首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
肺癌患者红细胞流变特性研究   总被引:2,自引:0,他引:2  
采用旋转式粘度计、激光衍射技术和红细胞沉降法对肺癌患者的血液流变特性进行了实验研究。实验结果表明,肺癌患者的血液粘度比正常对照组高,肺癌患者的红细胞变形能力比正常人低,红细胞沉降速度比正常人大。  相似文献   

2.
This paper describes a procedure, based on Tikhonov regularization, for obtaining the shear rate function or equivalently the viscosity function of blood from Couette viscometry data. For data sets that include points where the sample in the annulus is partially sheared the yield stress of blood will also be obtained. For data sets that do not contain partially sheared points, provided the shear stress is sufficiently low, a different method of estimating the yield stress is proposed. Both the shear rate function and yield stress obtained in this investigation are independent of any rheological model of blood. This procedure is applied to a large set of Couette viscometer data taken from the literature. Results in the form of shear rate and viscosity functions and yield stress are presented for a wide range of hematocrits and are compared against those reported by the originators of the data and against independently measured shear properties of blood.  相似文献   

3.
《Biorheology》1996,33(4-5):397-404
A newly designed type of oscillating viscometer is described. The viscometer consists of either a tube or a rod oscillating at a resonance frequency with amplitudes in the micro- and nanometer range. A fluid flowing through the tube or surrounding the rod damps the torsional oscillations. The increase in the damping depends on the viscosity of the fluid and is used to determine viscosity. It was found that viscosity measurements are feasible during blood flow. This new type of viscometer may be useful to the study of biophysical properties of blood at the wall surface during flow and give new insights into blood flow. The device allows direct viscosity measurement on blood directly as it is drawn from the vein through the tube without any anticoagulant.  相似文献   

4.
Effect of temperature on the velocity of erythrocyte aggregation   总被引:1,自引:0,他引:1  
The velocity of the aggregation of human erythrocytes was examined in the range of 5-43 degrees C with a rheoscope combined with a video camera, an image analyzer and a computer. (1) With increasing temperature, the velocity of erythrocyte aggregation induced by fibrinogen, immunoglobulin G and artificial macromolecules (dextran of 70 kDa and poly(glutamic acid) of 50 kDa) increased. However, the relationship between the velocity of erythrocyte aggregation and the temperature was different among these macromolecules. (2) In 70% autologous plasma, the velocity of erythrocyte aggregation was minimum at 15-18 degrees C, and increased at both higher and lower temperatures. (3) The shape of erythrocyte aggregates in 12 mumol/l fibrinogen (containing 770 mumol/l albumin) and in 70% autologous plasma was dependent on temperature: three-dimensional below 15-18 degrees C and one-dimensional (mainly rouleaux) above 15-18 degrees C. However, the shape of aggregates in 27 mumol/l immunoglobulin G (containing 770 mumol/l albumin) was three-dimensional in all temperature ranges. (4) The temperature dependency of erythrocyte aggregation was discussed in terms of the changes of medium viscosity, of erythrocyte properties and of bridging macromolecules.  相似文献   

5.
The Hemorheometer has been adapted to allow the recording of the flow rate during the filtration process. For newtonian fluids, the flow rate variation versus time through the pores is well approximated by Poiseuille's law. For dilute red blood cell suspensions, the same analysis can be applied by introducing the concept of "apparent filtration viscosity" which is higher than the usual viscosity measured by Couette viscometry. The apparent filtration viscosity parameter is related to the deformations undergone by red blood cells as they pass through the narrow pores. Apparent filtration viscosity can be used to obtain a precise determination of the erythrocyte deformability. Measurements performed, for a given blood sample, with pores of different diameters (5 microns, 8 microns and 12 microns) show that the error on the value of apparent filtration viscosity is less than 3%. As a result, the sensitivity of the filtration method allows to discriminate among normal blood samples. High concentrations of erythrocytes or leucocytes are found to modify the apparent filtration viscosity. These factors are apparent in the recorded filtration curves. Their effects on filtration measurements can be easily estimated.  相似文献   

6.
The present paper introduces an innovative contact-free optical viscosity measurement technique, laser-induced capillary wave (LiCW) using pulsed YAG laser as a heating source, to measure whole-blood viscosity with only a microliter-order sample volume and measurement time on the millisecond order. In this method, interfering pulsed laser beams heat a whole-blood sample and generate a capillary wave, the amplitude of which is less than 10 nm with wavelength of 80–100 μm in the present experiment, caused by a spatially sinusoidal temperature distribution. The damped oscillation of the capillary wave, which is detected by a diffracted probing laser beam at the heated area, provides information regarding the viscosity and surface tension of the whole blood. To demonstrate the validity of the present laser-induced capillary wave viscometer, the viscosity of human whole blood taken from two healthy donors having different hematocrit values was measured using 90 μl sample volumes at 37°C. To consider the feasibility of the present technique for blood rheological studies, we discuss the characteristics of LiCW regarding the non-Newtonian behavior of blood, the velocity boundary layer, the existence of a free surface, and the temperature increase of the blood, and also demonstrate the capability of the method to sense the temporal evolution of blood viscosity with sampling frequency of 0.25 Hz.  相似文献   

7.
Blood viscosity changes with many pathologic conditions, but its importance has not been fully investigated because the current methods of measurement are poorly suited for clinical applications. The use of viscosity-sensitive fluorescent molecular rotors to determine fluid viscosity in a nonmechanical manner has been investigated recently, but it is unknown how the precision of the fluorescence-based method compares to established mechanical viscometry. Human blood plasma viscosity was modulated with high-viscosity plasma expanders, dextran, pentastarch, and hetastarch. The samples were divided into a calibration and a test set. The relationship between fluorescence emission and viscosity was established using the calibration set. Viscosity of the test set was determined by fluorescence and by cone-and-plate viscometer, and the precision of both methods compared. Molecular rotor fluorescence intensity showed a power law relationship with solution viscosity. Mechanical measurements deviated from the theoretical viscosity value by less than 7.6%, while fluorescence-based measurements deviated by less than 6%. The average coefficient of variation was 6.9% (mechanical measurement) and 3.4% to 3.8% (fluorescence-based measurement, depending on the molecular rotor used). Fluorescence-based viscometry exhibits comparable precision to mechanical viscometry. Fluorescence viscometry does not apply shear and is therefore more practical for biofluids which have apparent non-Newtonian properties. In addition, fluorescence instrumentation makes very fast serial measurements possible, thus promising new areas of application in laboratory and clinical settings.  相似文献   

8.
A Sakanishi  J D Ferry 《Biorheology》1983,20(5):519-529
The complex viscosity eta* has been measured of bovine red blood cells suspended in a medium of isotonic NaCl solutions including dextran and buffered with potassium phosphate at pH 7.0. A multiple lumped resonator apparatus was used at the frequencies of 144, 572, 1491, 3742, and 8026 Hz at 20.0 degrees C. Due to the high molecular weight of dextran the medium also exhibited some visco-elasticity eta s*. So we adopted the complex specific viscosity eta sp* = (eta*-eta s*)/[eta s*]. At 20.0 degrees C eta sp* decreased with the frequency where the hematocrit was 0.233 and eta s 0.34 poise. The measurements were made for the medium with different viscosity at 5.0 degrees C and 25.0 degrees C. The results are compared with the theory of elastic shells.  相似文献   

9.
旨以研究杜仲绿原酸对高脂高胆固醇诱导的高血脂模型小鼠血液流变学的影响,以昆明小鼠为实验动物,随机分成5组:阴性对照组,模型对照组和低剂量(25 mg/kg BW)、中剂量(50 mg/kg BW)、高剂量(100 mg/kg BW)杜仲绿原酸组,每组10只.后4组饲以高脂饲粮,同时小鼠灌胃杜仲绿原酸4周,实验结束,分别测定各组小鼠血液流变学参数、血清和肝脏的抗氧化酶活性和脂质过氧化产物MDA含量及其总抗氧化能力和羟自由基清除率.高脂血症小鼠的全血粘度、血浆粘度、红细胞压积、血沉、纤维蛋白原、红细胞刚性指数和聚集指数显著降低(P<0.05),红细胞变形指数显著提高(P<0.05),小鼠血清和肝脏SOD、GSH-Px水平、总抗氧化能力和羟自由基清除能力均显著升高(P<0.05),MDA水平显著降低(P<0.05).在高脂膳食条件下,杜仲绿原酸能有效提高血液的抗氧化防御功能(包括抗氧化力、抗氧化酶活性)、改变血液流变学参数等,降低血液粘度、红细胞刚性和聚集,增强变形能力,使细胞膜的流动性增高,其中以中剂量效果相对较好.  相似文献   

10.
Effect and mechanism of simulated weightlessness (SWL) in humans and rabbits erythrocyte deformation were studied. Erythrocyte deformation and membrane fluidity in humans and rabbits, and erythrocyte morphology and hemorreology indices in control and HDT rabbits were measured. The results were a decrease in erythrocyte deformation and membrane fluidity in humans and rabbits during SWL, a significant increase in abnormal erythrocyte, blood viscosity, hematocrit, fibrinogen, and red blood cell aggregation index in HDT rabbits. These results show that the changes in erythrocyte shape, increase of erythrocyte internal viscosity and changes in erythrocyte visco-elasticity may be causing the decrease of erythrocyte deformation in SWL humans and rabbits.  相似文献   

11.
The steady flow viscosity at shear rates 0 to 120 sec-1 and dynamic viscoelasticity at frequencies 0.02 to 0.8 Hz were determined for aqueous suspensions of uniform polystyrene microspheres of 1.0 micron diameter. Rheological properties of the microsphere suspensions were Newtonian for particle concentrations up to 32%. By introducing dextran and calcium chloride into the particle suspensions, non-Newtonian behavior was produced similar to that observed for human blood. The cooperative effects of dextran and calcium ions promoted aggregation of particles at a concentration as low as 12%. Thus, a suspension of uniform sized spherical polystyrene particles in aqueous solution of dextran may be made to mimic blood by controlling the surface charge on the polystyrene spheres using addition of calcium ions to the medium.  相似文献   

12.
M Donner  M Siadat  J F Stoltz 《Biorheology》1988,25(1-2):367-375
Erythro-aggregometer is a Couette viscometer which was developed to measure aggregation parameters of red blood cells. The system is based on the analysis of the light intensity backscattered by a blood suspension. It allows to approach aggregation phenomenon in terms of kinetics, structural and rheological parameters. The measurement system designed for use with a microcomputer is suitable for both research and clinical investigations.  相似文献   

13.
《Biorheology》1997,34(3):235-247
Low-shear viscometry is one of the methods commonly used to estimate the degree of red blood cell (RBC) aggregation in various bloods and RBC suspensions. However, it has been previously shown that alterations in RBC morphology and mechanical behavior can affect the low-shear apparent viscosity of RBC suspensions; RBC aggregation is also sensitive to these cellular factors. This study used heat treatment (48°C, 5 min), glutaraldehyde (0.005–0.02%) and hydrogen peroxide (1 mM) to modify cell geometry and deformability. Red blood cell aggregation was assessed via a Myrenne Aggregometer (“M” and “Ml” indexes), RBC suspension viscosity was measured using a Contraves LS-30 viscometer, and RBC shape response to fluid shear stresses (i.e., deformability) was determined by ektacytometry (LORCA system). Our results indicate that low-shear apparent viscosity and related indexes may not always reflect changes of RBC aggregation if cellular properties are altered: for situations where RBC aggregation has been only moderately affected, cellular mechanical factors may be the major determinant of low-shear viscosity. These findings thus imply that in situations which may be associated alterations of RBC geometry and/or deformability, low-shear viscometry should not be the sole measurement technique used to assess RBC aggregation.  相似文献   

14.
The relationship between hemorheology, erythrocyte ATP and 2,3-diphosphoglycerate (2,3-DPG) concentrations, and von Willebrand factor antigen was studied in athletes and peripheral arterial disease patients. Lower blood viscosity, mainly due to a higher erythrocyte deformability, was found in athletes compared to control subjects. Higher 2,3-DPG/Ht levels in athletes were correlated with blood viscosity, erythrocyte deformability, the rigidity index, and erythrocyte suspension viscosity at low shear stress. It is suggested that these relationships might be determined by the predominance of immature erythrocytes in the blood circulation of the athletes. In the group of patients, a decrease in ATP/Ht was related to increased erythrocyte aggregation and a higher erythrocyte suspension viscosity. Moreover, the concentration of von Willebrand factor was positively correlated with the erythrocyte aggregation index, erythrocyte suspension viscosity, and plasma viscosity. The results show that alterations in erythrocyte and plasma rheology may be involved in the modification of the functional state of the vascular endothelium and the development of atherosclerosis.  相似文献   

15.
Experimental investigation of the rheological activation of blood platelets   总被引:1,自引:0,他引:1  
In order to define various aspects of platelet rheological activation, samples of whole blood and platelet-rich plasma (PRP) from the same donors were subjected for 5 min to shear rates increasing from 10 to 10000 sec-1 (shear stresses from 10(-2) to 30 Pa approximatively) in a Couette type viscometer. The following parameters were measured: erythrocyte hemolysis; lactic dehydrogenase activity; plasma B-Thromboglobulin (B-TG); adenine nucleotides, and platelet photometric aggregation. The experimental results reveal that: In whole blood, hemolysis only reached at maximum 2% of the total hemolysis. Plasma LDH activity increased regularly beyond 500 sec-1, in close correlation with B-TG plasma concentration. In contrast, ADP and ATP levels remained stable up to 1000 sec-1 then increased slowly. In PRP, the LDH, ADP and ATP levels remain practically stable up to shear rates around 5000 sec-1. In contrast, B-TG appeared to be released in plasma at shear rate values of 3000 sec-1 and its progression is only correlated with the other parameters, when the platelet lysis occurred. Finally, a rapid and complete inhibition of platelet aggregation to ADP was observed from 5000 sec-1.  相似文献   

16.
The role of hydrogen bonding in red cell aggregation induced by dextran was studied with the use of urea, an inhibitor for hydrogen bonding. In order to avoid hemolysis of red cells by the high concentration of urea, the studies were performed on human red cells hardened in glutaraldehyde. The degree of red cell aggregation at Hct = 45% was estimated by the use of a coaxial cylinder viscometer. The viscometric aggregation index (VAI) was calculated from viscosity values at shear rates of 52 sec-1 (eta H) and 0.05 sec-1 (eta L); VAI = (eta L - eta H)/eta H. Red cells with surface charge intact and with charge removal by neuraminidase treatment were studied. Urea at high concentrations, e.g., 6 M, significantly inhibited red cell aggregation induced by dextran. These findings indicate that hydrogen bonding plays an important role in dextran-induced red cell aggregation. An understanding of the nature of the forces involved in red cell aggregation serves to establish the physicochemical principles of cell-to-cell interactions induced by macromolecules.  相似文献   

17.
We investigated the hemorheological, hematological and biochemical parameters in 30 cases of acute lymphocytic leukemia (ALL), 21 cases of acute myelogenous leukemia (AML) and 30 cases of chronic myelogenous leukemia (CML). The parameters studied include whole blood viscosity, plasma viscosity, erythrocyte sedimentation rate (ESR), red cell filterability, hematocrit, platelet count and aggregation, fibrinogen, hemoglobin, leucocyte count, bleeding time and lactate dehydrogenase activity (LDH). In the cases of ALL we observed significant decrease in whole blood viscosity, hemoglobin, hematocrit and platelet count but an increase in plasma viscosity, fibrinogen, bleeding time and LDH activity. In the cases of AML, we observed increase in whole blood viscosity, plasma viscosity, ESR, fibrinogen, leucocyte count, bleeding time and LDH activity but decrease in the hemoglobin, hematocrit and platelet count. In the cases of CML, we observed an increase of whole blood viscosity, plasma viscosity, ESR, fibrinogen elevation but decreases in bleeding time. In all cases, red cell filterability was unaffected.  相似文献   

18.
Hydroxyethyl starch (HES) has often been used as a plasma expander, but questions still remain concerning the mechanisms by which it produces changes in the rheological properties of blood and erythrocyte (RBC) suspensions under various flow conditions. The present investigation has shown that the dynamic viscosity of HES (232,000 and 565,000 daltons) solutions rises in a nonlinear fashion with increasing HES concentration, and for a given concentration of HES exhibits Newtonian behavior at shear rates between 0.15 to 124 sec-1. At low (less than 0.9 sec-1) shear rates the apparent viscosity of a 40% RBC suspension increases with lower concentrations of HES because of RBC aggregation. At higher concentrations of HES, increases in suspension viscosity are due to an increase in the viscosity of the continuous phase since the RBC are largely disaggregated. At high (greater than 36 sec-1) shear rates the relative viscosity (eta/eta O) of RBC suspensions slowly decreases with increasing HES concentration. At low shear rates eta/eta O increases and then decreases with increasing HES concentration. Evidence of the concentration-dependent effects of HES on RBC aggregation is provided not only by the viscometric analysis but also from measurements of erythrocyte sedimentation rate (ESR) and the zeta sedimentation ratio (ZSR). HES is a more potent aggregating agent in phosphate buffered saline (PBS) than it is in plasma. Polymer size has only a slight effect on the extent of RBC aggregation produced, but does have a significant effect on the concentration of polymer at which maximum aggregation occurs. The viscosity-corrected electrophoretic mobility of RBC in HES rises monotonically with the concentration of HES in the suspending medium. Decreases in the extent of RBC aggregation with increasing polymer concentrations probably result from an increase in the electrostatic repulsive forces between the cells.  相似文献   

19.
A novel viscous sensor utilizing AT-cut quartz crystal to monitor the viscosity of fermentation broth was developed. The sensor system was constructed from the piezoelectric quartz crystal fixed to the cell, exposing only one side of the quartz crystal electrode, an oscillating circuit, a peak level meter, and a personal computer. In order to investigate the characteristics of the sensor system, a sensor signal relating to the resonant resistance of the quartz crystal was measured using dextran solutions with different molecular weights. The linear relationship was obtained between the sensor signal and the (rhoeta)(1/2) of the liquid, where rho and eta are the density and viscosity, respectively. The sensor signal was dependent not only on the viscosity of the liquid but also on the molecular weight of dextran, because dextran solution shows a non-Newtonian property. The sensor system was applied for the on-line monitoring of the viscosity in dextran fermentation. A good correlation was observed between the sensor signal and the viscosity value measured with a rotational viscometer for the fermentation broth. Little bubbling effect and agitation of the sensor signal were observed, showing that this system can be utilized for viscosity monitoring in a bioprocess.  相似文献   

20.
The effect of chronic long-term intermittent hypobaric hypoxia (CLTIHH) on blood rheology is not completely investigated. We designed this study to determine the effect of CLTIHH on blood rheology parameters. Present study was performed in 16 male Spraque-Dawley rats that divided into CLTIHH and Control groups. To obtain CLTIHH, rats were placed in a hypobaric chamber (430 mmHg; 5 hours/day, 5 days/week, 5 weeks). The control rats stayed in the same environment as the CLTIHH rats but they breathed room air. In the blood samples aspirated from the heart, hematocrit, whole blood viscosity, plasma viscosity, plasma fibrinogen concentration, erythrocyte rigidity index and oxygen delivery index were determined. The whole blood viscosity, plasma viscosity, hematocrit and fibrinogen concentration values in the CLTIHH group were found to be higher than those of the control group. However, no significant difference was found in erythrocyte rigidity index and oxygen delivery index between the groups. Our results suggested that CLTIHH elevated whole blood viscosity by increasing plasma viscosity, fibrinogen concentration and hematocrit value without effecting the erythrocyte deformability. Hence, CLTIHH that may occur in intermittent high altitude exposure and some severe obstructive sleep apnea (OSA) patients may be responsible for hemorheologic changes in those subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号