首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.

Background  

The mitochondrial DNA (mtDNA) of the cloned sheep "Dolly" and nine other ovine clones produced by somatic cell nuclear transfer (SCNT) was reported to consist only of recipient oocyte mtDNA without any detectable mtDNA contribution from the nucleus donor cell. In cattle, mouse and pig several or most of the clones showed transmission of nuclear donor mtDNA resulting in mitochondrial heteroplasmy. To clarify the discrepant transmission pattern of donor mtDNA in sheep clones we analysed the mtDNA composition of seven fetuses and five lambs cloned from fetal fibroblasts.  相似文献   

2.
Epigenetic perturbations are assumed to be responsible for abnormalities observed in fetuses and offspring derived by in vitro techniques. We have designed an experiment with bovine Day 80 fetuses generated by somatic cell nuclear transfer (SCNT), in vitro fertilization (IVF), and artificial insemination (AI) to determine the relationship between fetal phenotype and genome-wide 5-methylcytosine (5mC) content. When compared with AI controls, SCNT and IVF fetuses displayed significantly increased body weight (61% and 28%), liver weight (100% and 36%), and thorax circumference (20% and 11%). A reduced crown-rump length:thorax circumference ratio (1.175 +/- 0.017 in SCNT and 1.292 +/- 0.018 in IVF vs. 1.390 +/- 0.018 in AI, P < 0.001 and P < 0.002) was the external hallmark of this disproportionate overgrowth phenotype. The SCNT fetuses showed significant hypermethylation of liver DNA in comparison with AI controls (3.46% +/- 0.08% vs. 3.17% +/- 0.09% 5mC, P < 0.03), and the cytosine methylation levels for IVF fetuses (3.34% +/- 0.09%) were, as observed for phenotypic parameters, intermediate to the other groups. Regressions of fetal body and liver weight and thorax circumference on 5mC content of liver DNA were positive (P < 0.073-0.079). Furthermore, a significant negative regression (P < 0.021) of the crown-rump length:thorax circumference ratio on liver 5mC was observed. The 5mC content of placental cotyledon DNA was 46% lower than in liver DNA (P < 0.0001) but did not differ among groups. These data are in striking contrast with the recently reported hypomethylation of DNA from SCNT fetuses and indicate that hypermethylation of fetal tissue, but not placenta, is linked to the overgrowth phenotype in bovine SCNT and IVF fetuses.  相似文献   

3.
Whereas it has been assumed that genetically modified tissues or cells derived from somatic cell nuclear transfer (SCNT) should be accepted by a host of the same species, their immune compatibility has not been extensively explored. To identify acceptance of SCNT-derived cells or tissues, skin grafts were performed between cloned dogs that were identical except for their mitochondrial DNA (mtDNA) haplotypes and foreign gene. We showed here that differences in mtDNA haplotypes and genetic modification did not elicit immune responses in these dogs: 1) skin tissues from genetically-modified cloned dogs were successfully transplanted into genetically-modified cloned dogs with different mtDNA haplotype under three successive grafts over 63 days; and 2) non-transgenic cloned tissues were accepted into transgenic cloned syngeneic recipients with different mtDNA haplotypes and vice versa under two successive grafts over 63 days. In addition, expression of the inserted gene was maintained, being functional without eliciting graft rejection. In conclusion, these results show that transplanting genetically-modified tissues into normal, syngeneic or genetically-modified recipient dogs with different mtDNA haplotypes do not elicit skin graft rejection or affect expression of the inserted gene. Therefore, therapeutically valuable tissue derived from SCNT with genetic modification might be used safely in clinical applications for patients with diseased tissues.  相似文献   

4.
The fate of foreign mitochondrial DNA (mtDNA) following somatic cell nuclear transfer (SCNT) is still controversial. In this study, we examined the transmission of the heteroplasmic mtDNA of gaur donor cells and recipient bovine oocytes to an offspring and aborted and mummified fetuses at various levels during the development of gaur-bovine interspecies SCNT (iSCNT) embryos. High levels of the donor cell mtDNA were found in various tissue samples but they did not have any beneficial effect to the survival of iSCNT offspring. However, the factors on mtDNA inheritance are unique for each iSCNT experiment and depend on the recipient oocyte and donor cell used, which might play an important role in the efficiency of iSCNT.  相似文献   

5.
Reconstructed embryos derived from intersubspecies somatic cell nuclear transfer (SCNT) have poorer developmental potential than those from intrasubspecies SCNT. Based on our previous study that Holstein dairy bovine (HD) mitochondrial DNA (mtDNA) haplotype compatibility between donor karyoplast and recipient cytoplast is crucial for SCNT embryo development, we performed intersubspecies SCNT using HD as donor karyoplast and Luxi yellow heifer (LY) as recipient cytoplast according to mtDNA haplotypes determined by polymerase chain reactionrestriction fragment length polymorphism (PCR-RFLP) analysis. The results demonstrated that intersubspecies mtDNA homotype SCNT embryos had higher pre- and post-implantation developmental competence than intrasubspecies mtDNA heterotype embryos as well as improved blastocyst reprogramming status, including normal H3K9 dimethylation pattern and promoter hypomethylation of pluripotent genes such as Oct4 and Sox2, suggesting that intersubspecies SCNT using LY oocytes maintains HD cloning efficiency and may reprogram HD nuclei to develop into a normal cloned animal ultimately. Our results indicated that karyoplast-cytoplast interactions and mtDNA haplotype compatibility may affect bovine intersubspecies SCNT efficiency. This study on bovine intersubspecies SCNT is valuable for understanding the mechanisms of mtDNA haplotype compatibility between karyoplast and cytoplast impacting the bovine SCNT efficiency, and provides an alternative and economic resource for HD cloning.  相似文献   

6.
Reconstructed embryos derived from intersubspecies somatic cell nuclear transfer(SCNT) have poorer developmental potential than those from intrasubspecies SCNT.Based on our previous study that Holstein dairy bovine(HD) mitochondrial DNA(mtDNA) haplotype compatibility between donor karyoplast and recipient cytoplast is crucial for SCNT embryo development,we performed intersubspecies SCNT using HD as donor karyoplast and Luxi yellow heifer(LY) as recipient cytoplast according to mtDNA haplotypes determined...  相似文献   

7.
Jang G  Hong SG  Oh HJ  Kim MK  Park JE  Kim HJ  Kim DY  Lee BC 《Theriogenology》2008,69(5):556-563
To date, dogs have been cloned with somatic cell nuclear transfer (SCNT), using donor cells derived from large-breed dogs 2 months to 3 years of age. The objective of the present study was to use SCNT to produce a small-breed dog from ear fibroblasts of an aged poodle, using large-breed oocyte donors and surrogate females, and to determine the origin of its mitochondrial DNA (mtDNA) and the length of its telomeres. Oocytes were derived from large-breed donors, matured in vivo, collected by flushing oviducts, and reconstructed with somatic cells derived from an aged (14-year-old) female toy poodle. Oocytes and donor cells were fused by electric stimuli, activated chemically, and transferred into the oviducts of large-breed recipient females. Overall, 358 activated couplets were surgically transferred into the oviducts of 20 recipient dogs. Two recipients became pregnant; only one maintained pregnancy to term, and a live puppy (weighing 190 g) was delivered by Caesarean section. The cloned poodle was phenotypically and genetically identical to the nuclear donor dog; however, its mtDNA was from the oocyte donor, and its mean telomere length was not significantly different from that of the nuclear donor. In summary, we demonstrated that a small-breed dog could be cloned by transferring activated couplets produced by fusion of somatic cells from a small-breed, aged donor female with enucleated in-vivo-matured oocytes of large-breed females, and transferred into the oviduct of large-breed recipient female dogs.  相似文献   

8.
9.
Fetal cells and DNA have been detected in the maternal circulation during and after pregnancy in a few mammalian species. The incidence of similar microchimerism in cattle could have repercussion for the application of modern biotechnologies such as the transfer of transgenic embryos. To determine if feto-maternal leakage can occur in pregnant cows, we have analyzed maternal blood samples for the presence of fetal DNA during gestation and post-partum periods. Y chromosome-specific DNA was detected in up to 73% of blood samples from naturally mated heifers carrying conventional bull calves and a transgene-specific sequence in up to 50% of recipient cows carrying transgenic fetuses. These findings document for the first time that transplacental leakage of fetal DNA into the maternal circulation can occur in cattle despite the epitheliochorial placenta of ruminants, with potential implications for the utilization of recipient cows in the food chain.  相似文献   

10.
Varying degrees of mitochondrial DNA (mtDNA) heteroplasmy have been observed in nuclear transfer embryos, fetuses, and offspring, but the mechanisms leading to this condition are unknown. We have generated a clone of 12 bovine somatic cell nuclear transfer fetuses, using nuclear donor cells, recipient oocytes, and recipient heifers with defined mtDNA genotypes, to study nuclear-mitochondrial interactions and the origins of mtDNA heteroplasmy. Embryos were reconstructed from granulosa cells with Bos taurus mtDNA type A and recipient oocytes collected from three different maternal lineages with B. taurus mtDNA type B, B. taurus mtDNA type C, or B. indicus mtDNA. Sequence differences in the control region (CR) of B. taurus mtDNAs ranged from 6 to 11 nucleotides and differences between B. taurus and B. indicus CRs from 45 to 50 nucleotides. Fetuses were recovered from recipient heifers with B. taurus mtDNA type B on Day 80 after nuclear transfer (eight B. taurus A/B, two B. taurus A/C, and two B. taurus A/B. indicus). Agarose gel analysis of the CR by polymerase chain reaction-based restriction fragment length polymorphism failed to detect nuclear donor mtDNA in 11 investigated tissues of 10 viable fetuses and in DNA samples of two fetuses in resorption (one B. taurus A/B and one B. taurus A/C). A more sensitive analysis of 1801 plasmid clones with CR inserts derived from tissues of a B. taurus A/B. indicus fetus detected no or very low levels of heteroplasmy (0.5-0.7%). However, the analyses detected considerable amounts ( approximately 2.5% and 5%) of recipient heifer mtDNA in blood samples from two fetuses. Our data do not suggest a replicative advantage of somatic nuclear donor cell mtDNA in bovine transmitochondrial clones produced with oocytes from domestic forms of the same or a different aurochs (B. primigenius) subspecies. Detection of mtDNA from the recipient animal in the circulation of two fetuses points to leakage of the placental barrier, mimicking heteroplasmy.  相似文献   

11.
Mitochondrial DNA (mtDNA) is a 16.6 kb genome that encodes for 13 of the 100+ subunits of the electron transfer chain (ETC), whilst the other subunits are encoded by chromosomal DNA. The ETC is responsible for the generation of the majority of cellular ATP through the process of oxidative phosphorylation (OXPHOS). mtDNA is normally inherited from the population present in the mature oocyte just prior to fertilisation. However, following somatic cell nuclear transfer (SCNT), mtDNA can be transmitted from both the donor cell and the recipient oocyte. This heteroplasmic transmission of mtDNA is a random event and does not appear to be related to the amount of mtDNA contributed by the donor cell. The distribution of mtDNA is randomly segregated between blastomeres and differentiating tissues, and therefore the mtDNA complement transmitted to offspring tissue cannot be predicted. mtDNA divergence between the cytoplast and the donor cell in intra- and inter-specific crosses favours a slightly more diverse mtDNA haplotype. However, this is limited as interspecies SCNT (iSCNT) genetic divergence contributes to developmental failure. SCNT embryos demonstrate a plethora of aberrantly reprogrammed characteristics including the uncoordinated regulation of the mtDNA replication factors. This results in increased mtDNA copy number during preimplantation development and propagates the replication of donor cell mtDNA. These failures are likely to be a consequence of incompatible nuclear- and mtDNA -encoded proteins interacting within the ETC thus reducing ATP production. The outcomes would be similar to the severely debilitating or even fatal mtDNA diseases associated with genetic rearrangements to mtDNA or mtDNA depletion type syndromes and have serious implications for any form of karyoplast transfer approach. The only method to overcome the problems of heteroplasmy in SCNT embryos is to completely deplete the donor cell of its mtDNA prior to SCNT.  相似文献   

12.
Inefficiency in the production of cloned animals is most likely due to epigenetic reprogramming errors after somatic cell nuclear transfer (SCNT). In order to investigate whether nuclear reprogramming restores cellular age of donor cells after SCNT, we measured telomere length and telomerase activity in cloned pigs and cattle. In normal pigs and cattle, the mean telomere length was decreased with biological aging. In cloned or transgenic cloned piglets, the mean telomere length was elongated compared to nuclear donor fetal fibroblasts and age-matched normal piglets. In cloned cattle, no increases in mean telomere length were observed compared to nuclear donor adult fibroblasts. In terms of telomerase activity, significant activity was observed in nuclear donor cells and normal tissues from adult or new-born pigs and cattle, with relatively higher activity in the porcine tissues compared to the bovine tissues. Cloned calves and piglets showed the same level of telomerase activity as their respective donor cells. In addition, no difference in telomerase activity was observed between normal and transgenic cloned piglets. However, increased telomerase activity was observed in porcine SCNT blastocysts compared to nuclear donor cells and in vitro fertilization (IVF)-derived blastocysts, suggesting that the elongation of telomere lengths observed in cloned piglets could be due to the presence of higher telomerase activity in SCNT blastocysts. In conclusion, gathering from the comparative studies with cattle, we were able to demonstrate that telomere length in cloned piglets was rebuilt or elongated with the use of cultured donor fetal fibroblasts.  相似文献   

13.
Cloning by somatic cell nuclear transfer (NT) has been accomplished. However, the process itself is inefficient since most clones die before birth and survivors often display various anomalies. In an effort to determine global expression profiles of developmentally regulated liver genes in NT bovine fetuses, we employed a custom-made bovine liver complementary DNA (cDNA) microarray. The NT fetuses in early pregnancy were derived from cumulus cells as the nuclear donor cells. Normal fetuses were derived from in vitro fertilization (IVF) and artificial insemination (AI). Gene expression levels in NT, IVF, and AI fetal livers were obtained by comparing individual fetal liver samples with that of adult liver of nonpregnant cycling cows. Statistical analyses of the expression data showed widespread dysregulation of developmentally important genes in the three NT fetuses examined. It was found that the number of dysregulated genes was within a range of 3.5-7.7% of the tested genes in the NT fetal livers. The analyses revealed that one NT fetus was markedly different in liver gene expression profile from the other two NT fetal livers in which the expression profiles were highly correlated. Thus, our findings demonstrate that widespread dysregulation of liver genes occurs in the developing liver of NT bovine fetuses. It is possible that inappropriate genomic reprogramming after NT is a key factor associated with abnormal gene expressions in the livers of NT fetuses, whereas distinct expression patterns between the fellow cloned fetuses likely have resulted from variable epigenetic status of the donor nuclei.  相似文献   

14.
15.
Cryopreservation could be a useful technique for providing a steady source of oocytes for nuclear transfer and in vitro embryo production. The purpose of this study was to develop a method for cryopreservation of bovine oocytes while maintaining the developmental potential following subsequent in vitro fertilization (IVF) or somatic cell nuclear transfer (SCNT). Following vitrification-thawing, the surviving oocytes were (a) used for parthenogenetic activation, (b) examined for pronuclear formation after IVF, (c) examined for embryo development after IVF, and (d) used for SCNT employing fetal fibroblasts transfected with green fluorescent protein (GFP) gene. While most of the oocytes survived vitrification when the microdrop method was used (92.50%), the cleavage and blastocyst formation rates after parthenogenetic activation were lower (46.5% and 11.1%) than that in the non-vitrified control (86.6% and 13.5%). After IVF, the pronuclear formation (2PN) of fertilized embryos was lower in the vitrified group than in the control (21.7% and 59.9%). After SCNT, fusion rates were similar in control (58.33%) and vitrified-thawed oocytes (53.19%). However, the cleavage (73.1% and 46.3%) and blastocyst formation rates (22.2%, 7.4%; p<0.05) differed between control and vitrified-thawed oocytes. In vitrified-thawed or control oocytes, all embryos reconstructed using fetal fibroblasts transfected with GFP gene showed GFP expression. To evaluate the complete developmental potential, embryos derived from vitrified-thawed and fresh control oocytes were non-surgically transferred to 27 recipients (16 for control and 11 for vitrified-thawed). In the vitrified-thawed group, two pregnancies were detected at day 60, and one of them lasted until day 222. While in the fresh group, one pregnancy maintained to term. In conclusion, vitrified-thawed bovine oocytes could support development into the subsequent stages after IVF and SCNT. In addition, this study showed the possibility of the vitrified-thawed bovine oocytes in the production of transgenic cloned animals. In addition, further studies are required to increase the efficiency of oocyte vitrification for the practical uses and production of live offspring.  相似文献   

16.
Endangered wolves cloned from adult somatic cells   总被引:1,自引:0,他引:1  
Over the world, canine species, including the gray wolf, have been gradually endangered or extinct. Many efforts have been made to recover and conserve these canids. The aim of this study was to produce the endangered gray wolf with somatic cell nuclear transfer (SCNT) for conservation. Adult ear fibroblasts from a female gray wolf (Canis lupus) were isolated and cultured in vitro as donor cells. Because of limitations in obtaining gray wolf matured oocytes, in vivo matured canine oocytes obtained by flushing the oviducts from the isthmus to the infundibulum were used. After removing the cumulus cells, the oocyte was enucleated, microinjected, fused with a donor cell, and activated. The reconstructed cloned wolf embryos were transferred into the oviducts of the naturally synchronized surrogate mothers. Two pregnancies were detected by ultrasonography at 23 days of gestation in recipient dogs. In each surrogate dog, two fetal sacs were confirmed by early pregnancy diagnosis at 23 days, but only two cloned wolves were delivered. The first cloned wolf was delivered by cesarean section on October 18, 2005, 60 days after embryo transfer. The second cloned wolf was delivered on October 26, 2005, at 61 days postembryo transfer. Microsatellite analysis was performed with genomic DNA from the donor wolf, the two cloned wolves, and the two surrogate female recipients to confirm the genetic identity of the cloned wolves. Analysis of 19 microsatellite loci confirmed that the cloned wolves were genetically identical to the donor wolf. In conclusion, we demonstrated live birth of two cloned gray wolves by nuclear transfer of wolf somatic cells into enucleated canine oocyte, indicating that SCNT is a practical approach for conserving endangered canids.  相似文献   

17.
The widespread application of porcine SCNT to biomedical research is being hampered by the large adult size (300-600 lbs) of the commercial breeds commonly used for SCNT. The Yucatan minipig, in contrast, has an adult weight of 140-150 lbs and a long history of utility in biomedical research. In order to combine the wide availability of commercial swine with the biomedical value of the Yucatan minipig, we utilized SCNT using the Yucatan as nuclear donors and commercial swine as both oocyte donors and recipients. Of six recipient gilts receiving 631 SCNT embryos, three went to term and delivered seven piglets, four of which survived to adulthood. Additionally, we obtained fetal fibroblasts from a cloned Yucatan and used them for a second round of SCNT. Of three recipients receiving 315 reconstructed embryos, one went to term and delivered three piglets, one of which survived to adulthood. Both microsatellite and D-loop sequence analysis confirmed that all of the piglets generated were nuclear-mitochondrial hybrids carrying Yucatan nuclear DNA and commercial breed mitochondrial DNA. This report shows that it is possible to produce viable Yucatan SCNT clones and opens up the possibility of developing valuable biomedical models in this porcine breed.  相似文献   

18.
《Theriogenology》2013,79(9):1929-1938
The objective was to investigate the relationship between histone H3 lysine 9 (H3K9) dimethylation (me2) and the histone methyltransferase EHMT2 (also known as G9A) in ovine embryos cloned by somatic cell nuclear transfer (SCNT). Levels of H3K9me2 or EHMT2 were detected (with immunostaining) and compared between SCNT and IVF-derived preimplantation embryos. In one-cell embryos, SCNT zygotes had significantly higher levels of H3K9me2 and EHMT2 than IVF zygotes. In cloned embryos, H3K9me2 remained hypermethylated relative to IVF embryos at two-cell and late developmental stages (morula and blastocyst), with no difference (P > 0.05) between IVF and SCNT embryos in EHMT2 levels from two-cell to blastocyst stages. The EHMT2-specific inhibitor, BIX01294, reduced global H3K9me2 levels in cultured ovine cells or SCNT embryos, but it was not appropriate for somatic cell nuclear transfer because of its high cellular toxicity. We inferred that abnormal H3K9me2 hypermethylation in SCNT embryos may not completely arise from EHMT2 expression error.  相似文献   

19.

Background  

The interaction between the karyoplast and cytoplast plays an important role in the efficiency of somatic cell nuclear transfer (SCNT), but the underlying mechanism remains unclear. It is generally accepted that in nuclear transfer embryos, the reprogramming of gene expression is induced by epigenetic mechanisms and does not involve modifications of DNA sequences. In cattle, oocytes with various mitochondrial DNA (mtDNA) haplotypes usually have different ATP content and can further affect the efficiency of in vitro production of embryos. As mtDNA comes from the recipient oocyte during SCNT and is regulated by genes in the donor nucleus, it is a perfect model to investigate the interaction between donor nuclei and host oocytes in SCNT.  相似文献   

20.
The transmission profiles of sperm mtDNA introduced into fertilized eggs were examined in detail in F1 hybrids of mouse interspecific crosses by addressing three aspects. The first is whether the leaked paternal mtDNA in fertilized eggs produced by interspecific crosses was distributed stably to all tissues after the eggs'' development to adults. The second is whether the leaked paternal mtDNA was transmitted to the subsequent generations. The third is whether paternal mtDNA continuously leaks in subsequent backcrosses. For identification of the leaked paternal mtDNA, we prepared total DNA samples directly from tissues or embryos and used PCR techniques that can detect a few molecules of paternal mtDNA even in the presence of 10(8)-fold excess of maternal mtDNA. The results showed that the leaked paternal mtDNA was not distributed to all tissues in the F1 hybrids or transmitted to the following generations through the female germ line. Moreover, the paternal mtDNA leakage was limited to the first generation of an interspecific cross and did not occur in progeny from subsequent backcrosses. These observations suggest that species-specific exclusion of sperm mtDNA in mammalian fertilized eggs is extremely stringent, ensuring strictly maternal inheritance of mtDNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号