首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
【背景】大肠杆菌拓扑异构酶Ⅰ(Escherichia coli topoisomerase I,E.coli TopA)在DNA复制、转录、重组和基因表达调控等过程发挥关键作用。研究表明E.coli TopA只有结合锌离子才具有活性,然而E.coli TopA能否结合其他金属离子尤其是重金属离子,以及结合其他金属后是否具有活性,目前仍不清楚。【目的】探究大肠杆菌拓扑异构酶Ⅰ是否结合环境中常见重金属离子,研究重金属离子结合E.coli TopA蛋白后对其活性的影响。【方法】在分别添加有锌、钴、镍、镉、铁、汞、砷、铬、铅、铜离子的M9基础培养中表达、纯化出E.coli TopA蛋白,并对纯化得到的蛋白用电感耦合等离子体质谱仪进行相应金属离子含量的测定;利用表达E.coli TopA锌指结构的突变体蛋白鉴定重金属离子的结合位点;通过体外超螺旋DNA松弛实验测定不同金属结合E.coli TopA的拓扑异构酶活性;通过测定蛋白内源性荧光推测不同金属结合E.coli TopA的空间构象差异。【结果】E.coli TopA在体内除了能结合锌和铁之外,还能够结合钴、镍、镉3种离子,但是不能结合汞、砷、铬、铅、铜离子。钴、镍、镉结合形式的E.coli TopA,每个蛋白分子最多可以结合3个相应的金属离子,他们与TopA蛋白的结合位点也是位于3个锌指结构域,而且每个锌指结构域结合1个金属离子。此外,E.coli TopA结合钴、镍、镉离子后,其DNA拓扑异构酶活性并未受到影响,可能是由于钴、镍、镉离子结合形式的E.coli TopA蛋白,其空间构象与锌结合形式相比并未发生显著变化。【结论】由于DNA拓扑异构酶在维持细胞正常生理功能中发挥关键作用,研究表明E.coli TopA的功能不会受到常见重金属的干扰(不结合或者结合后活性无影响),这也有可能是大肠杆菌在进化过程中产生的对抗环境中重金属离子毒害作用的一种自我保护和耐受机制,具有重要的生理意义。  相似文献   

2.
A detailed understanding of the catalytic mechanism of enzymes is an important step toward improving their activity for use in biotechnology. In this paper, crystal soaking experiments and X-ray crystallography were used to analyse the mechanism of the Agrobacterium radiobacter phosphotriesterase, OpdA, an enzyme capable of detoxifying a broad range of organophosphate pesticides. The structures of OpdA complexed with ethylene glycol and the product of dimethoate hydrolysis, dimethyl thiophosphate, provide new details of the catalytic mechanism. These structures suggest that the attacking nucleophile is a terminally bound hydroxide, consistent with the catalytic mechanism of other binuclear metallophosphoesterases. In addition, a crystal structure with the potential substrate trimethyl phosphate bound non-productively demonstrates the importance of the active site cavity in orienting the substrate into an approximation of the transition state.  相似文献   

3.
Metal cofactors of lysine-2,3-aminomutase.   总被引:1,自引:0,他引:1  
Lysine-2,3-aminomutase from Clostridium SB4 contains iron and sulfide in equimolar amounts, as well as cobalt, zinc, and copper. The iron and sulfide apparently constitute an Fe-S cluster that is required as a cofactor of the enzyme. Although no B12 derivative can be detected, enzyme-bound cobalt is a cofactor; however, the zinc and copper bound to the enzyme do not appear to play a role in its catalytic activity. These conclusions are supported by the following facts reported in this paper. Purification of the enzyme under anaerobic conditions increases the iron and sulfide content. Lysine-2,3-aminomutase purified from cells grown in media supplemented with added CoCl2 contains higher levels of cobalt and correspondingly lower levels of zinc and copper relative to enzyme from cells grown in media not supplemented with cobalt. The specific activity of the purified enzyme increases with increasing iron and sulfide content, and it also increases with increasing cobalt and with decreasing zinc and copper content. The zinc and copper appear to occupy cobalt sites under conditions of insufficient cobalt in the growth medium, and they do not support the activity of the enzyme. The best preparations of lysine-2,3-aminomutase obtained to date exhibit a specific activity of approximately 23 units/mg of protein and contain about 12 g atoms of iron and of sulfide per mol of hexameric enzyme. These preparations also contain 3.5 g atoms of cobalt per mol, but even the best preparations contain small amounts of zinc and copper. The sum of cobalt, zinc, and copper in all preparations analyzed to date corresponds to 5.22 +/- 0.75 g atoms per mol of enzyme. An EPR spectrum of the enzyme as isolated reveals a signal corresponding to high spin Co(II) at temperatures below 20 K. The signal appears as a partially resolved 59Co octet centered at an apparent g value of 7. The 59Co hyperfine splitting (approximately 35 G) is prominent at 4.2 K. These findings show that lysine-2,3-aminomutase requires Fe-S clusters and cobalt as cofactors, in addition to the known requirement for pyridoxal 5'-phosphate and S-adenosylmethionine.  相似文献   

4.
A detailed understanding of the catalytic mechanism of enzymes is an important step toward improving their activity for use in biotechnology. In this paper, crystal soaking experiments and X-ray crystallography were used to analyse the mechanism of the Agrobacterium radiobacter phosphotriesterase, OpdA, an enzyme capable of detoxifying a broad range of organophosphate pesticides. The structures of OpdA complexed with ethylene glycol and the product of dimethoate hydrolysis, dimethyl thiophosphate, provide new details of the catalytic mechanism. These structures suggest that the attacking nucleophile is a terminally bound hydroxide, consistent with the catalytic mechanism of other binuclear metallophosphoesterases. In addition, a crystal structure with the potential substrate trimethyl phosphate bound non-productively demonstrates the importance of the active site cavity in orienting the substrate into an approximation of the transition state.  相似文献   

5.
chlD gene function in molybdate activation of nitrate reductase.   总被引:24,自引:19,他引:5       下载免费PDF全文
chlD mutants of Escherichia coli lack active nitrate reductase but form normal levels of this enzyme when the medium is supplemented with 10-3 M molybdate. When chlD mutants were grown in unsupplemented medium and then incubated with molybdate in the presence of chloramphenicol, they formed about 5% the normal level of nitrate reductase. Some chlD mutants or the wild type grown in medium supplemented with tungstate accumulated an inactive protein which was electrophoretically identical to active nitrate reductase. Addition of molybdate to those cells in the presence of chloramphenicol resulted in the formation of fully induced levels of nitrate reductase. Two chlD mutants, including a deletion mutant, failed to accumulate the inactive protein and to form active enzyme under the same conditions. Insertion of 99-Mo into the enzyme protein paralleled activation; 185-W could not be demonstrated to be associated with the accumulated inactive protein. The rates of activation of nitrate reductase at varying molybdate concentrations indicated that the chlD gene product facilitates the activation of nitrate reductase at concentrations of molybdate found in normal growth media. At high concentrations, molybdate circumvented this function in chlD mutants and appeared to activate nitrate reductase by a mass action process. We conclude that the chlD gene plays two distinguishable roles in the formation of nitrate reductase in E. coli. It is involved in the accumulation of fully induced levels of the nitrate reductase protein in the cell membrane and it facilitates the insertion of molybdenum to form the active enzyme.  相似文献   

6.
Glyoxalase II is a hydrolytic enzyme part of the glyoxalase system, responsible for detoxifying several cytotoxic compounds employing glutathione. Glyoxalase II belongs to the superfamily of metallo-beta-lactamases, with a conserved motif able to bind up to two metal ions in their active sites, generally zinc. Instead, several eukaryotic glyoxalases II have been characterized with different ratios of iron, zinc, and manganese ions. We have expressed a gene coding for a putative member of this enzyme superfamily from Salmonella typhimurium that we demonstrate, on the basis of its activity, to be a glyoxalase II, named GloB. Recombinant GloB expressed in Escherichia coli was purified with variable amounts of iron, zinc, and manganese. All forms display similar activities, as can be shown from protein expression in minimal medium supplemented with specific metal ions. The crystal structure of GloB solved at 1.4 A shows a protein fold and active site similar to those of its eukaryotic homologues. NMR and EPR experiments also reveal a conserved electronic structure at the metal site. GloB is therefore able to accommodate these different metal ions and to carry out the hydrolytic reaction with similar efficiencies in all cases. The metal promiscuity of this enzyme (in contrast to other members of the same superfamily) can be accounted for by the presence of a conserved Asp residue acting as a second-shell ligand that is expected to increase the hardness of the metal binding site, therefore favoring iron uptake in glyoxalases II.  相似文献   

7.
Phosphotriesterases catalyze the hydrolytic detoxification of phosphotriester pesticides and chemical warfare nerve agents with various efficiencies. The directed evolution of phosphotriesterases to enhance the breakdown of poor substrates is desirable for the purposes of bioremediation. A limiting factor in the identification of phosphotriesterase mutants with increased activity is the ability to effectively screen large mutant libraries. To this end, we have investigated the possibility of coupling phosphotriesterase activity to cell growth by using methyl paraoxon as the sole phosphorus source. The catabolism of paraoxon to phosphate would occur via the stepwise enzymatic hydrolysis of paraoxon to dimethyl phosphate, methyl phosphate, and then phosphate. The Escherichia coli strain DH10B expressing the phosphotriesterase from Agrobacterium radiobacter P230 (OpdA) is unable to grow when paraoxon is used as the sole phosphorus source. Enterobacter aerogenes is an organism capable of growing when dimethyl phosphate is the sole phosphorus source. The enzyme responsible for hydrolyzing dimethyl phosphate has been previously characterized as a nonspecific phosphohydrolase. We isolated and characterized the genes encoding the phosphohydrolase operon. The operon was identified from a shotgun clone that enabled E. coli to grow when dimethyl phosphate is the sole phosphorus source. E. coli coexpressing the phosphohydrolase and OpdA grew when paraoxon was the sole phosphorus source. By constructing a short degradative pathway, we have enabled E. coli to use phosphotriesters as a sole source of phosphorus.  相似文献   

8.
YacG蛋白是一种能够抑制大肠杆菌促旋酶(E.coli gyrase)活性的内源性小分子蛋白质,仅由65 个氨基酸残基组成。核磁共振(NMR)研究发现,YacG结构中含有1个Cys-X2-Cys-X15-Cys-X3-Cys序列的锌指结构域,然而其作用并不清楚。本研究发现,在添加外源锌或者铁的M9基础培养基中,表达并纯化得到分别含有锌和铁的YacG蛋白,而在同时添加铁和L-半胱氨酸的M9基础培养基中可以纯化得到含有铁硫簇的蛋白质。这表明,YacG不仅是一个锌指蛋白,也是铁结合或铁硫簇结合蛋白。定点突变实验发现,YacG锌指结构中的4个半胱氨酸残基突变后,其结合的锌、铁、铁硫簇的含量都显著下降。这提示,锌结合、铁结合以及铁硫簇结合的位点均位于锌指结构域中的4个半胱氨酸残基。体内YacG过表达实验显示,用IPTG在大肠杆菌体内诱导表达野生型YacG蛋白会导致其生长明显受到抑制,而过表达突变体蛋白(YacG-C12/28S)对其生长的抑制作用将会减弱。体外实验进一步发现,锌结合、铁结合以及铁硫簇结合形式的YacG蛋白对E.coli gyrase促DNA螺旋活性的抑制作用没有明显差别,但是锌指结构突变体蛋白(YacG-C12/28S)对gyrase活性的抑制作用显著减弱。这说明,完整的锌指结构对YacG抑制gyrase活性的功能具有重要作用。此研究有可能为gyrase抑制剂类抗生素药物的研发提供有用的线索。  相似文献   

9.
Escherichia coli alkaline phosphatase exhibits maximal activity when Zn(2+) fills the M1 and M2 metal sites and Mg(2+) fills the M3 metal site. When other metals replace the zinc and magnesium, the catalytic efficiency is reduced by more than 5000-fold. Alkaline phosphatases from organisms such as Thermotoga maritima and Bacillus subtilis require cobalt for maximal activity and function poorly with zinc and magnesium. Previous studies have shown that the D153H alkaline phosphatase exhibited very little activity in the presence of cobalt, while the K328W and especially the D153H/K328W mutant enzymes can use cobalt for catalysis. To understand the structural basis for the altered metal specificity and the ability of the D153H/K328W enzyme to utilize cobalt for catalysis, we determined the structures of the inactive wild-type E. coli enzyme with cobalt (WT_Co) and the structure of the active D153H/K328W enzyme with cobalt (HW_Co). The structural data reveal differences in the metal coordination and in the strength of the interaction with the product phosphate (P(i)). Since release of P(i) is the slow step in the mechanism at alkaline pH, the enhanced binding of P(i) in the WT_Co structure explains the observed decrease in activity, while the weakened binding of P(i) in the HW_Co structure explains the observed increase in activity. These alterations in P(i) affinity are directly related to alterations in the coordination of the metals in the active site of the enzyme.  相似文献   

10.
The phosphotriesterase OpdA from Agrobacterium sp. P230 has about 10-fold higher activity for dimethyl organophosphate (OP) insecticides, than its homologue from Flavobacterium sp. ATCC27551, organophosphate hydrolase (OPH). OpdA shows about 10% amino acid sequence divergence from OPH and also has a 20 residue C-terminal extension. Here we show that the difference in kinetics is largely explained by just two amino acid differences between the two proteins. A truncated form of OpdA demonstrated that the C-terminal extension has no effect on its preference for dimethyl organophosphate substrates. Chimeric proteins of OPH and OpdA were then analysed to show that replacement of a central region of OpdA sequence, which encodes the residues in the large subsite of the active site, with the homologous region in OPH decreased the activity of OpdA towards dimethyl OPs, to values close to those for OPH. Site-directed mutagenesis in this region identified two differences between the proteins, Y257H and F272L (with the OpdA residues first) as being responsible for this reduction. These two differences were also responsible for the increased activity of OpdA towards the diisopropyl organophosphate, diisopropyl fluorophosphate, relative to OPH. Molecular modelling of triethyl phosphate in the active site of OpdA confirmed a reduction in the size of the large subsite relative to OPH.  相似文献   

11.
The EF1143 protein from Enterococcus faecalis is a distant homolog of deoxynucleotide triphosphate triphosphohydrolases (dNTPases) from Escherichia coli and Thermus thermophilus. These dNTPases are important components in the regulation of the dNTP pool in bacteria. Biochemical assays of the EF1143 dNTPase activity demonstrated nonspecific hydrolysis of all canonical dNTPs in the presence of Mn(2+). In contrast, with Mg(2+) hydrolysis required the presence of dGTP as an effector, activating the degradation of dATP and dCTP with dGTP also being consumed in the reaction with dATP. The crystal structure of EF1143 and dynamic light scattering measurements in solution revealed a tetrameric oligomer as the most probable biologically active unit. The tetramer contains four dGTP specific allosteric regulatory sites and four active sites. Examination of the active site with the dATP substrate suggests an in-line nucleophilic attack on the α-phosphate center as a possible mechanism of the hydrolysis and two highly conserved residues, His-129 and Glu-122, as an acid-base catalytic dyad. Structural differences between EF1143 apo and holo forms revealed mobility of the α3 helix that can regulate the size of the active site binding pocket and could be stabilized in the open conformation upon formation of the tetramer and dGTP effector binding.  相似文献   

12.
Three forms of the dimeric manganese superoxide dismutase (MnSOD) were isolated from aerobically grown Escherichia coli which contained 2 Mn, 1 Mn and 1 Fe, or 2 Fe, respectively. These are designated Mn2-MnSOD, Mn,Fe-MnSOD, and Fe2-MnSOD. Substitution of iron in place of manganese, eliminated catalytic activity, decreased the isoelectric point, and increased the native electrophoretic anodic mobility, although circular dichroism, high performance liquid chromatography gel exclusion chromatography, and sedimentation equilibrium revealed no gross changes in conformation. Moreover, replacement of iron by manganese restored enzymatic activity. Fe2-MnSOD and the iron-superoxide (FeSOD) of E. coli exhibit distinct optical absorption spectra. These data indicate that the active site environments of E. coli MnSOD and FeSOD must differ. They also indicate that competition between iron and manganese for nascent MnSOD polypeptide chains occurs in vivo, and copurification of these variably substituted MnSODs can explain the substoichiometric manganese contents and the variable specific activities which have been reported for this enzyme.  相似文献   

13.
Abstract

Intoxication by organophosphorous (OP) insecticides and nerve agents is often lethal and currently available therapeutics are often ineffective. A range of catalytic and stoichiometric OP scavengers have been investigated for use as potential treatments for OP poisoning. Recent studies have shown that one enzyme, OpdA, an enzyme involved in organophosphorous degradation, was an effective treatment for OP insecticide poisoning in animal models. Here we have tested OpdA for its ability to detoxify G- and V-type nerve agents in vitro. Although OpdA was found to have high catalytic activities for G-series toxins (soman and cyclosarin), it was substantially less active with V-type nerve agents. The activity towards V-series agents was close to the theoretical maximum for this enzyme (i.e. the rate determined by the chemistry of the leaving group); it seems unlikely that enzyme engineering or directed evolution could be used to improve upon this activity without a significant change in its reaction mechanism.  相似文献   

14.
Bacterial hydantoinase possesses a binuclear metal center in which two metal ions are bridged by a posttranslationally carboxylated lysine. How the carboxylated lysine and metal binding affect the activity of hydantoinase was investigated. A significant amount of iron was always found in Agrobacterium radiobacter hydantoinase purified from unsupplemented cobalt-, manganese-, or zinc-amended Escherichia coli cell cultures. A titration curve for the reactivation of apohydantoinase with cobalt indicates that the first metal was preferentially bound but did not give any enzyme activity until the second metal was also attached to the hydantoinase. The pH profiles of the metal-reconstituted hydantoinase were dependent on the specific metal ion bound to the active site, indicating a direct involvement of metal in catalysis. Mutation of the metal binding site residues, H57A, H59A, K148A, H181A, H237A, and D313A, completely abolished hydantoinase activity but preserved about half of the metal content, except for K148A, which lost both metals in its active site. However, the activity of K148A could be chemically rescued by short-chain carboxylic acids in the presence of cobalt, indicating that the carboxylated lysine was needed to coordinate the binuclear ion within the active site of hydantoinase. The mutant D313E enzyme was also active but resulted in a pH profile different from that of wild-type hydantoinase. A mechanism for hydantoinase involving metal, carboxylated K148, and D313 was proposed. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
The three-dimensional structure of the aromatic hydroxylating enzyme naphthalene dioxygenase (NDO) from Pseudomonas sp. NCIB 9816-4 was recently determined. The refinement of the structure together with cyclic averaging showed that in the active site of the enzyme there is electron density for a flat aromatic compound. This compound appears to be an indole adduct, which in Escherichia coli is derived from tryptophan present in the rich culture medium. An indole-dioxygen adduct has been built which fits the electron density convincingly. Support for this interpretation was obtained from crystals of the enzyme purified from cells grown in the absence of tryptophan which had an empty substrate pocket. These types of crystals were soaked in indole solutions and the position of indole in this complex was similar to the corresponding part in the modelled indole-oxygen adduct. This suggests that a peroxide bound to iron end-on attacks the substrate and forms this intermediate. The substrate position has implications for the substrate specificity of the enzyme. Docking studies with indole, naphthalene and biphenyl inside the substrate pocket of NDO suggest the presence of subpockets where the one close to the active site iron is reserved for the binding of the aromatic ring which is hydroxylated upon catalysis. The plausible location for the binding of dioxygen is between this pocket and the catalytic iron. This is in accordance with the enantiospecificity of the products.  相似文献   

16.
Zymomonas mobilis produces more than three times as many colony-forming units when grown in the presence of a combination of protein and lipid medium supplements than in unsupplemented cultures. The specific ethanol production rate is twice as fast, and the percent yield is higher (92% vs 82%), in supplemented than in unsupplemented broth. In addition, there is a change in the phospholipid composition of cells grown in the presence of supplements. Both materials are required for enhancement of fermentation and growth.  相似文献   

17.
Dicamba (2-methoxy-3,6-dichlorobenzoic acid) O-demethylase (DMO) is the terminal Rieske oxygenase of a three-component system that includes a ferredoxin and a reductase. It catalyzes the NADH-dependent oxidative demethylation of the broad leaf herbicide dicamba. DMO represents the first crystal structure of a Rieske non-heme iron oxygenase that performs an exocyclic monooxygenation, incorporating O2 into a side-chain moiety and not a ring system. The structure reveals a 3-fold symmetric trimer (α3) in the crystallographic asymmetric unit with similar arrangement of neighboring inter-subunit Rieske domain and non-heme iron site enabling electron transport consistent with other structurally characterized Rieske oxygenases. While the Rieske domain is similar, differences are observed in the catalytic domain, which is smaller in sequence length than those described previously, yet possessing an active-site cavity of larger volume when compared to oxygenases with larger substrates. Consistent with the amphipathic substrate, the active site is designed to interact with both the carboxylate and aromatic ring with both key polar and hydrophobic interactions observed. DMO structures were solved with and without substrate (dicamba), product (3,6-dichlorosalicylic acid), and either cobalt or iron in the non-heme iron site. The substitution of cobalt for iron revealed an uncommon mode of non-heme iron binding trapped by the non-catalytic Co2+, which, we postulate, may be transiently present in the native enzyme during the catalytic cycle. Thus, we present four DMO structures with resolutions ranging from 1.95 to 2.2 Å, which, in sum, provide a snapshot of a dynamic enzyme where metal binding and substrate binding are coupled to observed structural changes in the non-heme iron and catalytic sites.  相似文献   

18.
Abstract The outer membrane proteins of Escherichia coli and Pseudomonas aeruginosa grown in a number of conventional laboratory media were examined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) High-molecular-weight proteins similar to those produced by these strains in an iron-limited chemically defined medium were detected in cells grown on the surface of various agar media. In contrast, these proteins were not produced or were only poorly expressed by the corresponding broth cultures or by cells grown an agar supplemented with iron. A catecholic substance could be detected in DST agar extracts subsequent to bacterial growth which was produced to a lesser extent in IST agar and in broth cultures.  相似文献   

19.
Oligopeptidases are enzymes involved in the degradation of short peptides (generally less than 30 amino acids in size) which help pathogens evade the host defence mechanisms. Leptospira is a zoonotic pathogen and causes leptospirosis in mammals. Proteome analysis of Leptospira revealed the presence of oligopeptidase A (OpdA) among other membrane proteins. To study the role of oligopeptidase in leptospirosis, the OpdA of L. interrogans was cloned and expressed in Escherichia coli with a histidine tag (His-tag). The protein showed maximum expression at 37 °C with 0.5 mM of IPTG after 2 h of induction. Recombinant OpdA protein was purified to homogeneity using Ni-affinity chromatography. The purified OpdA showed more than 80% inhibition with a serine protease inhibitor but the activity was reduced to 30% with the cysteine protease inhibitor. The peptidase activity was increased significantly in the presence of Zn2+ at a neutral pH. Inhibitor assay indicate the presence of more than one active sites for peptidase activity as reported with the OpdA of E. coli and Salmonella. Over-expression of OpdA in E. coli BL21 (DE3) did not cause any negative effects on normal cell growth and viability. The role of OpdA as virulence factor in Leptospira and its potential as a therapeutic and diagnostic target in leptospirosis is yet to be identified.  相似文献   

20.
Paracoccus pantotrophus grown anaerobically under denitrifying conditions expressed similar levels of the periplasmic nitrate reductase (NAP) when cultured in molybdate- or tungstate-containing media. A native PAGE gel stained for nitrate reductase activity revealed that only NapA from molybdate-grown cells displayed readily detectable nitrate reductase activity. Further kinetic analysis showed that the periplasmic fraction from cells grown on molybdate (3 microM) reduced nitrate at a rate of V(max)=3.41+/-0.16 micromol [NO(3)(-)] min(-1) mg(-1) with an affinity for nitrate of K(m)=0.24+/-0.05 mM and was heat-stable up to 50 degrees C. In contrast, the periplasmic fraction obtained from cells cultured in media supplemented with tungstate (100 microM) reduced nitrate at a much slower rate, with much lower affinity (V(max)=0.05+/-0.002 micromol [NO(3)(-)] min(-1) mg(-1) and K(m)=3.91+/-0.45 mM) and was labile during prolonged incubation at >20 degrees C. Nitrate-dependent growth of Escherichia coli strains expressing only nitrate reductase A was inhibited by sub-mM concentrations of tungstate in the medium. In contrast, a strain expressing only NAP was only partially inhibited by 10 mM tungstate. However, none of the above experimental approaches revealed evidence that tungsten could replace molybdenum at the active site of E. coli NapA. The combined data show that tungsten can function at the active site of some, but not all, molybdoenzymes from mesophilic bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号