首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In malaria endemic regions, a fetus is often exposed in utero to Plasmodium falciparum blood-stage Ags. In some newborns, this can result in the induction of immune suppression. We have previously shown these modulated immune responses to persist postnatally, with a subsequent increase in a child's susceptibility to infection. To test the hypothesis that this immune suppression is partially mediated by malaria-specific regulatory T cells (T(regs)) in utero, cord blood mononuclear cells (CBMC) were obtained from 44 Kenyan newborns of women with and without malaria at delivery. CD4(+)CD25(lo) T cells and CD4(+)CD25(hi) FOXP3(+) cells (T(regs)) were enriched from CBMC. T(reg) frequency and HLA-DR expression on T(regs) were significantly greater for Kenyan as compared with North American CBMC (p < 0.01). CBMC/CD4(+) T cells cultured with P. falciparum blood-stage Ags induced production of IFN-γ, IL-13, IL-10, and/or IL-5 in 50% of samples. Partial depletion of CD25(hi) cells augmented the Ag-driven IFN-γ production in 69% of subjects with malaria-specific responses and revealed additional Ag-reactive lymphocytes in previously unresponsive individuals (n = 3). Addition of T(regs) to CD4(+)CD25(lo) cells suppressed spontaneous and malaria Ag-driven production of IFN-γ in a dose-dependent fashion, until production was completely inhibited in most subjects. In contrast, T(regs) only partially suppressed malaria-induced Th2 cytokines. IL-10 or TGF-β did not mediate this suppression. Thus, prenatal exposure to malaria blood-stage Ags induces T(regs) that primarily suppress Th1-type recall responses to P. falciparum blood-stage Ags. Persistence of these T(regs) postnatally could modify a child's susceptibility to malaria infection and disease.  相似文献   

2.
The mechanisms underlying the modulation of both the malaria-specific immune response and the course of clinical malaria in the context of concomitant helminth infection are poorly understood. We used multiparameter flow cytometry to characterize the quality and the magnitude of malaria-specific T cell responses in filaria-infected and -uninfected individuals with concomitant asymptomatic Plasmodium falciparum malaria in Mali. In comparison with filarial-uninfected subjects, filarial infection was associated with higher ex vivo frequencies of CD4(+) cells producing IL-4, IL-10, and IL-17A (p = 0.01, p = 0.001, and p = 0.03, respectively). In response to malaria Ag stimulation, however, filarial infection was associated with lower frequencies of CD4(+) T cells producing IFN-γ, TNF-α, and IL-17A (p < 0.001, p = 0.04, and p = 0.04, respectively) and with higher frequencies of CD4(+)IL10(+)T cells (p = 0.0005). Importantly, filarial infection was associated with markedly lower frequencies of malaria Ag-specific Th1 (p < 0.0001), Th17 (p = 0.012), and "TNF-α" (p = 0.0008) cells, and a complete absence of malaria-specific multifunctional Th1 cells. Filarial infection was also associated with a marked increase in the frequency of malaria-specific adaptive regulatory T/Tr1 cells (p = 0.024), and the addition of neutralizing anti-IL-10 Ab augmented the amount of Th1-associated cytokine produced per cell. Thus, among malaria-infected individuals, concomitant filarial infection diminishes dramatically the frequencies of malaria-specific Th1 and Th17 T cells, and alters the quality and magnitude of malaria-specific T cell responses.  相似文献   

3.
We tested the hypothesis that immature APC, whose NF-kappaB-signaling pathway and thus maturation was blocked by the proteosome inhibitor benzyloxycarbonyl-isoleucyl-glutamyl(O-tert-butyl)-alanyl-leucinal (PSI), could be a source of Ag-specific regulatory T (Treg) cells. DO11.10 CD4(+) T cells that were incubated with Ag- and PSI-pulsed APC proliferated poorly, produced less IL-2, IFN-gamma, and IL-10 in secondary cultures, and inhibited the response of both naive and memory CD4(+) T cells stimulated by Ag-pulsed APC. The generation of PSI-APC Treg cells required IL-10 production by APC. PSI-APC Treg cell inhibition required cell-cell contact but not IL-10 or TGF-beta. Addition of IL-2 did not reverse, but Ab to CTLA-4 did reverse partially the inhibitory effect. Depletion of CD25(+) T cells before initial culture with PSI-APC did not affect Treg generation. PSI-APC Treg cells expressed high levels of Foxp3, inhibited proliferation of naive DO11.10 T cells in vivo, and abrogated colitis driven by a memory Th1 response to bacterial-associated Ag. We conclude that NF-kappaB-blocked, immature APC are able to induce the differentiation of Treg cells that can function in vitro and in vivo in an Ag-specific manner.  相似文献   

4.
Plasmacytoid dendritic cells (PDCs) have been shown to present Ags and to contribute to peripheral immune tolerance and to Ag-specific adaptive immunity. However, modulation of adaptive immune responses by selective Ag targeting to PDCs with the aim of preventing autoimmunity has not been investigated. In the current study, we demonstrate that in vivo Ag delivery to murine PDCs via the specifically expressed surface molecule sialic acid binding Ig-like lectin H (Siglec-H) inhibits Th cell and Ab responses in the presence of strong immune stimulation in an Ag-specific manner. Correlating with sustained low-level MHC class II-restricted Ag presentation on PDCs, Siglec-H-mediated Ag delivery induced a hyporesponsive state in CD4(+) T cells leading to reduced expansion and Th1/Th17 cell polarization without conversion to Foxp3(+) regulatory T cells or deviation to Th2 or Tr1 cells. Siglec-H-mediated delivery of a T cell epitope derived from the autoantigen myelin oligodendrocyte glycoprotein to PDCs effectively delayed onset and reduced disease severity in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis by interfering with the priming phase without promoting the generation or expansion of myelin oligodendrocyte glycoprotein-specific Foxp3(+) regulatory T cells. We conclude that Ag delivery to PDCs can be harnessed to inhibit Ag-specific immune responses and prevent Th cell-dependent autoimmunity.  相似文献   

5.
The delivery of CD40 signaling to APCs during T cell priming enhances many T cell-mediated immune responses. Although CD40 signaling up-regulates APC production of IL-12, the impact of this increased production on T cell priming is unclear. In this study an IL-12-independent T cell-mediated immune response, contact hypersensitivity (CHS), was used to further investigate the effect of CD40 ligation on the phenotypic development of Ag-specific CD4(+) and CD8(+) T cells. Normally, sensitization for CHS responses induces hapten-specific CD4(+) T cells producing type 2 cytokines and CD8(+) T cells producing IFN-gamma. Treatment of mice with agonist anti-CD40 mAb during sensitization with the hapten 2,4-dinitrofluorobenzene resulted in CHS responses of increased magnitude and duration. These augmented responses in anti-CD40 Ab-treated mice correlated with increased numbers of hapten-specific CD4(+) and CD8(+) T cells producing IFN-gamma in the skin draining lymph nodes. Identical results were observed using IL-12(-/-) mice, indicating that CD40 ligation promotes CHS responses and development of IFN-gamma-producing CD4(+) and CD8(+) T cells in the absence of IL-12. Engagement of CD40 on hapten-presenting Langerhans cells (hpLC) up-regulated the expression of both class I and class II MHC and promoted hpLC migration into the T cell priming site. These results indicate that hpLC stimulated by CD40 ligation use a mechanism distinct from increased IL-12 production to promote Ag-specific T cell development to IFN-gamma-producing cells.  相似文献   

6.
The involvement of the MHC in the recognition of Ag by avian T lymphocytes was analyzed. PBL from chickens primed with keyhole limpet hemocyanin in vivo were induced to synthesize DNA in an in vitro response to specific Ag. Responding cells were T cells as judged by immunofluorescence staining. In vivo Ag-primed PBL were stimulated in vitro with specific Ag and further propagated in the presence of IL-2. Subsequent Ag-specific T cell proliferation required the presence of Ag-pulsed peripheral blood adherent cells (APC). T cell responses were restricted by the MHC of the APC; Ag presented by allogeneic APC did not support T cell proliferation. By using MHC-recombinant chicken lines, the gene products controlled by MHC class II loci were shown to restrict the T cell-APC interaction. This conclusion was substantiated by the inhibition of the Ag-specific T cell response by a mAb against chicken MHC class II gene products but not by a mAb against chicken MHC class I gene products.  相似文献   

7.
Plasmacytoid dendritic cells (pDC) are the body's main source of IFN-alpha, but, unlike classical myeloid DC (myDC), they lack phagocytic activity and are generally perceived as playing only a minor role in Ag processing and presentation. We show that murine pDC, as well as myDC, express Fcgamma receptors (CD16/CD32) and can use these receptors to acquire Ag from immune complexes (IC), resulting in the induction of robust Ag-specific CD4(+) and CD8(+) T cell responses. IC-loaded pDC stimulate CD4(+) T cells to proliferate and secrete a mixture of IL-4 and IFN-gamma, and they induce CD8(+) T cells to secrete IL-10 as well as IFN-gamma. In contrast, IC-loaded myDC induce both CD4(+) and CD8(+) T cells to secrete mainly IFN-gamma. These results indicate that pDC can shape an immune response by acquiring and processing opsonized Ag, leading to a predominantly Th2 response.  相似文献   

8.
Concomitant administration of cyclosporin A (CsA) with Ag has been shown to augment the production of Ag-specific IgE in vivo. We demonstrate that addition of CsA also markedly potentiated Ag-specific IgE in vitro. Low doses of CsA (3 and 10 ng/ml) added at the time of culture initiation selectively enhanced Ag-specific IgE but not IgA or IgG1 production, whereas higher doses (30 ng/ml) suppressed production of all the isotypes. Augmented IgE production was found to correlate with enhanced production of IL-4 and diminished production of IFN-gamma. Delayed addition (after 2 days) of low doses of CsA to Ag-stimulated cultures did not potentiate IgE production, even though CsA differentially affected levels of IL-4 and IFN-gamma. CsA enhanced Ag-mediated cognate T/B interaction was not affected by neutralizing doses of anti-IL-4, suggesting Ag-mediated lymphocytic "synapses" may be inaccessible to anti-IL-4. The effect of CsA on Ag presentation was determined by pulsing peritoneal exudate cells, spleen cells, or primed B cells with Ag and low doses of CsA before incubation with primed splenocytes. Enhanced Ag-specific IgE responses were detected with no effect on IL-4 or IFN-gamma levels. Thus, our study indicates that CsA potentiation of Ag-specific IgE response is due to cumulative action of CsA on two independent pathways: first, CsA differentially modulates IL-4 and IFN-gamma levels during the early phase of cognate Th2/B cell interaction; and second, CsA directly affects APC and IgE isotype-specific amplifying cellular components without apparently affecting the secretory levels of IL-4 and IFN-gamma. Dual mechanisms of CsA-potentiated IgE production are consistent with the hypothesis of two-tiered T cell regulation of Ag-specific IgE responses.  相似文献   

9.
10.
IL-17-secreting T (Th17) cells play a protective role in certain bacterial infections, but they are major mediators of inflammation and are pathogenic in organ-specific autoimmune diseases. However, human Th17 cells appear to be resistant to suppression by CD4(+)CD25(+)FoxP3(+) regulatory T cells, suggesting that they may be regulated by alternative mechanisms. Herein we show that IL-10 and TGF-beta suppressed IL-17 production by anti-CD3-stimulated PBMC from normal individuals. TGF-beta also suppressed IL-17 production by purified CD4(+) T cells, whereas the inhibitory effect of IL-10 on IL-17 production appears to be mediated predominantly by its effect on APC. An examination of patients infected with hepatitis C virus (HCV) demonstrated that Ag-specific Th17 cells are induced during infection and that these cells are regulated by IL-10 and TGF-beta. PBMC from HCV Ab-positive donors secreted IL-17, IFN-gamma, IL-10, and TGF-beta in response to stimulation with the HCV nonstructural protein 4 (NS4). Furthermore, NS4 induced innate TGF-beta and IL-10 expression by monocytes from normal donors and at higher levels from HCV-infected patients. Neutralization of TGF-beta, and to a lesser extent IL-10, significantly enhanced NS4-specific IL-17 and IFN-gamma production by T cells from HCV-infected donors. Our findings suggest that both HCV-specific Th1 and Th17 cells are suppressed by NS4-induced production of the innate anti-inflammatory cytokines IL-10 and TGF-beta. This may represent a novel immune subversion mechanism by the virus to evade host-protective immune responses. Our findings also suggest that TGF-beta and IL-10 play important roles in constraining the function of Th17 cells in general.  相似文献   

11.
IL-10 is an immunosuppressive cytokine. Although previous studies have reported that exogenous delivery of IL-10 reduced airway inflammation in experimental allergic airway inflammation, the mechanism of action has not been fully clarified. In this report, we elucidated a mechanism of action of IL-10 in vivo. BALB/c mice were immunized and aerosol challenged with OVA-Ag. We delivered the IL-10 gene to the mice before systemic sensitization or during aerosol Ag challenge by administering an IL-10-producing plasmid vector. Not only presensitization delivery of IL-10, as reported, but also delivery during inflammation strongly suppressed the development of airway eosinophilia and hyperreactivity. Presensitization delivery suppressed the Ag-specific Th2-type immune response in both the lung and spleen. In contrast, delivery in the effector phase suppressed the Th2 response only in the lung, whereas that in the spleen was not affected. IL-10 gene delivery did not induce the development of a regulatory phenotype of T cells or dendritic cells; rather, it suppressed the overall functions of CD11c(+) APCs of the lung such as Ag-presenting capacity, cytokine production, and transportation of OVA-Ag to lymph nodes, thus attenuating Th2-mediated allergic airway inflammation. Further, IL-10 revealed a distinct immunosuppressive effect in the presence of Ag and APCs. These results suggest that suppression of APC function in the lung, the site of immune response, played a critical role in the IL-10-mediated suppression of Ag-induced airway inflammation and hyperreactivity. Therefore, if delivered selectively, IL-10 could site specifically suppress the Ag-specific immune response without affecting systemic immune responses.  相似文献   

12.
T cell-APC interactions are essential for the initiation of effector responses against foreign and self-antigens, but the role of these interactions in generating different populations of effector T cells in vivo remains unclear. Using a model of CD4(+) T cell responses to a systemic self-antigen without adjuvants or infection, we demonstrate that activation of APCs augments Th17 responses much more than Th1 responses. Recognition of systemic Ag induces tolerance in self-reactive CD4(+) T cells, but induction of CD40 signaling, even under tolerogenic conditions, results in a strong, Ag-specific IL-17 response without large numbers of IFN-γ-producing cells. Transfer of the same CD4(+) T cells into lymphopenic recipients expressing the self-antigen results in uncontrolled production of IL-17, IFN-γ, and systemic inflammation. If the Ag-specific T cells lack CD40L, production of IL-17 but not IFN-γ is decreased, and the survival time of recipient mice is significantly increased. In addition, transient blockade of the initial MHC class II-dependent T cell-APC interaction results in a greater reduction of IL-17 than of IFN-γ production. These data suggest that Th17 differentiation is more sensitive to T cell interactions with APCs than is the Th1 response, and interrupting this interaction, specifically the CD40 pathway, may be key to controlling Th17-mediated autoimmunity.  相似文献   

13.
Ag-specific and MHC-restricted Th clones of different Ag specificities and MHC haplotypes were tested for their ability to produce soluble factors capable of providing the signals required for B cell activation and IgG antibody production. Each of five Th clones tested generated significant helper activity in supernatants derived from coculture of the T cell clone with specific Ag and syngeneic APC. The same helper activity was detected in supernatants of clones stimulated with immobilized anti-CD3 antibody in the absence of Ag or APC. The secreted helper activity resembled the activity of the intact Th cells in that it was Ag-specific, carrier-hapten-linked and MHC-restricted. These T cell products functioned to activate only those B cells expressing MHC products which corresponded to the specificity of each Th clone. Thus, the specificity of the cell-free T cell product mimicked precisely that expressed by the intact Th cell and presumably mediated by the cell surface TcR. In addition to the apparent presence of specific helper factor in Th clone supernatants, a role for nonspecific lymphokines was also identified in these preparations. Although recombinant or purified IL-4 alone was not sufficient to stimulate hapten-primed B cells to secrete hapten-specific IgG antibodies, mAb specific for IL-4 blocked the induction of antibody secretion by Th cell supernatant. These results indicate that stimulation of B cells to produce hapten-specific IgG antibody requires at least two distinct signals: an Ag-specific T cell signal which is restricted by MHC products expressed on the B cells, and a nonspecific signal mediated at least in part by the lymphokine IL-4.  相似文献   

14.
We showed previously that cecal bacterial Ag (CBA)-specific CD4(+) T cells induce colitis when transferred into SCID mice. The purpose of this study was to generate and characterize CBA-specific regulatory T cells in C3H/HeJBir (Bir) mice. CD4(+) T cells were stimulated with CBA-pulsed APC in the presence of IL-10 every 10-14 days. After four or more cycles, these T cells produced high levels of IL-10, low levels of IL-4 and IFN-gamma, and no IL-2, consistent with the phenotype of T regulatory-1 (Tr1) cells. Bir Tr1 cells proliferated poorly, but their proliferation was dependent on CD28-B7 interactions and was MHC class II-restricted. Transfer of Bir Tr1 cells into SCID mice did not result in colitis, and cotransfer of Bir Tr1 T cells with pathogenic Bir CD4(+) Th1 cells prevented colitis. Bir Tr1 cells inhibited proliferation and IFN-gamma production of a CBA-specific Th1 cell line in vitro. Such inhibition was partly due to IL-10 and TGFbeta1, but cognate interactions with either APCs or Th1 cells were also involved. Normal intestinal lamina propria CD4(+) T cells had Tr1-like activity when stimulated with CBA-pulsed APCs. We conclude that CD4(+) T cells with the properties of Tr1 cells are present in the intestinal lamina propria and hypothesize that these cells maintain intestinal immune homeostasis to the enteric flora.  相似文献   

15.
Our previous studies showed that an adenovirus (Ad) serotype 5 vector expressing Flt3 ligand (Ad-FL) as nasal adjuvant activates CD11c(+) dendritic cells (DCs) for the enhancement of antigen (Ag)-specific IgA antibody (Ab) responses. In this study, we examined the molecular mechanism for activation of CD11c(+) DCs and their roles in induction of Ag-specific Th1- and Th2-cell responses. Ad-FL activated CD11c(+) DCs expressed increased levels of the Notch ligand (L)-expression and specific mRNA. When CD11c(+) DCs from various mucosal and systemic lymphoid tissues of mice given nasal OVA plus Ad-FL were cultured with CD4(+) T cells isolated from non-immunized OVA TCR-transgenic (OT II) mice, significantly increased levels of T cell proliferative responses were noted. Furthermore, Ad-FL activated DCs induced IFN-γ, IL-2 and IL-4 producing CD4(+) T cells. Of importance, these APC functions by Ad-FL activated DCs were down-regulated by blocking Notch-Notch-L pathway. These results show that Ad-FL induces CD11c(+) DCs to the express Notch-ligands and these activated DCs regulate the induction of Ag-specific Th1- and Th2-type cytokine responses.  相似文献   

16.
To investigate the potential role of endogenous IL-15 in mycobacterial infection, we examined protective immunity in IL-15-deficient (IL-15(-/-)) mice after infection with Mycobacterium bovis bacillus Calmette-Guérin (BCG) or recombinant OVA-expressing BCG (rBCG-OVA). IL-15(-/-) mice exhibited an impaired protection in the lung on day 120 after BCG infection as assessed by bacterial growth. CD4(+) Th1 response capable of producing IFN-gamma was normally detected in spleen and lung of IL-15(-/-) mice on day 120 after infection. Although Ag-specific CD8 responses capable of producing IFN-gamma and exhibiting cytotoxic activity were detected in the lung on day 21 after infection with rBCG-OVA, the responses were severely impaired on days 70 and 120 in IL-15(-/-) mice. The degree of proliferation of Ag-specific CD8(+) T cells in IL-15(-/-) mice was similar to that in wild-type mice during the course of infection with rBCG-OVA, whereas sensitivity to apoptosis of Ag-specific CD8(+) T cells significantly increased in IL-15(-/-) mice. These results suggest that IL-15 plays an important role in the development of long-lasting protective immunity to BCG infection via sustaining CD8 responses in the lung.  相似文献   

17.
CTLs can acquire MHC class I-peptide complexes from their target cells, whereas CD4(+) T cells obtain MHC class II-peptide complexes from APCs in a TCR-specific manner. As a consequence, Ag-specific CTL can kill each other (fratricide) or CD4(+) T cells become APCs themselves. The purpose of the acquisition is not fully understood and may be either inhibition or prolongation of an immunological response. In this study, we demonstrate that human CD4(+) Th cells are able to capture membrane fragments from APC during the process of immunological synapse formation. The fragments contain not only MHC class II-peptide complexes but also MHC class I-peptide complexes, rendering these cells susceptible to CTL killing in an Ag-specific manner. The control of CD4(+) Th cells by Ag-specific CTL, therefore, maybe another mechanism to regulate CD4(+) T cell expansion in normal immune responses or cause immunopathology during the course of viral infections such as HIV.  相似文献   

18.
Interactions between CD4(+) T cells in vivo are controlled by a balance between cooperation and competition. In this study the interaction between two populations of CD4(+) T cells of different MHC/peptide specificity was probed at different precursor frequencies, delivering one or both Ags to APC using particle-mediated DNA delivery. Expansion of clonal populations of Ag (OVA and pigeon cytochrome c-specific) CD4(+) T cells was limited at higher precursor frequencies, presumably reflecting intraclonal competition. In contrast, a strong enhancement of the number of cells expressing IFN-gamma, IL-4, and IL-2 was observed in populations of cells at low precursor frequency in the presence of a high frequency of activated cells of a different Ag specificity. The helper effect was most potent when both Ags were delivered to the same dendritic cell (i.e., linked). This reflects the requirement of epicrine or paracrine help for optimal activation of T cell clones at low frequency. A measure of help was also delivered in an endocrine manner (unlinked), especially for Th1 responses, suggesting that there is also limited diffusion of cytokines between dendritic cell clusters. The dominant effects of cooperation over competition between CD4(+) T cells responding to different Ags may have important implications in terms of the efficacy of multivalent vaccines.  相似文献   

19.
The secreted goblet cell-derived protein resistin-like molecule beta (RELMbeta) has been implicated in divergent functions, including a direct effector function against parasitic helminths and a pathogenic function in promoting inflammation in models of colitis and ileitis. However, whether RELMbeta influences CD4(+) T cell responses in the intestine is unknown. Using a natural model of intestinal inflammation induced by chronic infection with gastrointestinal helminth Trichuris muris, we identify dual functions for RELMbeta in augmenting CD4(+) Th1 cell responses and promoting infection-induced intestinal inflammation. Following exposure to low-dose Trichuris, wild-type C57BL/6 mice exhibit persistent infection associated with robust IFN-gamma production and intestinal inflammation. In contrast, infected RELMbeta(-/-) mice exhibited a significantly reduced expression of parasite-specific CD4(+) T cell-derived IFN-gamma and TNF-alpha and failed to develop Trichuris-induced intestinal inflammation. In in vitro T cell differentiation assays, recombinant RELMbeta activated macrophages to express MHC class II and secrete IL-12/23p40 and enhanced their ability to mediate Ag-specific IFN-gamma expression in CD4(+) T cells. Taken together, these data suggest that goblet cell-macrophage cross-talk, mediated in part by RELMbeta, can promote adaptive CD4(+) T cell responses and chronic inflammation following intestinal helminth infection.  相似文献   

20.
Distinct IFN-gamma and IL-2 profiles of Ag-specific CD4(+) T cells have recently been associated with different clinical disease states and Ag loads in viral infections. We assessed the kinetics and functional profile of Mycobacterium tuberculosis Ag-specific T cells secreting IFN-gamma and IL-2 in 23 patients with untreated active tuberculosis when bacterial and Ag loads are high and after curative treatment, when Ag load is reduced. The frequencies of M. tuberculosis Ag-specific IFN-gamma-secreting T cells declined during 28 mo of follow-up with an average percentage decline of 5.8% per year (p = 0.005), while the frequencies of Ag-specific IL-2-secreting T cells increased during treatment (p = 0.02). These contrasting dynamics for the two cytokines led to a progressive convergence of the frequencies of IFN-gamma- and IL-2-secreting cells over 28 mo. Simultaneous measurement of IFN-gamma and IL-2 secretion at the single-cell level revealed a codominance of IFN-gamma-only secreting and IFN-gamma/IL-2 dual secreting CD4(+) T cells in active disease that shifted to dominance of IFN-gamma/IL-2-secreting CD4(+) T cells and newly detectable IL-2-only secreting CD4(+) T cells during and after treatment. These distinct T cell functional signatures before and after treatment suggest a novel immunological marker of mycobacterial load and clinical status in tuberculosis that now requires validation in larger prospective studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号