首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rat1 fibroblasts stably transfected with the rat angiotensin II (AngII) AT1a and bradykinin (BK) B2 receptor cDNAs gained the ability to bind Ang II and BK. Wild-type Rat1 cells bound neither ligand. Exposure to either effector led to characteristic Galphai and Galphaq signal cascades, the release of arachidonic acid (ARA), and the intracellular accumulation of inositol phosphates (IP). Microarray analyses in response to BK or AngII showed that both receptors markedly induce the CCN family genes, CTGF (CCN2) and Cyr61 (CCN1), as well as the vasculature-related genes, Cnn1 and Egr1. Real time PCR confirmed the increased expression of connective tissue growth factor (CTGF) mRNA. Combined sequence-based analysis of gene promoter regions with statistical prevalence analyses identified CREB, SRF, and ATF-1, downstream targets of ERK, and JNK, as prominent products of genes that are regulated by ligand binding to the BK or AngII receptors. The binding of AngII or BK markedly stimulated the phosphorylation and thus the activation of ERK2, JNK, and p38MAPK. A BKB2R and an AT1aR chimera which displayed only negligible G-protein-related signaling were constructed. Both mutant receptors continued to activate these kinases and stimulate CTGF expression. Inhibitors of ERK1/2 and JNK but not p38MAPK inhibited the BK- and AngII-stimulated expression of CTGF in cells expressing either the WT or mutant receptors, illustrating that ERK and JNK participate in the control of CTGF expression in a manner that appears to be independent of G-protein. Conversely, addition of BK or AngII to the cell line expressing WT AT1aR and BKB2R downregulated the expression of collagen alpha1(I) (COL1A1) mRNA. However, these effectors did not have this effect in cells expressing the mutant receptors. Thus, a robust G-protein related response is necessary for BK or AngII to affect COL1A1 expression.  相似文献   

2.
We showed previously that large domain exchanges between the bradykinin B2 (BKB2) and angiotensin II type 1a (AT1a) receptors can result in functional hybrids. However, when we proceeded to exchange the entire bradykinin B2 receptor (BKB2R) C-terminal tail with the AT1aR C-terminus, the hybrid, while continuing to bind BK and be endocytosed as wild type (WT) BKB2R, lost much of its ability to activate phosphatidylinositol (PI) turnover or the release of arachidonic acid (ARA). In this study, we constructed chimeric receptors within the proximal C-terminus between the BKB2R and AT1aR or bradykinin B1 receptor (BKB1R). The mutant and WT receptor cDNAs were stably transfected into Rat-1 cells. Also, point mutations were generated to evaluate the role of the individual residues within this region. These chimeric studies revealed that the proximal portion of the BKB2R C-tail is crucial for G protein-linked BKB2R functions. This region could not be swapped with the AT1aR to obtain a BK activated PI turnover or ARA release. Further studies demonstrated that the distal portion (325-330) of this region is exchangeable; however, the middle portion (317-324) is not. Small motif exchanges within this section identified the KSR and EVY motifs as crucial for G(alphaq), G(alphai) related signaling of the BKB2R. Point mutations then showed that the charged amino acids K317, R319, and E320 are the residues critical for linking to PI turnover and ARA release. However, these proximal chimeras showed normal receptor uptake. Interestingly, while apparently not activating G protein-linked signaling, the proximal tail AT1aR exchange mutant and the entire C-terminus exchange hybrid continued to cause a substantial bradykinin effected increase in connective tissue growth factor (CTGF) mRNA level, as WT BKB2R.  相似文献   

3.
The intracellular (IC) face of the G-protein coupled receptors (GPCR), bradykinin (BK) B2 and angiotensin (AT) 1a, is similar in sequence homology and in size. Both receptors are known to link to Galphai and Galphaq but differ markedly in a number of physiologic actions, particularly with respect to their hemodynamic action. We made single as well as multiple, global replacements within the IC of BKB2R with the corresponding regions of the AT1aR. When stably transfected into Rat-1 cells, these hybrid receptors all bound BK with high affinity. Single replacement of the intracellular loop 2 (IC2) or the distal 34 residues of the C-terminus (dCt) with the corresponding regions of AT1aR resulted in chimera, which turned over phosphotidylinositol (PI) and released arachidonic acid (ARA) as WT BKB2R. In contrast, incorporation of the AT1aR IC3 in a single replacement abolished signal transduction. However, the simultaneous exchange of IC2 and IC3 of BKB2R with AT1aR resulted in a receptor responding to BK with PI turnover and ARA release approximately 4-fold greater than WT BKB2R. Likewise, the simultaneous replacement of IC2 and dCt resulted in a 2.8- and 1.6-fold increase in PI turnover and ARA release, respectively. In contrast, the dual replacement of IC3 and dCt could not overcome the deleterious effects of the IC3 replacement, resulting in very low PI activation and ARA release. Replacement of all three IC domains (IC2, IC3, and dCt) resulted in PI closer to that of AT1aR than BKB2R. The uptake of the receptor chimeras was similar to that of WT BKB2R with the exception of the IC3/dCt dual mutant, which exhibited very poor internalization (18% at 60'). When transfected into Rat-1 cells, the AT1aR markedly increased the expression of connective tissue growth factor (CTGF) mRNA, while BK slightly decreased it. The dual IC2/dCt and triple IC2/IC3/dCt hybrids both upregulated CTGF mRNA in response to BK. These results show that the IC face of the BKB2R can be exchanged with that of AT1aR, producing hybrid receptors, which take on the functional characteristics of AT1aR. The characterization of the chimera with stepwise replacement of the IC domains should allow for assignment of specific roles to the individual loops and C-terminus in the signaling and internalization of the BKB2R and facilitate the generation of a receptor with BKB2R binding and AT1aR function.  相似文献   

4.
Bradykinin (BK) and angiotensin II (AngII) often have opposite roles in cardiovascular diseases. Our aim here was to construct hybrid receptors which bind AngII but signal as BK. Various sequences of the intracellular face of the AngII type I receptor, AT1R, were replaced with corresponding sequences from the bradykinin B2 receptor (BKB2R). The hybrids demonstrated a number of signaling characteristics of the BKB2R. For example, the hybrids demonstrated BK as opposed to AngII like phosphorylation of Akt and JNK. The hybrids containing the BKB2R intracellular loop 2 (IC2) displayed minimal G-protein, Galphai/Galphaq, linked signaling. Computer based molecular models suggested that Ser-Met-Gly from the IC2 of the BKB2R is detrimental for the Galphai/Galphaq coupled functions of this hybrid. The return of Lys-Ser-Arg of the AT1R to this hybrid led to almost full recovery of Galphai and Galphaq activation. The design and production of AT1/BKB2 hybrid receptors is a potential approach in the treatment of hypertension related diseases where the presence of AngII, its AT1 receptor and the consequent signal transduction has proven detrimental.  相似文献   

5.
Yu J  Polgar P  Lubinsky D  Gupta M  Wang L  Mierke D  Taylor L 《Biochemistry》2005,44(14):5295-5306
The role of the first intracellular loop (IC1) in the function of the rat bradykinin B2 receptor (BKB2R) was probed. On the basis of the bovine rhodopsin X-ray structure, the BKB2R IC1 consists of six residues: (60)HKTNCT. Exchange of this sequence with the bradykinin B1 receptor IC1 (PRRQLN) resulted in a chimera which bound bradykinin and signaled as wild-type (WT) BKB2R. In contrast, a chimera containing the IC1 of rat angiotensin II type Ia receptor (AT1aR) (YMKLKT) did not bind BK nor signal in response to BK at a concentration as high as 5 microM. ELISA illustrated that this receptor was still processed and inserted into the plasma membrane. Employing portions of the IC1, we observed that (60)HKT of BKB2R could be exchanged as a group with either the BKB1R (PRR) or AT1aR (YMK) with no change in receptor binding or signaling activities. When only the YM of AT1aR replaced the HK of BKB2R, leaving the N-terminal portion of IC1 without a positively charged residue, binding and signaling were reduced by more than 70%. When only N63 was replaced with the corresponding leucine of AT1aR, binding and signaling were ablated. In fact, replacement of the entire IC1 with the AT1aR except for N63 resulted in binding and signaling as WT BKB2R. However, N63 could be replaced by glutamine (in BKB1R) or aspartate and continued to function as WT BKB2R. NMR data indicated that the BKB2R IC1 extends beyond the bovine rhodopsin prototype to include HKTNCTVAEI. When E68 was exchanged with a serine (in AT1aR), ligand binding decreased by 60% and PI turnover decreased by 69%. Molecular modeling points to a strict requirement for a hydrophilic residue at position 63 (N) at the middle of the IC1 and a Coulombic charge interaction between the positive charges (H60 and K61) at the N-terminus and a negative charge (E68) at the C-terminus of the IC1.  相似文献   

6.
The prostaglandin E2 (PGE(2)) EP2 receptor (EP2R) type is G protein coupled (GPCR) and links to Galphas. Through this receptor PGE(2) activates cAMP production. The bradykinin (BK) B2 receptor (BKB2R) is also a GPCR but links to Galphaq and Galphai and does not activate cAMP production in response to bradykinin. In an attempt to convert the BKB2R into a Galphas-linked adenylate cyclase-activating receptor we proceeded to make global and discrete motif replacements of the intracellular (IC) face of the BKB2R with the corresponding regions of the human EP2R. With this approach we produced hybrid receptors which, when stably transfected into wild type (WT) Rat-1 cells, bound BK but produced cAMP. Replacement of the second loop (IC2), third loop (IC3), the entire C terminus, and the distal C terminus resulted in receptors which bound BK. However, only the IC2 and IC3 exchanges resulted in cAMP-producing receptors. Of these two regions, the IC2 exchange was by far the better cAMP-generating receptor, producing cAMP at approximately 6.6-fold above WT BKB2R or approximately one fourth the amount produced by WT EP2R-transfected Rat-1 cells. Both human and rat EP2R and human beta2-adrenergic receptor exchanges of the IC2 produced equal quantities of cAMP. Focusing on the rBKB2R/hEP2R IC2 chimeras, the region consisting of residues 136-147 (BKB2R residue numbering) proved to contain a cAMP-generating motif. Within this region, the proximal six amino acids from the EP2R (HPYFYQ) at position 136-141 proved crucial for cAMP production (10-fold over WT BKB2R). The distal part of this region, the six residues at 142-147, played no role in cAMP production. On the other hand, the ALV motif of the BKB2R IC2, residues 133-135, proved important with respect to phosphatydilinositol (PI) turnover. Replacing the entire IC2 of BKB2R resulted in poor PI turnover, while including the AVL of BKB2R retained approximately half of the WT PI turnover. With respect to receptor uptake, all the IC2 mutants endocytosed as WT BKB2R (60% in 1h). However, the exchange of the distal and the whole C termini resulted in a marked drop in endocytosis (30% in 1h). These results demonstrate that the construction of a cAMP-producing BKB2/EP2 receptor hybrid is possible, with the IC2 region distal to DRYLALV proving important to Galphas linkage and the LALV motif within the IC2 of BKB2R and the region proximal to it proving important for Galphaq and Galphai linkage. Additionally, our results confirm the importance of the distal C terminus in determining receptor uptake.  相似文献   

7.
Bradykinin (BK) is a potent short-lived effector belonging to a class of peptides known as kinins. It participates in inflammatory and vascular regulation and processes including angioedema, tissue permeability, vascular dilation, and smooth muscle contraction. BK exerts its biological effects through the activation of the bradykinin B2 receptor (BKB2R) which is G-protein-coupled and is generally constitutively expressed. Upon binding, the receptor is activated and transduces signal cascades which have become paradigms for the actions of the Galphai and Galphaq G-protein subunits. Following activation the receptor is then desensitized, endocytosed, and resensitized. The bradykinin B1 (BKB1R) is a closely related receptor. It is activated by desArg(10)-kallidin or desArg(9)-BK, metabolites of kallidin and BK, respectively. This receptor is induced following tissue injury or after treatment with bacterial endotoxins such as lipopolysacharide or cytokines such as interleukin-1 or tumor necrosis factor-alpha. In this review we will summarize the BKB2R and BKB1R mediated signal transduction pathways. We will then emphasize the relevance of key residues and domains of the intracellular regions of the BKB2R as they relate to modulating its function (signal transduction) and self-maintenance (desensitization, endocytosis, and resensitization). We will examine the features of the BKB1R gene promoter and its mRNA as these operate in the expression and self-maintenance of this inducible receptor. This communication will not cover areas discussed in earlier reviews pertaining to the actions of peptide analogs. For these we refer you to earlier reviews (Regoli and Barabé, 1980, Pharmacol Rev 32:1-46; Regoli et al., 1990, J Cardiovasc Pharmacol 15(Suppl 6):S30-S38; Regoli et al., 1993, Can J Physiol Pharmacol 71:556-557; Marceau, 1995, Immunopharmacology 30:1-26; Regoli et al., 1998, Eur J Pharmacol 348:1-10).  相似文献   

8.
In past reports we illustrated the importance of Y131, Y322, and T137 within the intracellular (IC) face of the rat bradykinin B2 receptor (rBKB2R) for signal transduction and receptor maintenance (Prado et al. [1997] J. Biol. Chem. 272:14638-14642; Prado et al. [1998] J. Biol. Chem. 273:33548-33555). In this report, we mutate the remaining hydroxyl possessing residues located within the rBKB2R IC region. Exchange of S139A (IC2) or T239V (IC3) did not affect BK activated phosphatidylinositol (PI) turnover or receptor internalization. Chimeric exchange of the last 34 amino acids of BKB2R C-terminus with the corresponding 34 amino acids of the rat angiotensin II AT1a receptor (rAT1aR), both containing an S/T cluster, resulted in a mutant with normal endocytosis and BK activated PI turnover. A more selective chimera of these S/T clusters, with an exchange of BKB2R (333-351) with a rAT1aR fragment (326-342), resulted in a receptor with a retarded internalization but a normal BK activated PI turnover. Subsequent mutation of rBKB2R T344V showed little change in receptor uptake but a pronounced loss of BK activated PI turnover. The mutation of S335A, S341A, S348A, and S350A resulted in very poor receptor internalization and loss of activated PI turnover. Closer examination of this serine cluster illustrated that the replacement of S348A led to poor internalization; whereas the retention of S348 and mutation of S341A resulted in a receptor with a much greater internalization than WT. These and other results suggest that the presence of S348 promotes internalization while the presence of S341 dampens it. Conversely, S341 and S350 proved important for receptor signaling. In sum, our results illustrate that the distal C-terminus including its S/T cluster is important for both rBKB2R internalization and signal transduction. Individual S/T residues within this cluster appear involved in either signal transmission or receptor uptake capacity. However, replacement of the entire distal tail region with the corresponding rAT1aR sequence, also containing an S/T cluster, enables the BKB2R/AT1aR chimera to act in a very similar manner to wild type rBKB2R.  相似文献   

9.
10.
Wild-type (WT) Rat-1 fibroblasts express undetectable quantities of the prostaglandin E(2) (PGE(2)) EP1, EP2, and EP3 receptor types and detectable amounts of the EP4 receptor. In the WT Rat-1, PGE(2) enhances connective tissue growth factor (CTGF) mRNA. PGE(2) does not stimulate cAMP production in these cells. However, forskolin induces cAMP production and ablates TGF beta-stimulated increases in CTGF mRNA. A similar pattern of CTGF expression in response to PGE(2) and forskolin is observed in neonatal rat primary smooth muscle cell cultures. When WT Rat-1 cells are stably transfected with the EP2 receptor, PGE(2) causes a sizable elevation in intracellular cAMP and ablates the TGF beta-stimulated increase in CTGF mRNA. PGE(2) does not have this effect on cells expressing the EP1, EP3, or EP4 receptor subtypes. These results demonstrate the importance of the EP2 receptor and cAMP in the inhibition of TGF beta-stimulated CTGF production and suggest a role for PGE(2) in increasing CTGF mRNA levels in the absence of the EP2 receptor. Involvement of inositol phosphate in this upregulation of CTGF expression by PGE(2) is doubtful. None of the cell lines containing the four EP transfectants nor the WT Rat-1 cells responded to PGE(2) with inositol phosphate production.  相似文献   

11.
Angiotensin II (AngII) is considered as a cytokine-like factor displaying a variety of proinflammatory and profibrotic cellular effects. Most of these effects seem mediated by AT1 signaling, whereas AT2 expression and function in adult human cells remain unclear. We have studied AT1 and AT2 expression in different human adult fibroblasts types and analyze their response to AngII. AngII did not induce thymidine incorporation, apoptosis nor collagen gene or protein expression in human fibroblasts. Specific AT1 or AT2 inhibitors did not modify this apparent resistance to AngII. We found abundant expression of both AT1 and AT2 receptors in all human fibroblasts studied, whereas vascular smooth muscle cells (VSMC) which only expressed AT1 receptor, displayed a clear AT1-dependent proliferative response to AngII. These data demonstrate that cultured human adult fibroblasts express both AT1 and AT2 receptor types and this phenomenon is associated with a lack of growth or collagen synthesis responses to AngII.  相似文献   

12.
Protein kinase C (PKC) and angiotensin II (AngII) can regulate cardiac function in pathological conditions such as in diabetes or ischemic heart disease. We have reported that expression of connective tissue growth factor (CTGF) is increased in the myocardium of diabetic mice. Now we showed that the increase in CTGF expression in cardiac tissues of streptozotocin-induced diabetic rats was reversed by captopril and islet cell transplantation. Infusion of AngII in rats increased CTGF mRNA expression by 15-fold, which was completely inhibited by co-infusion with AT1 receptor antagonist, candesartan. Similarly, incubation of cultured cardiomyocytes with AngII increased CTGF mRNA expression by 2-fold, which was blocked by candesartan and a general PKC inhibitor, GF109203X. The role of PKC isoform-dependent action was further studied using adenoviral vector-mediated gene transfer of dominant negative (dn) PKC or wild type PKC isoforms. Expression of dnPKCalpha, -epsilon, and -zeta isoforms suppressed AngII-induced CTGF expression in cardiomyocytes. In contrast, expression of dominant negative PKCdelta significantly increased AngII-induced CTGF expression, whereas expression of wild type PKCdelta inhibited this induction. This inhibitory effect was further confirmed in the myocardium of transgenic mice with cardiomyocyte-specific overexpression of PKCdelta (deltaTg mice). Thus, AngII can regulate CTGF expression in cardiomyocytes through a PKC activation-mediated pathway in an isoform-selective manner both in physiological and diabetic states and may contribute to the development of cardiac fibrosis in diabetic cardiomyopathy.  相似文献   

13.
Angiotensin II signaling pathways mediated by tyrosine kinases   总被引:4,自引:0,他引:4  
Angiotensin II (AngII) plays a critical role in control of cardiovascular and renal homeostasis. In addition to its physiological action as a vasoconstrictor, growing evidence supports the notion that AngII contributes to cardiovascular diseases such as hypertension, atherosclerosis, and heart failure. The physiological and pathological actions of AngII in adults are mediated largely via the AngII type 1 receptor (AT1R), a heterotrimeric G-protein-coupled receptor (GPCR). Besides coupling with heterotrimeric G proteins to activate phospholipase C-beta (PLC-beta), AT1R also activates receptor tyrosine kinases (PDGF-R, EGF-R and IGF-R) and non-receptor tyrosine kinases (Src, Fyn, Yes, proline-rich tyrosine kinase 2 (Pyk2), focal adhesion kinase (FAK) and JAK2). These tyrosine kinases play critical roles in AngII-stimulated cell signal events.  相似文献   

14.
Experimental evidence has shown that the inducible bradykinin (BK) B1 receptor (BKB1-R) subtype is involved in the development of hyperalgesia associated with type 1 diabetes. Selective BKB1-R antagonists inhibited, whereas selective agonists increased the hyperalgesic activity in diabetic mice in thermal nociceptive tests. Here we evaluate the development of diabetic hyperalgesia in a BKB1-R-knockout (KO) genotype compared to wild-type (WT) mice. The BKB1-R-KO mice were backcrossed for 10 generations to C57BL/6 genetic background before use in the experiments. Diabetes was induced by streptozotocin (STZ) and thermal nociception was assessed by the hot plate and tail immersion tests. The hyperalgesia observed in wild type mice was totally absent in the BKB1-R-KO mice. Furthermore, the selective BKB1-R agonist, desArg9BK, significantly increased the hyperalgesic activity in diabetic WT mice but had no effect on nociceptive responses in diabetic BKB1-R-KO mice. Taken together, the results confirm the crucial role of the BKB1-R, upregulated alongside inflammatory diabetes, in the development of diabetes-induced hyperalgesia.  相似文献   

15.
Gu J  Liu X  Wang QX  Tan HW  Guo M  Jiang WF  Zhou L 《Experimental cell research》2012,318(16):2105-2115
The activation of transforming growth factor-β1(TGF-β1)/Smad signaling pathway and increased expression of connective tissue growth factor (CTGF) induced by angiotensin II (AngII) have been proposed as a mechanism for atrial fibrosis. However, whether TGFβ1/non-Smad signaling pathways involved in AngII-induced fibrogenetic factor expression remained unknown. Recently tumor necrosis factor receptor associated factor 6 (TRAF6)/TGFβ-associated kinase 1 (TAK1) has been shown to be crucial for the activation of TGF-β1/non-Smad signaling pathways. In the present study, we explored the role of TGF-β1/TRAF6 pathway in AngII-induced CTGF expression in cultured adult atrial fibroblasts. AngII (1 μM) provoked the activation of P38 mitogen activated protein kinase (P38 MAPK), extracellular signal-regulated kinase 1/2(ERK1/2) and c-Jun NH(2)-terminal kinase (JNK). AngII (1 μM) also promoted TGFβ1, TRAF6, CTGF expression and TAK1 phosphorylation, which were suppressed by angiotensin type I receptor antagonist (Losartan) as well as p38 MAPK inhibitor (SB202190), ERK1/2 inhibitor (PD98059) and JNK inhibitor (SP600125). Meanwhile, both TGFβ1 antibody and TRAF6 siRNA decreased the stimulatory effect of AngII on TRAF6, CTGF expression and TAK1 phosphorylation, which also attenuated AngII-induced atrial fibroblasts proliferation. In summary, the MAPKs/TGFβ1/TRAF6 pathway is an important signaling pathway in AngII-induced CTGF expression, and inhibition of TRAF6 may therefore represent a new target for reversing Ang II-induced atrial fibrosis.  相似文献   

16.
17.
Regulation of connective tissue growth factor (CCN2/CTGF) in gingival fibroblasts is unique and may provide therapeutic opportunities to treat oral fibrotic diseases. RhoA was previously implicated in mediating the expression of CCN2/CTGF. We now present evidence that Rho family GTPases Rac1 and Cdc42 are the principal mediators of the transforming growth factor-beta1 (TGFbeta1)-stimulated expression of CCN2/CTGF in primary human gingival fibroblasts. TGFbeta1 does not stimulate RhoA activation in gingival fibroblasts, and the overexpression of dominant-negative RhoA does not reduce CCN2/CTGF expression in response to TGFbeta1. In contrast, the overexpression of dominant-negative forms of Cdc42 or Rac1 results in a dramatic reduction of CCN2/CTGF protein levels. Lovastatin and a geranylgeranyltransferase inhibitor reduce the TGFbeta1-stimulated levels of CCN2/CTGF protein by approximately 75 and 100%, respectively. We previously demonstrated that JNK1 phosphorylation by TGFbeta1 is also critical for TGFbeta1-induced CCN2/CTGF expression, and forskolin partially reduces levels of phosphorylated JNK1. Inhibition of geranylgeranyltransferase has no effect on levels of JNK phosphorylation in response to TGFbeta1 suggesting Rho-GTPases act independently of JNK1. The combination of lovastatin and forskolin results in a greater inhibitory effect than each agent alone and reduces CCN2/CTGF mRNA and protein expression by greater than 90%. This novel combination has additive inhibitory effects on the TGFbeta1-stimulated expression of CCN2/CTGF in human gingival fibroblasts through the simultaneous disruption of Rho- and JNK1-mediated pathways, respectively. This combination of available therapeutic compounds may therefore be useful in designing treatment strategies for oral fibrotic conditions in which gingival CCN2/CTGF is elevated.  相似文献   

18.
The regulator of G protein signaling 2 (RGS2) is a potent negative regulator of Gq protein signals including the angiotensin II (AngII)/AngII receptor signal, which plays a critical role in the progression of fibrosis. However, the role of RGS2 on the progression of kidney fibrosis has not been assessed. Here, we investigated the role of RGS2 in kidney fibrosis induced by unilateral ureteral obstruction (UUO) in mice. UUO resulted in increased expression of RGS2 mRNA and protein in the kidney along with increases of AngII and its type 1 receptor (AT1R) signaling and fibrosis. Furthermore, UUO increased the levels of F4/80, Ly6G, myeloperoxidase, and CXCR4 in the kidneys. RGS2 deficiency significantly enhanced these changes in the kidney. RGS2 deletion in the bone marrow-derived cells by transplanting the bone marrow of RGS2 knock-out mice into wild type mice enhanced UUO-induced kidney fibrosis. Overexpression of RGS2 in HEK293 cells, a human embryonic kidney cell line, and RAW264.7 cells, a monocyte/macrophage line, inhibited the AngII-induced activation of ERK and increase of CXCR4 expression. These findings provide the first evidence that RGS2 negatively regulates the progression of kidney fibrosis following UUO, likely by suppressing fibrogenic and inflammatory responses through the inhibition of AngII/AT1R signaling.  相似文献   

19.
Prostaglandin E(2) blocks transforming growth factor TGF beta1-induced CCN2/CTGF expression in lung and kidney fibroblasts. PGE(2) levels are high in gingival tissues yet CCN2/CTGF expression is elevated in fibrotic gingival overgrowth. Gingival fibroblast expression of CCN2/CTGF in the presence of PGE(2) led us to compare the regulation of CCN2/CTGF expression in fibroblasts cultured from different tissues. Data demonstrate that the TGFbeta1-induced expression of CCN2/CTGF in human lung and renal mesangial cells is inhibited by 10 nm PGE(2), whereas human gingival fibroblasts are resistant. Ten nm PGE(2) increases cAMP accumulation in lung but not gingival fibroblasts, which require 1 mum PGE(2) to elevate cAMP. Micromolar PGE(2) only slightly reduces the TGFbeta1-stimulated CCN2/CTGF levels in gingival cells. EP2 prostaglandin receptor activation with butaprost blocks the TGFbeta1-stimulated expression of CCN2/CTGF expression in lung, but not gingival, fibroblasts. In lung fibroblasts, inhibition of the TGFbeta1-stimulated CCN2/CTGF by PGE(2), butaprost, or forskolin is due to p38, ERK, and JNK MAP kinase inhibition that is cAMP-dependent. Inhibition of any two MAPKs completely blocks CCN2/CTGF expression stimulated by TGFbeta1. These data mimic the inhibitory effects of 10 nm PGE(2) and forskolin that were dependent on PKA activity. In gingival fibroblasts, the sole MAPK mediating the TGFbeta1-stimulated CCN2/CTGF expression is JNK. Whereas forskolin reduces TGFbeta1-stimulated expression of CCN2/CTGF by 35% and JNK activation in gingival fibroblasts, micromolar PGE(2)-stimulated JNK in gingival fibroblasts and opposes the inhibitory effects of cAMP on CCN2/CTGF expression. Stimulation of the EP3 receptor with sulprostone results in a robust increase in JNK activation in these cells. Taken together, data identify two mechanisms by which TGFbeta1-stimulated CCN2/CTGF levels in human gingival fibroblasts resist down-regulation by PGE(2): (i) cAMP cross-talk with MAPK pathways is limited in gingival fibroblasts; (ii) PGE(2) activation of the EP3 prostanoid receptor stimulates the activation of JNK.  相似文献   

20.
Expression of the kinin B1 receptor is up-regulated in chronic inflammatory and fibrotic disorders; however, little is known about its role in fibrogenesis. We examined human embryonic lung fibroblasts that constitutively express the B1 receptor and report that engagement of the B1 receptor by des-Arg(10)-kallidin stabilized connective tissue growth factor (CTGF) mRNA, stimulated an increase in alpha1(I) collagen mRNA, and stimulated type I collagen production. These events were not observed in B2 receptor-activated fibroblasts. In addition, B1 receptor activation by des-Arg(10)-kallidin induced a rise in cytosolic Ca(2+) that is consistent with B1 receptor pharmacology. Our results show that the des-Arg(10)-kallidin-stimulated increase in alpha1(I) collagen mRNA was time- and dose-dependent, with a peak response observed at 20 h with 100 nM des-Arg(10)-kallidin. The increase in CTGF mRNA was also time- and dose-dependent, with a peak response observed at 4 h with 100 nM des-Arg(10)-kallidin. The increase in CTGF mRNA was blocked by the B1 receptor antagonist des-Arg(10),Leu(9)-kallidin. Inhibition of protein synthesis by cycloheximide did not block the des-Arg(10)-kallidin-induced increase in CTGF mRNA. These results suggest that engagement of the kinin B1 receptor contributes to fibrogenesis through increased expression of CTGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号