首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Membrane type 1 (MT1) matrix metalloproteinase (MMP-14) is a membrane-tethered MMP considered to be a major mediator of pericellular proteolysis. MT1-MMP is regulated by a complex array of mechanisms, including processing and endocytosis that determine the pool of active proteases on the plasma membrane. Autocatalytic processing of active MT1-MMP generates an inactive membrane-tethered 44-kDa product (44-MT1) lacking the catalytic domain. This form preserves all other enzyme domains and is retained at the cell surface. Paradoxically, accumulation of the 44-kDa form has been associated with increased enzymatic activity. Here we report that expression of a recombinant 44-MT1 (Gly(285)-Val(582)) in HT1080 fibrosarcoma cells results in enhanced pro-MMP-2 activation, proliferation within a three-dimensional collagen I matrix, and tumor growth and lung metastasis in mice. Stimulation of pro-MMP-2 activation and growth in collagen I was also observed in other cell systems. Expression of 44-MT1 in HT1080 cells is associated with a delay in the rate of active MT1-MMP endocytosis resulting in higher levels of active enzyme at the cell surface. Consistently, deletion of the cytosolic domain obliterates the stimulatory effects of 44-MT1 on MT1-MMP activity. In contrast, deletion of the hinge turns the 44-MT1 form into a negative regulator of enzyme function in vitro and in vivo, suggesting a key role for the hinge region in the functional relationship between active and processed MT1-MMP. Together, these results suggest a novel role for the 44-kDa form of MT1-MMP generated during autocatalytic processing in maintaining the pool of active enzyme at the cell surface.  相似文献   

2.
3.
Membrane-type matrix metalloproteinase-1 (MT1-MMP) plays a key role in tumor invasion and metastasis by degrading the extracellular matrix and activating proMMP2. Here we show that the conserved hemopexin domain is required for MT1-MMP-mediated invasion and growth in three-dimensional type I collagen matrix but not proMMP2 activation. Deletion of the hemopexin domains in MT1-, MT2-, MT3-, MT5-, and MT6-MMP does not impair their abilities to activate proMMP2. In fact, hemopexin-less MT5- and MT6-MMP activate proMMP2 better than their wild type counterparts. On the other hand, hemopexin-less MT1-MMP fails to promote cell invasion into type I collagen but retains the capacity to enhance the growth of Madin-Darby canine kidney cells as cysts in three-dimensional collagen matrix. Moreover, the hemopexin domain is also required for MT1-MMP-mediated invasion/scattering of MCF-7 cells in three-dimensional collagen matrix. Because growth and invasion in a three-dimensional model may correlate with tumor invasiveness in vivo, our data suggest that the hemopexin domains of MT-MMPs should be targeted for the development of anti-cancer therapies by employing screening assays developed for three-dimensional models rather than their enzymatic activity toward proMMP2.  相似文献   

4.
Previous studies have shown that membrane type 1-matrix metalloproteinase (MT1-MMP) (MMP-14) initiates pro-MMP-2 activation in a process that is tightly regulated by the level of tissue inhibitor of metalloproteinase (TIMP)-2. However, given the difficulty in modulating TIMP-2 levels, the direct effect of TIMP-2 on MT1-MMP processing and on pro-MMP-2 activation in a cellular system could not be established. Here, recombinant vaccinia viruses encoding full-length MT1-MMP or TIMP-2 were used to express MT1-MMP alone or in combination with various levels of TIMP-2 in mammalian cells. We show that TIMP-2 regulates the amount of active MT1-MMP (57 kDa) on the cell surface whereas in the absence of TIMP-2 MT1-MMP undergoes autocatalysis to a 44-kDa form, which displays a N terminus starting at Gly(285) and hence lacks the entire catalytic domain. Neither pro-MT1-MMP (N terminus Ser(24)) nor the 44-kDa form bound TIMP-2. In contrast, active MT1-MMP (N terminus Tyr(112)) formed a complex with TIMP-2 suggesting that regulation of MT1-MMP processing is mediated by a complex of TIMP-2 with the active enzyme. Consistently, TIMP-2 enhanced the activation of pro-MMP-2 by MT1-MMP. Thus, under controlled conditions, TIMP-2 may act as a positive regulator of MT1-MMP activity by promoting the availability of active MT1-MMP on the cell surface and consequently, may support pericellular proteolysis.  相似文献   

5.
Up-regulation of the collagenolytic membrane type-1 matrix metalloproteinase (MT1-MMP) leads to increased MMP2 (gelatinase A) activation and MT1-MMP autolysis. The autocatalytic degradation product is a cell surface 44-kDa fragment of MT1-MMP (Gly(285)-Val(582)) in which the ectodomain consists of only the linker, hemopexin C domain and the stalk segment found before the transmembrane sequence. In the collagenases, hemopexin C domain exosites bind native collagen, which is required for triple helicase activity during collagen cleavage. Here we investigated the collagen binding properties and the role of the hemopexin C domain of MT1-MMP and of the 44-kDa MT1-MMP ectodomain in collagenolysis. Recombinant proteins, MT1-LCD (Gly(285)-Cys(508)), consisting of the linker and the hemopexin C domain, and MT1-CD (Gly(315)-Cys(508)), which consists of the hemopexin C domain only, were found to bind native type I collagen but not gelatin. Functionally, MT1-LCD inhibited collagen-induced MMP2 activation in fibroblasts, suggesting that interactions between collagen and endogenous MT1-MMP directly stimulate the cellular activation of pro-MMP2. MT1-LCD, but not MT1-CD, also blocked the cleavage of native type I collagen by MT1-MMP in vitro, indicating an important role for the MT1-MMP linker region in triple helicase activity. Similarly, soluble MT1-LCD, but not MT1-CD or peptide analogs of the MT1-MMP linker, reduced the invasion of type I collagen matrices by MDA-MB-231 cells as did the expression of recombinant 44-kDa MT1-MMP on the cell surface. Together, these studies demonstrate that generation of the 44-kDa MT1-MMP autolysis product regulates collagenolytic activity and subsequent invasive potential, suggesting a novel feedback mechanism for the control of pericellular proteolysis.  相似文献   

6.
Differential roles of TIMP-4 and TIMP-2 in pro-MMP-2 activation by MT1-MMP   总被引:3,自引:0,他引:3  
The tissue inhibitors of metalloproteinases (TIMPs) are specific inhibitors of MMP enzymatic activity. However, TIMP-2 can promote the activation of pro-MMP-2 by MT1-MMP. This process is mediated by the formation of a complex between MT1-MMP, TIMP-2, and pro-MMP-2. Binding of TIMP-2 to active MT1-MMP also inhibits the autocatalytic turnover of MT1-MMP on the cell surface. Thus, under certain conditions, TIMP-2 is a positive regulator of MMP activity. TIMP-4, a close homologue of TIMP-2 also binds to pro-MMP-2 and can potentially participate in pro-MMP-2 activation. We coexpressed MT1-MMP with TIMP-4 and investigated its ability to support pro-MMP-2 activation. TIMP-4, unlike TIMP-2, does not promote pro-MMP-2 activation by MT1-MMP. However, TIMP-4 binds to MT1-MMP inhibiting its autocatalytic processing. When coexpressed with TIMP-2, TIMP-4 competitively reduced pro-MMP-2 activation by MT1-MMP. A balance between TIMP-2 and TIMP-4 may be a critical factor in determining the degradative potential of cells in normal and pathological conditions.  相似文献   

7.
The membrane type (MT)-matrix metalloproteinases (MMPs) constitute a subgroup of membrane-anchored MMPs that are major mediators of pericellular proteolysis and physiological activators of pro-MMP-2. The MT-MMPs also exhibit differential inhibition by members of the tissue inhibitor of metalloproteinase (TIMP) family. Here we investigated the processing, catalytic activity, and TIMP inhibition of MT3-MMP (MMP-16). Inhibitor profile and mutant enzyme studies indicated that MT3-MMP is regulated on the cell surface by autocatalytic processing and ectodomain shedding. Inhibition kinetic studies showed that TIMP-3 is a high affinity inhibitor of MT3-MMP when compared with MT1-MMP (K(i) = 0.008 nm for MT3-MMP versus K(i) = 0.16 nm for MT1-MMP). In contrast, TIMP-2 is a better inhibitor of MT1-MMP. MT3-MMP requires TIMP-2 to accomplish full pro-MMP-2 activation and this process is enhanced in marimastatpretreated cells, consistent with regulation of active enzyme turnover by synthetic MMP inhibitors. TIMP-3 also enhances the activation of pro-MMP-2 by MT3-MMP but not by MT1-MMP. TIMP-4, in contrast, cannot support pro-MMP-2 activation with either enzyme. Affinity chromatography experiments demonstrated that pro-MMP-2 can assemble trimolecular complexes with a catalytic domain of MT3-MMP and TIMP-2 or TIMP-3 suggesting that pro-MMP-2 activation by MT3-MMP involves ternary complex formation on the cell surface. These results demonstrate that TIMP-3 is a major regulator of MT3-MMP activity and further underscores the unique interactions of TIMPs with MT-MMPs in the control of pericellular proteolysis.  相似文献   

8.
Membrane-type matrix metalloproteinase-1 (MT1-MMP) is expressed by mechanosensitive osteocytes and affects bone mass. The extracellular domain of MT1-MMP is connected to extracellular matrix, while its intracellular domain is a strong modulator of cell signaling. In theory MT1-MMP could thus transduce mechanical stimuli into a chemical response. We hypothesized that MT1-MMP plays a role in the osteocyte response to mechanical stimuli. MT1-MMP-positive and knockdown (siRNA) MLO-Y4 osteocytes were mechanically stimulated with a pulsating fluid flow (PFF). Focal adhesions were visualized by paxillin immunostaining. Osteocyte number, number of empty lacunae, and osteocyte morphology were measured in long bones of MT1-MMP(+/+) and MT1-MMP(-/-) mice. PFF decreased MT1-MMP mRNA and protein expression in MLO-Y4 osteocytes, suggesting that mechanical loading may affect pericellular matrix remodeling by osteocytes. MT1-MMP knockdown enhanced NO production and c-jun and c-fos mRNA expression in response to PFF, concomitantly with an increased number and size of focal adhesions, indicating that MT1-MMP knockdown osteocytes have an increased sensitivity to mechanical loading. Osteocytes in MT1-MMP(-/-) bone were more elongated and followed the principle loading direction, suggesting that they might sense mechanical loading. This was supported by a lower number of empty lacunae in MT1-MMP(-/-) bone, as osteocytes lacking mechanical stimuli tend to undergo apoptosis. In conclusion, mechanical stimulation decreased MT1-MMP expression by MLO-Y4 osteocytes, and MT1-MMP knockdown increased the osteocyte response to mechanical stimulation, demonstrating a novel and unexpected role for MT1-MMP in mechanosensing.  相似文献   

9.
The role of membrane-type (MT) 2-matrix metalloproteinase (MMP) in the cellular activation of MMP-2 and the tissue inhibitor of matrix metalloproteinase (TIMP) requirements for this process have not been clearly established. To address these issues a TIMP-2-free cell line derived from a Timp2-/- mouse was transfected for stable cell surface expression of hMT2-MMP. Untransfected cells did not activate endogenous or exogenous TIMP-2-free MMP-2 unless both TIMP-2 and concanavalin A (ConA) were added. Transfected cells expressing hMT2-MMP efficiently activated both endogenous and exogenous MMP-2 (within 4 h) via the 68-kDa intermediate in the absence of TIMP-2 and ConA. In contrast, activation of MMP-2 by Timp2-/- cells expressing recombinant hMT1-MMP occurred more slowly (12 h) and required the addition of 0.3-27 nm TIMP-2. Addition of TIMP-2 or TIMP-4 did not enhance MMP-2 activation by MT2-MMP at any concentration tested; furthermore, activation was inhibited by both TIMPs at concentrations >9 nm, consistent with the similar association rate constants (k(on)) calculated for the binding of TIMP-4 and TIMP-2 to MT2-MMP (3.56 x 10(5) m(-1) s(-1) and 6.52 x 10(5) m(-1) s(-1), respectively). MT2-MMP-mediated activation involved cell surface association of the MMP-2 in a hemopexin carboxyl-terminal domain (C domain)-dependent manner: Exogenous MMP-2 hemopexin C domain blocked activation, and cells expressing hMT2-MMP did not bind or activate a truncated form of MMP-2 lacking the hemopexin C domain. These studies demonstrate the existence of an alternative TIMP-2-independent pathway for MMP-2 activation involving MT2-MMP, which may be important in mediating MMP-2 activation in specific tissues or pathologies where MT2-MMP is expressed.  相似文献   

10.
Binding of tissue inhibitor of metalloproteinase-2 (TIMP-2) to pro-MMP-2 and mature membrane type-1 MMP (MT1-MMP) on the cell surface is required for activation of MMP-2. It has been reported that following binding to cell surface receptors, TIMP-2 undergoes endocytosis and extensive degradation in lysosomes. The purpose of this study was to reexamine the fate of TIMP-2 following binding to transfected HT1080 cell surface MT1-MMP at 4 degrees C. Following 37 degrees C incubation, 125I-TIMP-2 release, endocytosis, and degradation were characterized under varying conditions. More than 85% of the total 125I-TIMP-2 bound to cells was released as intact functional molecules; <15% was degraded. Transfection of HT1080 cells with dominant negative mutant dynamin cDNA resulted in delayed endocytosis and release of 125I-TIMP-2 from cells. Pharmacologic agents that induce clustering of cell surface receptors (concanavalin A) and interfere with endosomal/lysosomal function (bafilomycin A(1)) resulted in enhanced binding of 125I-TIMP-2 to cell surface receptors. Abrogation of activation of proMT1-MMP with a furin inhibitor prevented binding and endocytosis of 125I-TIMP-2. Biotinylation of cell surface MT1-MMP followed by Western blotting confirmed the presence of mature MT1-MMP on the cell surface and degraded MT1-MMP in the intracellular compartment. In conclusion, these studies demonstrate that TIMP-2 is released from cells primarily as an intact functional molecule following binding to MT1-MMP on the cell surface.  相似文献   

11.
On the cell surface, the 59-kDa membrane type 1-matrix metalloproteinase (MT1-MMP) activates the 72-kDa progelatinase A (MMP-2) after binding the tissue inhibitor of metalloproteinases (TIMP)-2. A 44-kDa remnant of MT1-MMP, with an N terminus at Gly(285), is also present on the cell after autolytic shedding of the catalytic domain from the hemopexin carboxyl (C) domain, but its role in gelatinase A activation is unknown. We investigated intermolecular interactions in the gelatinase A activation complex using recombinant proteins, domains, and peptides, yeast two-hybrid analysis, solid- and solution-phase assays, cell culture, and immunocytochemistry. A strong interaction between the TIMP-2 C domain (Glu(153)-Pro(221)) and the gelatinase A hemopexin C domain (Gly(446)-Cys(660)) was demonstrated by the yeast two-hybrid system. Epitope masking studies showed that the anionic TIMP-2 C tail lost immunoreactivity after binding, indicating that the tail was buried in the complex. Using recombinant MT1-MMP hemopexin C domain (Gly(285)-Cys(508)), no direct role for the 44-kDa form of MT1-MMP in cell surface activation of progelatinase A was found. Exogenous hemopexin C domain of gelatinase A, but not that of MT1-MMP, blocked the cleavage of the 68-kDa gelatinase A activation intermediate to the fully active 66-kDa enzyme by concanavalin A-stimulated cells. The MT1-MMP hemopexin C domain did not form homodimers nor did it bind the gelatinase A hemopexin C domain, the C tail of TIMP-2, or full-length TIMP-2. Hence, the ectodomain of the remnant 44-kDa form of MT1-MMP appears to play little if any role in the activation of gelatinase A favoring the hypothesis that it accumulates on the cell surface as an inactive, stable degradation product.  相似文献   

12.
Membrane type-1 matrix metalloproteinase (MT1-MMP) drives cell invasion through three-dimensional (3-D) extracellular matrix (ECM) barriers dominated by type I collagen or fibrin. Based largely on analyses of its impact on cell function under two-dimensional culture conditions, MT1-MMP is categorized as a multifunctional molecule with 1) a structurally distinct, N-terminal catalytic domain; 2) a C-terminal hemopexin domain that regulates substrate recognition as well as conformation; and 3) a type I transmembrane domain whose cytosolic tail controls protease trafficking and signaling cascades. The MT1-MMP domains that subserve cell trafficking through 3-D ECM barriers in vitro or in vivo, however, remain largely undefined. Herein, we demonstrate that collagen-invasive activity is not confined strictly to the catalytic, hemopexin, transmembrane, or cytosolic domain sequences of MT1-MMP. Indeed, even a secreted collagenase supports invasion when tethered to the cell surface in the absence of the MT1-MMP hemopexin, transmembrane, and cytosolic tail domains. By contrast, the ability of MT1-MMP to support fibrin-invasive activity diverges from collagenolytic potential, and alternatively, it requires the specific participation of MT-MMP catalytic and hemopexin domains. Hence, the tissue-invasive properties of MT1-MMP are unexpectedly embedded within distinct, but parsimonious, sequences that serve to tether the requisite matrix-degradative activity to the surface of migrating cells.  相似文献   

13.
Membrane type-1 matrix metalloproteinase (MT1-MMP) is a key enzyme in the activation pathway of matrix prometalloproteinase-2 (pro-MMP-2). Both activation and autocatalytic maturation of pro-MMP-2 in trans suggest that MT1-MMP should exist as oligomers on the cell surface. To better understand the functions of MT1-MMP, we designed mutants with substitutions in the active site (E240A), the cytoplasmic tail (C574A), and the RRXR furin cleavage motifs (R89A, ARAA, and R89A/ARAA) of the enzyme. The mutants were expressed in MCF7 breast carcinoma cells that are deficient in both MMP-2 and MT1-MMP. Our results supported the existence of MT1-MMP oligomers and demonstrated that a disulfide bridge involving the Cys(574) of the enzyme's cytoplasmic tail covalently links MT1-MMP monomers on the MCF7 cell surface. The presence of MT1-MMP oligomers also was shown for the enzyme naturally expressed in HT1080 fibrosarcoma cells. The single (R89A and ARAA) and double (R89A/ARAA) furin cleavage site mutants of MT1-MMP were processed in MCF7 cells into the mature proteinase capable of activating pro-MMP-2 and stimulating cell locomotion. This suggested that furin cleavage is not a prerequisite for the conversion of pro-MT1-MMP into the functionally active enzyme. A hydroxamate class inhibitor (GM6001, or Ilomastat) blocked activation of MT1-MMP in MCF7 cells but not in HT1080 cells. This implied that a matrixin-like proteinase sensitive to hydroxamates could be involved in a furin-independent, alternative pathway of MT1-MMP activation in breast carcinoma cells. The expression of the wild type MT1-MMP enhanced cell invasion and migration, indicating a direct involvement of this enzyme in cell locomotion. In contrast, both the C574A and E240A mutations render MT1-MMP inefficient in stimulating cell migration and invasion. In addition, the C574A mutation negatively affected cell adhesion, thereby indicating critical interactions involving the cytosolic part of MT1-MMP and the intracellular milieu.  相似文献   

14.
Activation of proMMP-2 and cell surface collagenolysis are important activities of membrane-type 1 matrix metalloproteinase (MT1-MMP) to promote cell migration in tissue, and these activities are regulated by homodimerization of MT1-MMP on the cell surface. In this study, we have identified the transmembrane domain as a second dimer interface of MT1-MMP in addition to the previously identified hemopexin domain. Our analyses indicate that these two modes of dimerization have different roles; transmembrane-dependent dimerization is critical for proMMP-2 activation, whereas hemopexin-dependent dimerization is important for degradation of collagen on the cell surface. Our finding provides new insight into the potential molecular arrangement of MT1-MMP contributing to its function on the cell surface.  相似文献   

15.
Tissue inhibitor of metalloproteinases-2 (TIMP-2) is unique as it is the only member of the TIMP family that is involved in the cellular activation of promatrix metalloproteinase-2 (pro-MMP-2) by virtue of forming a trimolecular complex with membrane type 1 matrix metalloproteinase (MT1-MMP) on the cell surface. TIMP-4 is similar in structure to TIMP-2 but is unable to support the activation of the proenzyme. Several reports have highlighted the importance of the TIMP-2 C-terminal domain in the pro-MMP-2 activation complex; however, very little is known about the role of the extended AB loop of TIMP-2 in this mechanism even though it has been shown to interact with MT1-MMP. In this study we show by mutagenesis and kinetic analysis that it is possible to transfer the MT1-MMP binding affinity of the TIMP-2 AB loop to TIMP-4 but that its transplantation into TIMP-4 does not endow the inhibitor with pro-MMP-2 activating activity. However, transfer of both the AB loop and C-terminal domain of TIMP-2 to TIMP-4 generates a mutant that can activate pro-MMP-2 and so demonstrates that both these regions of TIMP-2 are important for the activation process.  相似文献   

16.
Bone marrow-derived stromal cells (BMSC) are avidly recruited by experimental vascularizing tumors, which implies that they must respond to tumor-derived growth factor cues. In fact, BMSC chemotaxis and cell survival are regulated, in part, by the membrane type-1 matrix metalloproteinase (MT1-MMP), an MMP also involved in pro-MMP-2 activation and in degradation of the extracellular matrix (ECM). Given that impaired chemotaxis was recently observed in bone marrow cells isolated from a glucose 6-phosphate transporter-deficient (G6PT-/-) mouse model, we sought to investigate the potential MT1-MMP/G6PT signaling axis in BMSC. We show that MT1-MMP-mediated activation of pro-MMP-2 by concanavalin A (ConA) correlated with an increase in the sub-G1 cell cycle phase as well as with cell necrosis, indicative of a decrease in BMSC survival. BMSC isolated from Egr-1-/- mouse or MT1-MMP gene silencing in BMSC with small interfering RNA (siMT1-MMP) antagonized both the ConA-mediated activation of pro-MMP-2 and the induction of cell necrosis. Overexpression of recombinant full-length MT1-MMP triggered necrosis and this was signaled through the cytoplasmic domain of MT1-MMP. ConA inhibited both the gene and protein expression of G6PT, while overexpression of recombinant G6PT inhibited MT1-MMP-mediated pro-MMP-2 activation but could not rescue BMSC from ConA-induced cell necrosis. Cell chemotaxis in response to the tumorigenic growth factor sphingosine 1-phosphate was significantly abrogated in siMT1-MMP BMSC and in chlorogenic acid-treated BMSC. Altogether, we provide evidence for an MT1-MMP/G6PT signaling axis that regulates BMSC survival, ECM degradation, and mobilization. This may lead to optimized clinical applications that use BMSC as a platform for the systemic delivery of therapeutic or anti-cancer recombinant proteins in vivo.  相似文献   

17.
Itoh Y  Takamura A  Ito N  Maru Y  Sato H  Suenaga N  Aoki T  Seiki M 《The EMBO journal》2001,20(17):4782-4793
Activation of proMMP-2 by MT1-MMP is considered to be a critical event in cancer cell invasion. In the activation step, TIMP-2 bound to MT1-MMP on the cell surface acts as a receptor for proMMP-2. Subsequently, adjacent TIMP-2-free MT1-MMP activates the proMMP-2 in the ternary complex. In this study, we demonstrate that MT1-MMP forms a homophilic complex through the hemopexin-like (PEX) domain that acts as a mechanism to keep MT1-MMP molecules close together to facilitate proMMP-2 activation. Deletion of the PEX domain in MT1-MMP, or swapping the domain with the one derived from MT4-MMP, abolished the ability to activate proMMP-2 on the cell surface without affecting the proteolytic activities. In addition, expression of the mutant MT1-MMP lacking the catalytic domain (MT1PEX-F) efficiently inhibited complex formation of the full-length enzymes and activation of pro MMP-2. Furthermore, expression of MT1PEX-F inhibited proMMP-2 activation and Matrigel invasion activity of invasive human fibrosarcoma HT1080 cells. These findings elucidate a new function of the PEX domain: regulating MT1-MMP activity on the cell surface, which accelerates cellular invasiveness in the tissue.  相似文献   

18.
Pericellular degradation of interstitial collagens is a crucial event for cells to migrate through the dense connective tissue matrices, where collagens exist as insoluble fibers. A key proteinase that participates in this process is considered to be membrane-type 1 matrix metalloproteinase (MT1-MMP or MMP-14), but little is known about the mechanism by which it cleaves the insoluble collagen. Here we report that homodimerization of MT1-MMP through its hemopexin (Hpx) domain is essential for cleaving type I collagen fibers at the cell surface. When dimerization was blocked by coexpressing either a membrane-bound or a soluble form of the Hpx domain, cell surface collagenolytic activity was inhibited in a dose-dependent manner. When MMP-13, a soluble collagenase active as a monomer in solution, was expressed as a membrane-anchored form on the cell surface, homodimerization was also required to cleave collagen. Our results introduce a new concept in that pericellular collagenolysis is regulated by correct molecular assembly of the membrane-anchored collagenase, thereby governing the directionality of the cell to migrate in tissue.  相似文献   

19.
MMP-9 (gelatinase B) is produced in a latent form (pro-MMP-9) that requires activation to achieve catalytic activity. Previously, we showed that MMP-2 (gelatinase A) is an activator of pro-MMP-9 in solution. However, in cultured cells pro-MMP-9 remains in a latent form even in the presence of MMP-2. Since pro-MMP-2 is activated on the cell surface by MT1-MMP in a process that requires TIMP-2, we investigated the role of the MT1-MMP/MMP-2 axis and TIMPs in mediating pro-MMP-9 activation. Full pro-MMP-9 activation was accomplished via a cascade of zymogen activation initiated by MT1-MMP and mediated by MMP-2 in a process that is tightly regulated by TIMPs. We show that TIMP-2 by regulating pro-MMP-2 activation can also act as a positive regulator of pro-MMP-9 activation. Also, activation of pro-MMP-9 by MMP-2 or MMP-3 was more efficient in the presence of purified plasma membrane fractions than activation in a soluble phase or in live cells, suggesting that concentration of pro-MMP-9 in the pericellular space may favor activation and catalytic competence.  相似文献   

20.
The important and distinct contribution that membrane type 2 (MT2)-matrix metalloproteinase (MMP) makes to physiological and pathological processes is now being recognized. This contribution may be mediated in part through MMP-2 activation by MT2-MMP. Using Timp2-/- cells, we previously demonstrated that MT2-MMP activates MMP-2 to the fully active form in a pathway that is TIMP-2-independent but MMP-2 hemopexin carboxyl (C) domain-dependent. In this study cells expressing MT2-MMP as well as chimera proteins in which the C-terminal half of MT2-MMP and MT1-MMP were exchanged showed that the MT2-MMP catalytic domain has a higher propensity than that of MT1-MMP to initiate cleavage of the MMP-2 prodomain in the absence of TIMP-2. Although we demonstrate that MT2-MMP is a weak collagenase, this first activation cleavage was enhanced by growing the cells in type I collagen gels. The second activation cleavage to generate fully active MMP-2 was specifically enhanced by a soluble factor expressed by Timp2-/- cells and was MT2-MMP hemopexin C domain-dependent; however, the RGD sequence within this domain was not involved. Interestingly, in the presence of TIMP-2, a MT2-MMP.MMP-2 trimolecular complex formed, but activation was not enhanced. Similarly, TIMP-3 did not promote MT2-MMP-mediated MMP-2 activation but inhibited activation at higher concentrations. This study demonstrates the influence that both the catalytic and hemopexin C domains of MT2-MMP exert in determining TIMP independence in MMP-2 activation. In tissues or pathologies characterized by low TIMP-2 expression, this pathway may represent an alternative means of rapidly generating low levels of active MMP-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号