首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We combined tracer and arteriovenous (a-v) balance techniques to evaluate the effects of exercise and endurance training on leg triacylglyceride turnover as assessed by glycerol exchange. Measurements on an exercising leg were taken to be a surrogate for working skeletal muscle. Eight men completed 9 wk of endurance training [5 days/wk, 1 h/day, 75% peak oxygen consumption (Vo(2peak))], with leg glycerol turnover determined during two pretraining trials [45 and 65% Vo(2peak) (45% Pre and 65% Pre, respectively)] and two posttraining trials [65% of pretraining Vo(2peak) (ABT) and 65% of posttraining Vo(2peak) (RLT)] using [(2)H(5)]glycerol infusion, femoral a-v sampling, and measurement of leg blood flow. Endurance training increased Vo(2peak) by 15% (45.2 +/- 1.2 to 52.0 +/- 1.8 mlxkg(-1)xmin(-1), P < 0.05). At rest, there was tracer-measured leg glycerol uptake (41 +/- 8 and 52 +/- 15 micromol/min for pre- and posttraining, respectively) even in the presence of small, but significant, net leg glycerol release (-68 +/- 19 and -50 +/- 13 micromol/min, respectively; P < 0.05 vs. zero). Furthermore, while there was no significant net leg glycerol exchange during any of the exercise bouts, there was substantial tracer-measured leg glycerol turnover during exercise (i.e., simultaneous leg muscle uptake and leg release) (uptake, release: 45% Pre, 194 +/- 41, 214 +/- 33; 65% Pre, 217 +/- 79, 201 +/- 84; ABT, 275 +/- 76, 312 +/- 87; RLT, 282 +/- 83, 424 +/- 75 micromol/min; all P < 0.05 vs. corresponding rest). Leg glycerol turnover was unaffected by exercise intensity or endurance training. In summary, simultaneous leg glycerol uptake and release (indicative of leg triacylglyceride turnover) occurs despite small or negligible net leg glycerol exchange, and furthermore, leg glycerol turnover can be substantially augmented during exercise.  相似文献   

2.
To evaluate the contribution of working muscle to whole body lipid oxidation, we examined the effects of exercise intensity and endurance training (9 wk, 5 days/wk, 1 h, 75% Vo(2 peak)) on whole body and leg free fatty acid (FFA) kinetics in eight male subjects (26 +/- 1 yr, means +/- SE). Two pretraining trials [45 and 65% Vo(2 max) (45UT, 65UT)] and two posttraining trials [65% of pretraining Vo(2 peak) (ABT), and 65% of posttraining Vo(2 peak) (RLT)] were performed using [1-(13)C]palmitate infusion and femoral arteriovenous sampling. Training increased Vo(2 peak) by 15% (45.2 +/- 1.2 to 52.0 +/- 1.8 ml.kg(-1).min(-1), P < 0.05). Muscle FFA fractional extraction was lower during exercise (EX) compared with rest regardless of workload or training status ( approximately 20 vs. 48%, P < 0.05). Two-leg net FFA balance increased from net release at rest ( approximately -36 micromol/min) to net uptake during EX for 45UT (179 +/- 75), ABT (236 +/- 63), and RLT (136 +/- 110) (P < 0.05), but not 65UT (51 +/- 127). Leg FFA tracer measured uptake was higher during EX than rest for all trials and greater during posttraining in RLT (716 +/- 173 micromol/min) compared with pretraining (45UT 450 +/- 80, 65UT 461 +/- 72, P < 0.05). Leg muscle lipid oxidation increased with training in ABT (730 +/- 163 micromol/min) vs. 65UT (187 +/- 94, P < 0.05). Leg muscle lipid oxidation represented approximately 62 and 30% of whole body lipid oxidation at lower and higher relative intensities, respectively. In summary, training can increase working muscle tracer measured FFA uptake and lipid oxidation for a given power output, but both before and after training the association between whole body and leg lipid metabolism is reduced as exercise intensity increases.  相似文献   

3.
Motor center activity and reflexes from contracting muscle have been shown to be important for mobilization of free fatty acids (FFA) during exercise. We studied FFA metabolism in the absence of these mechanisms: during involuntary, electrically induced leg cycling in individuals with complete spinal cord injury (SCI). Healthy subjects performing voluntary cycling served as controls (C). Ten SCI (level of injury: C5-T7) and six C exercised for 30 min at comparable oxygen uptake rates (approximately 1 l/min), and [1-14C]palmitate was infused continuously to estimate FFA turnover. From femoral arteriovenous differences, blood flow, muscle biopsies, and indirect calorimetry, leg substrate balances as well as concentrations of intramuscular substrates were determined. Leg oxygen uptake was similar in the two groups during exercise. In SCI, but not in C, plasma FFA and FFA appearance rate fell during exercise, and plasma glycerol increased less than in C (P < 0.05). Fractional uptake of FFA across the working legs decreased from rest to exercise in all individuals (P < 0.05) but was always lower in SCI than in C (P < 0.05). From rest to exercise, leg FFA uptake increased less in SCI than in C subjects (14 +/- 3 to 57 +/- 20 vs. 41 +/- 13 to 170 +/- 57 micromol x min(-1) x leg(-1); P < 0.05). Muscle glycogen breakdown, leg glucose uptake, carbohydrate oxidation, and lactate release were higher (P < 0.05) in SCI than in C during exercise. Counterregulatory hormonal changes were more pronounced in SCI vs. C, whereas insulin decreased only in C. In conclusion, FFA mobilization, delivery, and fractional uptake are lower and muscle glycogen breakdown and glucose uptake are higher in SCI patients during electrically induced leg exercise compared with healthy subjects performing voluntary exercise. Apparently, blood-borne mechanisms are not sufficient to elicit a normal increase in fatty acid mobilization during exercise. Furthermore, in exercising muscle, FFA delivery enhances FFA uptake and inhibits carbohydrate metabolism, while carbohydrate metabolism inhibits FFA uptake.  相似文献   

4.
This study examined the effects of elevated free fatty acid (FFA) provision on the regulation of pyruvate dehydrogenase (PDH) activity and malonyl-CoA (M-CoA) content in human skeletal muscle during moderate-intensity exercise. Seven men rested for 30 min and cycled for 10 min at 40% and 10 min at 65% of maximal O(2) uptake while being infused with either Intralipid and heparin (Int) or saline (control). Muscle biopsies were taken at 0, 1 (rest-to-exercise transition), 10, and 20 min. Exercise plasma FFA were elevated (0.99 +/- 0.11 vs. 0.33 +/- 0.03 mM), and the respiratory exchange ratio was reduced during Int (0.87 +/- 0.02) vs. control (0.91 +/- 0.01). PDH activation was lower during Int at 1 min (1.33 +/- 0.19 vs. 2.07 +/- 0.14 mmol. min(-1). kg(-1) wet muscle) and throughout exercise. Muscle pyruvate was reduced during Int at rest [0.17 +/- 0.03 vs. 0.25 +/- 0.03 mmol/kg dry muscle (dm)] but increased above control during exercise. NADH was higher during Int vs. control at rest and 1 min of exercise (0.122 +/- 0.016 vs. 0.102 +/- 0.005 and 0.182 +/- 0.016 vs. 0.150 +/- 0.016 mmol/kg dm), but not at 10 and 20 min. M-CoA was lower during Int vs. control at rest and 20 min of exercise (1.12 +/- 0.22 vs. 1.43 +/- 0.17 and 1.33 +/- 0.16 vs. 1.84 +/- 0.17 micromol/kg dm). The reduced PDH activation with elevated FFA during the rest-to-exercise transition was related to higher mitochondrial NADH at rest and 1 min of exercise and lower muscle pyruvate at rest. The decreased M-CoA may have increased fat oxidation during exercise with elevated FFA by reducing carnitine palmitoyltransferase I inhibition and increasing mitochondrial FFA transport.  相似文献   

5.
We examined 1) the effect of L-carnitine supplementation on free fatty acid (FFA) utilization during exercise and 2) exercise-induced alterations in plasma levels and skeletal muscle exchange of carnitine. Seven moderately trained human male subjects serving as their own controls participated in two bicycle exercise sessions (120 min, 50% of VO2max). The second exercise was preceded by 5 days of oral carnitine supplementation (CS; 5 g daily). Despite a doubling of plasma carnitine levels, with CS, there were no effects on exercise-induced changes in arterial levels and turnover of FFA, the relation between leg FFA inflow and FFA uptake, or the leg exchange of other substrates. Heart rate during exercise after CS decreased 7-8%, but O2 uptake was unchanged. Exercise before CS induced a fall from 33.4 +/- 1.6 to 30.8 +/- 1.0 (SE) mumol/l in free plasma carnitine despite a release (2.5 +/- 0.9 mumol/min) from the leg. Simultaneously, acylated plasma carnitine rose from 5.0 +/- 1.0 to 14.2 +/- 1.4 mumol/l, with no evidence of leg release. Consequently, total plasma carnitine increased. We concluded that in healthy subjects CS does not influence muscle substrate utilization either at rest or during prolonged exercise and that free carnitine released from muscle during exercise is presumably acylated in the liver and released to plasma.  相似文献   

6.
To examine the effect of attenuated epinephrine and elevated insulin on intramuscular hormone sensitivity lipase activity (HSLa) during exercise, seven men performed 120 min of semirecumbent cycling (60% peak pulmonary oxygen uptake) on two occasions while ingesting either 250 ml of a 6.4% carbohydrate (GLU) or sweet placebo (CON) beverage at the onset of, and at 15 min intervals throughout, exercise. Muscle biopsies obtained before and immediately after exercise were analyzed for HSLa. Blood samples were simultaneously obtained from a brachial artery and a femoral vein before and during exercise, and leg blood flow was measured by thermodilution in the femoral vein. Net leg glycerol and lactate release and net leg glucose and free fatty acid (FFA) uptake were calculated from these measures. Insulin and epinephrine were also measured in arterial blood before and throughout exercise. During GLU, insulin was elevated (120 min: CON, 11.4 +/- 2.4, GLU, 35.3 +/- 6.9 pM, P < 0.05) and epinephrine suppressed (120 min: CON, 6.1 +/- 2.5, GLU, 2.1 +/- 0.9 nM; P < 0.05) compared with CON. Carbohydrate feeding also resulted in suppressed (P < 0.05) HSLa relative to CON (120 min: CON, 1.71 +/- 0.18, GLU, 1.27 +/- 0.16 mmol.min-1.kg dry mass-1). There were no differences in leg lactate or glycerol release when trials were compared, but leg FFA uptake was lower (120 min: CON, 0.29 +/- 0.06, GLU, 0.82 +/- 0.09 mmol/min) and leg glucose uptake higher (120 min: CON, 3.16 +/- 0.59, GLU, 1.37 +/- 0.37 mmol/min) in GLU compared with CON. These results demonstrate that circulating insulin and epinephrine play a role in HSLa in contracting skeletal muscle.  相似文献   

7.
Changes in plasma lipid and apolipoprotein profiles were evaluated in 12 healthy, unfit subjects (VO(2peak) 39.1+/-2.8 ml.kg(-1).min(-1); 5 women, 7 men) at baseline and following endurance exercise training. The exercise protocol consisted of a 6-week endurance exercise training program (4-5 days week(-1); 60 min.session(-1); > or =65% HR(max)). Subjects were randomly assigned to consume an egg- (n=6; 12 eggs.week(-1)) or no-egg (n=6; 0 eggs.week(-1))-based, eucaloric, standardized diet for 8 weeks. Both diets were macronutrient balanced [60% carbohydrate, 30% fat, 10% protein (0.8 g.kg(-1).day(-1))] and individually designed for weight maintenance. Plasma lipids were measured twice within the same week at baseline and following exercise training. At baseline, subjects were normolipidemic with values of 163.9+/-41.8, 84.8+/-36.7, 60.6+/-15.4 and 93.1+/-52 mg dl(-1) for total cholesterol, LDL cholesterol and HDL cholesterol and triglyceride concentrations, respectively. A two-way ANOVA was used to analyze diet and exercise effects and interactions. In both groups, endurance exercise training resulted in a significant 10% increase in HDL-C (P<.05), a 19% decrease in Apo B concentrations (P<.05) and reductions in plasma CETP activity (P<.05). Plasma LDL-C decreased by 21% (P=.06). No main effects of diet or interactions with plasma lipids or Apo B concentrations were observed. These data demonstrate that endurance training improved the plasma lipid profiles of previously unfit, normolipidemic subjects independent of dietary cholesterol intake from eggs.  相似文献   

8.
The present experiments were undertaken to assess dynamics of hepatic lactate and glucose balance in the over-night-fasted dog during 150 min of moderate-intensity treadmill exercise and 90 min of exercise recovery. Catheters were implanted chronically in an artery and portal and hepatic veins 16 days before experimentation. 3-3H-glucose was infused to determine hepatic glucose uptake, as well as tracer-determined glucose production by isotope dilution (Ra). At rest, net hepatic lactate output was 0.33 +/- 0.15 mg.kg-1.min-1 and increased to 2.26 +/- 0.82 mg.kg-1.min-1 after 10 min of exercise, after which it fell such that the liver was a net lactate consumer by the end of exercise and through recovery. In contrast to the rapid release of lactate, net hepatic glucose output rose gradually from 2.58 +/- 0.20 mg.kg-1.min-1 at rest to 8.87 +/- 0.85 mg.kg-1.min-1 after 60 min of exercise, beyond which it did not change significantly until the cessation of exercise. Hepatic glucose uptake at rest was 1.38 +/- 0.42 mg.kg-1.min-1 and did not change appreciably during exercise or recovery. Absolute hepatic glucose output (net glucose output plus uptake) rose from 3.96 +/- 0.45 mg.kg-1.min-1 at rest to 10.20 +/- 1.09 mg.kg-1.min-1 after 60 min of exercise and was 9.65 +/- 1.15 mg.kg-1.min-1 at 150 min of exercise. Ra rose from 3.34 +/- 0.21 mg.kg-1.min-1 to 7.58 +/- 0.73 and 8.59 +/- 0.77 mg.kg-1.min-1 at 60 and 150 min, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
We previously reported that epinephrine stimulates leg free fatty acid (FFA) release in men but not in women. The present studies were conducted to determine whether the same is true during exercise. Six men and six women bicycled for 90 min at 45% of peak O(2) consumption, during which time systemic and leg FFA kinetics ([9, 10-(3)H]palmitate) were measured. The catecholamine and hormonal responses to exercise were not different in men and women. The baseline systemic and leg palmitate release was 94 +/- 15 vs. 114 +/- 5 micromol/min and 16 +/- 2 and 20 +/- 3 micromol/min, respectively, in men and women [P = nonsignificant (NS)]. Systemic and leg palmitate release increased (both P < 0.001) to 251 +/- 18 vs. 212 +/- 16 micromol/min and 73 +/- 19 vs. 80 +/- 12 micromol/min in men and women, respectively, during the last 30 min of exercise (P = NS, men vs. women). We conclude that the systemic and leg adipose tissue lipolytic response to exercise is not different in nonobese men and women.  相似文献   

10.
We examined the effects of exercise intensity and a 10-wk cycle ergometer training program [5 days/wk, 1 h, 75% peak oxygen consumption (VO2 peak)] on plasma free fatty acid (FFA) flux, total fat oxidation, and whole body lipolysis in healthy male subjects (n = 10; age = 25.6 +/- 1.0 yr). Two pretraining trials (45 and 65% of VO2 peak) and two posttraining trials (same absolute workload, 65% of old VO2 peak; and same relative workload, 65% of new VO2 peak) were performed by using an infusion of [1-13C]palmitate and [1,1,2,3, 3-2H]glycerol. An additional nine subjects (age 25.4 +/- 0.8 yr) were treated similarly but were infused with [1,1,2,3,3-2H]glycerol and not [1-13C]palmitate. Subjects were studied postabsorptive for 90 min of rest and 1 h of cycling exercise. After training, subjects increased VO2 peak by 9.4 +/- 1.4%. Pretraining, plasma FFA kinetics were inversely related to exercise intensity with rates of appearance (Ra) and disappearance (Rd) being significantly higher at 45 than at 65% VO2 peak (Ra: 8.14 +/- 1.28 vs. 6.64 +/- 0.46, Rd: 8. 03 +/- 1.28 vs. 6.42 +/- 0.41 mol. kg-1. min-1) (P 相似文献   

11.
We examined the effects of 8 wk of intense endurance training on free fatty acid (FFA) transporters and metabolism in resting and contracting soleus muscle using pulse-chase procedures. Endurance training increased maximal citrate synthase activity in red muscles (+54 to +91%; P 相似文献   

12.
Prior exercise decreases postprandial plasma triacylglycerol (TG) concentrations, possibly through changes to skeletal muscle TG extraction. We measured postprandial substrate extraction across the leg in eight normolipidemic men aged 21-46 yr. On the afternoon preceding one trial, subjects ran for 2 h at 64 +/- 1% of maximal oxygen uptake (exercise); before the control trial, subjects had refrained from exercise. Samples of femoral arterial and venous blood were obtained, and leg blood flow was measured in the fasting state and for 6 h after a meal (1.2 g fat, 1.2 g carbohydrate/kg body mass). Prior exercise increased time averaged postprandial TG clearance across the leg (total TG: control, 0.079 +/- 0.014 ml.100 ml tissue(-1).min(-1) ; exercise, 0.158 +/- 0.023 ml.100 ml tissue(-1).min(-1), P <0.01), particularly in the chylomicron fraction, so that absolute TG uptake was maintained despite lower plasma TG concentrations (control, 1.53 +/- 0.13 mmol/l; exercise, 1.01 +/- 0.16 mmol/l, P < 0.001). Prior exercise increased postprandial leg blood flow and glucose uptake (both P < 0.05). Mechanisms other than increased leg TG uptake must account for the effect of prior exercise on postprandial lipemia.  相似文献   

13.
We hypothesized that a period of endurance training would result in a speeding of muscle phosphocreatine concentration ([PCr]) kinetics over the fundamental phase of the response and a reduction in the amplitude of the [PCr] slow component during high-intensity exercise. Six male subjects (age 26 +/- 5 yr) completed 5 wk of single-legged knee-extension exercise training with the alternate leg serving as a control. Before and after the intervention period, the subjects completed incremental and high-intensity step exercise tests of 6-min duration with both legs separately inside the bore of a whole-body magnetic resonance spectrometer. The time-to-exhaustion during incremental exercise was not changed in the control leg [preintervention group (PRE): 19.4 +/- 2.3 min vs. postintervention group (POST): 19.4 +/- 1.9 min] but was significantly increased in the trained leg (PRE: 19.6 +/- 1.6 min vs. POST: 22.0 +/- 2.2 min; P < 0.05). During step exercise, there were no significant changes in the control leg, but end-exercise pH and [PCr] were higher after vs. before training. The time constant for the [PCr] kinetics over the fundamental exponential region of the response was not significantly altered in either the control leg (PRE: 40 +/- 13 s vs. POST: 43 +/- 10 s) or the trained leg (PRE: 38 +/- 8 s vs. POST: 40 +/- 12 s). However, the amplitude of the [PCr] slow component was significantly reduced in the trained leg (PRE: 15 +/- 7 vs. POST: 7 +/- 7% change in [PCr]; P < 0.05) with there being no change in the control leg (PRE: 13 +/- 8 vs. POST: 12 +/- 10% change in [PCr]). The attenuation of the [PCr] slow component might be mechanistically linked with enhanced exercise tolerance following endurance training.  相似文献   

14.
Intramyocellular lipid (IMCL) content has been reported to decrease after prolonged submaximal exercise in active muscle and, therefore, seems to form an important local substrate source. Because exercise leads to a substantial increase in plasma free fatty acid (FFA) availability with a concomitant increase in FFA uptake by muscle tissue, we aimed to investigate potential differences in the net changes in IMCL content between contracting and noncontracting skeletal muscle after prolonged endurance exercise. IMCL content was quantified by magnetic resonance spectroscopy in eight trained cyclists before and after a 3-h cycling protocol (55% maximal energy output) in the exercising vastus lateralis and the nonexercising biceps brachii muscle. Blood samples were taken before and after exercise to determine plasma FFA, glycerol, and triglyceride concentrations, and substrate oxidation was measured with indirect calorimetry. Prolonged endurance exercise resulted in a 20.4 +/- 2.8% (P < 0.001) decrease in IMCL content in the vastus lateralis muscle. In contrast, we observed a substantial (37.9 +/- 9.7%; P < 0.01) increase in IMCL content in the less active biceps brachii muscle. Plasma FFA and glycerol concentrations were substantially increased after exercise (from 85 +/- 6 to 1450 +/- 55 and 57 +/- 11 to 474 +/- 54 microM, respectively; P < 0.001), whereas plasma triglyceride concentrations were decreased (from 1498 +/- 39 to 703 +/- 7 microM; P < 0.001). IMCL is an important substrate source during prolonged moderate-intensity exercise and is substantially decreased in the active vastus lateralis muscle. However, prolonged endurance exercise with its concomitant increase in plasma FFA concentration results in a net increase in IMCL content in less active muscle.  相似文献   

15.
To evaluate the effects of endurance training in rats on fatty acid metabolism, we measured the uptake and oxidation of palmitate in isolated rat hindquarters as well as the content of fatty acid-binding proteins in the plasma membranes (FABP(PM)) of red and white muscles from 16 trained (T) and 18 untrained (UT) rats. Hindquarters were perfused with 6 mM glucose, 1,800 microM palmitate, and [1-(14)C]palmitate at rest and during electrical stimulation (ES) for 25 min. FABP(PM) content was 43-226% higher in red than in white muscles and was increased by 55% in red muscles after training. A positive correlation was found to exist between succinate dehydrogenase activity and FABP(PM) content in muscle. Palmitate uptake increased by 64-73% from rest to ES in both T and UT and was 48-57% higher in T than UT both at rest (39.8 +/- 3.5 vs. 26.9 +/- 4. 4 nmol. min(-1). g(-1), T and UT, respectively) and during ES (69.0 +/- 6.1 vs. 43.9 +/- 4.4 nmol. min(-1). g(-1), T and UT, respectively). While the rats were resting, palmitate oxidation was not affected by training; palmitate oxidation during ES was higher in T than UT rats (14.8 +/- 1.3 vs. 9.3 +/- 1.9 nmol. min(-1). g(-1), T and UT, respectively). In conclusion, endurance training increases 1) plasma free fatty acid (FFA) uptake in resting and contracting perfused muscle, 2) plasma FFA oxidation in contracting perfused muscle, and 3) FABP(PM) content in red muscles. These results suggest that an increased number of these putative plasma membrane fatty acid transporters may be available in the trained muscle and may be implicated in the regulation of plasma FFA metabolism in skeletal muscle.  相似文献   

16.
The effects of dietary supplementation of dihydroxyacetone and pyruvate (DHAP) on metabolic responses and endurance capacity during leg exercise were determined in eight untrained males (20-30 yr). During the 7 days before exercise, a high-carbohydrate diet was consumed (70% carbohydrate, 18% protein, 12% fat; 35 kcal/kg body weight). One hundred grams of either Polycose (placebo) or dihydroxyacetone and pyruvate (treatment, 3:1) were substituted for a portion of carbohydrate. Dietary conditions were randomized, and subjects consumed each diet separated by 7-14 days. After each diet, cycle ergometer exercise (70% of peak oxygen consumption) was performed to exhaustion. Biopsy of the vastus lateralis muscle was obtained before and after exercise. Blood samples were drawn through radial artery and femoral vein catheters at rest, after 30 min of exercise, and at exercise termination. Leg endurance was 66 +/- 4 and 79 +/- 2 min after placebo and DHAP, respectively (P less than 0.01). Muscle glycogen at rest and exhaustion did not differ between diets. Whole leg arteriovenous glucose difference was greater (P less than 0.05) for DHAP than for placebo at rest (0.36 +/- 0.05 vs. 0.19 +/- 0.07 mM) and after 30 min of exercise (1.06 +/- 0.14 vs. 0.65 +/- 0.10 mM) but did not differ at exhaustion. Plasma free fatty acids, glycerol, and beta-hydroxybutyrate were similar during rest and exercise for both diets. Estimated total glucose oxidation during exercise was 165 +/- 17 and 203 +/- 15 g after placebo and DHAP, respectively (P less than 0.05). It is concluded that feeding of DHAP for 7 days in conjunction with a high carbohydrate diet enhances leg exercise endurance capacity by increasing glucose extraction by muscle.  相似文献   

17.
This is the first study to examine the effects of endurance training on the activation state of glycogen phosphorylase (Phos) and pyruvate dehydrogenase (PDH) in human skeletal muscle during exercise. We hypothesized that 7 wk of endurance training (Tr) would result in a posttransformationally regulated decrease in flux through Phos and an attenuated activation of PDH during exercise due to alterations in key allosteric modulators of these important enzymes. Eight healthy men (22 +/- 1 yr) cycled to exhaustion at the same absolute workload (206 +/- 5 W; approximately 80% of initial maximal oxygen uptake) before and after Tr. Muscle biopsies (vastus lateralis) were obtained at rest and after 5 and 15 min of exercise. Fifteen minutes of exercise post-Tr resulted in an attenuated activation of PDH (pre-Tr: 3.75 +/- 0.48 vs. post-Tr: 2.65 +/- 0.38 mmol.min(-1).kg wet wt(-1)), possibly due in part to lower pyruvate content (pre-Tr: 0.94 +/- 0.14 vs. post-Tr: 0.46 +/- 0.03 mmol/kg dry wt). The decreased pyruvate availability during exercise post-Tr may be due to a decreased muscle glycogenolytic rate (pre-Tr: 13.22 +/- 1.01 vs. post-Tr: 7.36 +/- 1.26 mmol.min(-1).kg dry wt(-1)). Decreased glycogenolysis was likely mediated, in part, by posttransformational regulation of Phos, as evidenced by smaller net increases in calculated muscle free ADP (pre-Tr: 111 +/- 16 vs. post-Tr: 84 +/- 10 micromol/kg dry wt) and P(i) (pre-Tr: 57.1 +/- 7.9 vs. post-Tr: 28.6 +/- 5.6 mmol/kg dry wt). We have demonstrated for the first time that several signals act to coordinately regulate Phos and PDH, and thus carbohydrate metabolism, in human skeletal muscle after 7 wk of endurance training.  相似文献   

18.
The secretion of growth hormone (GH) increases acutely during exercise, but whether this is associated with the concomitant alterations in substrate metabolism has not previously been studied. We examined the effects of acute GH administration on palmitate, glucose, and protein metabolism before, during, and after 45 min of moderate-intensity aerobic exercise in eight GH-deficient men (mean age = 40.8 +/- 2.9 yr) on two occasions, with (+GH; 0.4 IU GH) and without GH administered (-GH). A group of healthy controls (n = 8, mean age = 40.4 +/- 4.2 yr) were studied without GH. The GH replacement during exercise on the +GH study mimicked the endogenous GH profile seen in healthy controls. No significant difference in resting free fatty acid (FFA) flux was found between study days, but during exercise a greater FFA flux was found when GH was administered (211 +/- 26 vs. 168 +/- 28 micromol/min, P < 0.05) and remained elevated throughout recovery (P < 0.05). With GH administered, the exercise FFA flux was not significantly different from that observed in control subjects (188 +/- 14 micromol/min), but the recovery flux was greater on the +GH day than in the controls (169 +/- 17 vs. 119 +/- 11 micromol/min, respectively, P < 0.01). A significant time effect (P < 0.01) for glucose rate of appearance from rest to exercise and recovery occurred in the GH-deficient adults and the controls, whereas there were no differences in glucose rate of disappearance. No significant effect across time was found for protein muscle balance. In conclusion, 1) acute exposure to GH during exercise stimulates the FFA release and turnover in GH-deficient adults, 2) GH does not significantly impact glucose or protein metabolism during exercise, and 3) the exercise-induced secretion of GH plays a significant role in the regulation of fatty acid metabolism.  相似文献   

19.
Intramuscular triacylglycerols (IMTG) are proposed to be an important metabolic substrate for contracting muscle, although this remains controversial. To test the hypothesis that reduced plasma free fatty acid (FFA) availability would increase IMTG degradation during exercise, seven active men cycled for 180 min at 60% peak pulmonary O(2) uptake either without (CON) or with (NA) prior ingestion of nicotinic acid to suppress adipose tissue lipolysis. Skeletal muscle and adipose tissue biopsy samples were obtained before and at 90 and 180 min of exercise. NA ingestion decreased (P < 0.05) plasma FFA at rest and completely suppressed the exercise-induced increase in plasma FFA (180 min: CON, 1.42 +/- 0.07; NA, 0.10 +/- 0.01 mM). The decreased plasma FFA during NA was associated with decreased (P < 0.05) adipose tissue hormone-sensitive lipase (HSL) activity (CON: 13.9 +/- 2.5, NA: 9.1 +/- 3.0 nmol.min(-1).mg protein(-1)). NA ingestion resulted in decreased whole body fat oxidation and increased carbohydrate oxidation. Despite the decreased whole body fat oxidation, net IMTG degradation was greater in NA compared with CON (net change: CON, 2.3 +/- 0.8; NA, 6.3 +/- 1.2 mmol/kg dry mass). The increased IMTG degradation did not appear to be due to reduced fatty acid esterification, because glycerol 3-phosphate activity was not different between trials and was unaffected by exercise (rest: 0.21 +/- 0.07; 180 min: 0.17 +/- 0.04 nmol.min(-1).mg protein(-1)). HSL activity was not increased from resting rates during exercise in either trial despite elevated plasma epinephrine, decreased plasma insulin, and increased ERK1/2 phosphorylation. AMP-activated protein kinase (AMPK)alpha1 activity was not affected by exercise or NA, whereas AMPKalpha2 activity was increased (P < 0.05) from rest during exercise in NA and was greater (P < 0.05) than in CON at 180 min. These data suggest that plasma FFA availability is an important mediator of net IMTG degradation, and in the absence of plasma FFA, IMTG degradation cannot maintain total fat oxidation. These changes in IMTG degradation appear to disassociate, however, from the activity of the key enzymes responsible for synthesis and degradation of this substrate.  相似文献   

20.
We tested the theory that links the capacity to perform prolonged exercise with the size of the muscle tricarboxylic acid (TCA) cycle intermediate (TCAI) pool. We hypothesized that endurance training would attenuate the exercise-induced increase in TCAI concentration ([TCAI]); however, the lower [TCAI] would not compromise cycle endurance capacity. Eight men (22 +/- 1 yr) cycled at approximately 80% of initial peak oxygen uptake before and after 7 wk of training (1 h/day, 5 days/wk). Biopsies (vastus lateralis) were obtained during both trials at rest, after 5 min, and at the point of exhaustion during the pretraining trial (42 +/- 6 min). A biopsy was also obtained at the end of exercise during the posttraining trial (91 +/- 6 min). In addition to improved performance, training increased (P < 0.05) peak oxygen uptake and citrate synthase maximal activity. The sum of four measured TCAI was similar between trials at rest but lower after 5 min of exercise posttraining [2.7 +/- 0.2 vs. 4.3 +/- 0.2 mmol/kg dry wt (P < 0.05)]. There was a clear dissociation between [TCAI] and endurance capacity because the [TCAI] at the point of exhaustion during the pretraining trial was not different between trials (posttraining: 2.9 +/- 0.2 vs. pretraining: 3.5 +/- 0.2 mmol/kg dry wt), and yet cycle endurance time more than doubled in the posttraining trial. Training also attenuated the exercise-induced decrease in glutamate concentration (posttraining: 4.5 +/- 0.7 vs. pretraining: 7.7 +/- 0.6 mmol/kg dry wt) and increase in alanine concentration (posttraining: 3.3 +/- 0.2 vs. pretraining: 5.6 +/- 0.3 mmol/kg dry wt; P < 0.05), which is consistent with reduced carbon flux through alanine aminotransferase. We conclude that, after aerobic training, cycle endurance capacity is not limited by a decrease in muscle [TCAI].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号