serve to distinguish which type contributes in each case. A third class of smaller (40-50 pS) channels was also studied. These channels were independent of calcium over the concentration range examined (10(-7)-10(-3) M), and were also independent of voltage over the range of pipette potentials of -60 to +60 mV.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
INTRODUCTION: In vascular smooth muscle cells, different types of K+ channels participate in the regulation of membrane potential and consequently in the contractile behavior of the vessel. There is little information about the properties and role of K+ channels in human internal mammary artery (HIMA), the vessel of choice for coronary revascularization. METHODS: Patch-clamp technique on isolated HIMA smooth muscle cells was used. RESULTS: This work presents for the first time single-channel properties of the high conductance Ca2+-activated K+ channel (BK(Ca)) of HIMA. It presents a single-channel conductance of 228+/-4 pS (n=44, 8 cells), is sensitive to 100 nM iberiotoxin, and its open probability is Ca2+- and voltage-dependent. Inside-out results show that BK(Ca) channels in HIMA are directly activated by increasing the pH of intracellular media (NPo=0.096+/-0.032 at pH 7.4 and NPo=0.459+/-0.111 at pH 7.6, n=12 cells, p<0.05) and inhibited by lowering this pH (NPo=0.175+/-0.067 at pH 7.4 and NPo=0.051+/-0.019 at pH 6.8, n=13 cells, p<0.05). CONCLUSIONS: The evidences presented about single-channel properties and intracellular pH sensitivity of BK(Ca) from HIMA smooth muscle cells provide useful information to elucidate physiological or pathological mechanisms in this vessel, as well as for future studies where drugs could have BK(Ca) channels as targets for pharmacological therapies.  相似文献   

19.
20.
beta subunits of voltage-gated calcium channels influence channel behavior in numerous ways, including enhancing the targeting of alpha1 subunits to the plasma membrane and shifting the voltage dependence of activation and inactivation. Of the four beta subunits that have been identified, beta 4 is of particular interest because mutation of its alpha1 subunit interaction domain produces severe neurological defects. Its differential distribution in the hippocampus prompted us to examine whether this subunit was responsible for the heterogeneity of hippocampal L-type calcium channels. To study the functional effects of the beta 4 subunit on native L-type calcium channels, we transfected beta 4 cDNA subcloned out of embryonic hippocampal neurons into PC12 cells, a cell line that contains the beta 1, beta 2, and beta 3 subunits but not the beta 4 subunit. Cell-attached single-channel recordings of L-type channel activity from untransfected and transfected PC12 cells compared with recordings obtained from hippocampal neurons revealed an effect of the beta 4 subunit on single-channel conductance. L-type channels in untransfected PC12 cells had a significantly smaller conductance (19.8 picosiemens (pS)) than L-type channels in hippocampal neurons (22 pS). After transfection of beta 4, however, L-type single-channel conductance was indistinguishable between the two cell types. Our data suggest that calcium channel beta 4 subunits affect the conductance of L-type calcium channels and that native hippocampal L-type channels contain the beta 4 subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号