首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The Bacillus subtilis protein DivIVA controls both the positioning of the vegetative cell division site and the polar attachment of the chromosome during sporulation. In vegetative growth DivIVA attracts the bipartite cell division inhibitor MinCD away from the cell centre and towards the cell pole. This process ensures the inactivation of old polar division sites and leaves the cell centre free for the assembly of a new cell division complex. During sporulation MinCD and DivIVA levels fall, but DivIVA remains at the cell poles and becomes involved in the migration of the chromosomes to the pole. In order to investigate polar targeting of DivIVA, we undertook a mutational analysis of the 164-amino-acid protein. These studies identified one mutant (divIVA(R18C)) that could not localize to the cell pole but which retained the ability to support both vegetative growth and 50% sporulation efficiency. Further analysis revealed that, in the absence of polar targeting, DivIVA(R18C) localized to the nucleoid during vegetative growth in a Spo0J/Soj-dependent manner and required Spo0J/Soj and MinD to orientate the chromosomes correctly during sporulation. We demonstrate that polar targeting of DivIVA(R18C) is not essential during vegetative growth because the mutant can recognize the cell division site and influences the localization of MinD. Similarly we show that DivIVA(R18C) can function during sporulation because it can support the Spo0J/Soj orientation of the chromosome. In addition, we establish that both residues 18 and 19 constitute a DivIVA polar targeting determinant.  相似文献   

2.
DivIVA is a well-conserved coiled-coil protein present in most Gram-positive bacteria and has been implicated in division site selection, peptidoglycan biosynthesis and sporulation. DivIVA proteins bind lipid membranes and characteristically accumulate at curved membrane areas, i.e. the cell poles and the division site, to which they recruit various interaction partners. We have studied the role of this morphogen in the human pathogen Listeria monocytogenes and our results suggest a novel mechanism by which DivIVA contributes to cell division. Contrary to expectation a ΔdivIVA mutant exhibited a pronounced chaining phenotype rather than a defect in cell division which we attributed to reduced extracellular levels of the autolytic enzymes p60 and MurA. We demonstrate that this is due to a malfunction in secretion of these autolysins and phenotypic comparison of the ΔdivIVA strain with a ΔsecA2 mutant suggests that DivIVA influences the activity of the SecA2 secretion route in L. monocytogenes. Also from the phenotypic analysis it was clear that divIVA affected swarming motility, biofilm formation, invasiveness and cell-to-cell spread in cell culture infection models. Thus, our experiments show that DivIVA is an important factor for various listerial traits that are essential for the pathogenicity of this organism.  相似文献   

3.
The Bacillus subtilis divIVA gene, first defined by a mutation giving rise to anucleate minicells, has been cloned and characterized. Depletion of DivIVA leads to inhibition of the initiation of cell division. The residual divisions that do occur are abnormally placed and sometimes misorientated relative to the long axis of the cell. The DivIVA phenotype can be suppressed by disruption of the MinCD division inhibitor, suggesting that DivIVA controls the topological specificity of MinCD action and thus septum positioning. A DivIVA–GFP fusion targets to new and used sites of cell division, consistent with it having a direct role in topological specification.  相似文献   

4.
Sporulating cells of Bacillus subtilis undergo a highly polarized cell division and possess a specialized mechanism to move the oriC region of the chromosome close to the cell pole before septation. DivIVA protein, which localizes to the cell pole, and the Soj and Spo0J proteins, which associate with the chromosome, are part of the mechanism that delivers the chromosome to the cell pole. A sporulation-specific protein, RacA, encodes a third DNA-binding protein, which acts in conjunction with Soj and Spo0J to effect efficient polar chromosome segregation. divIVA mutants and soj racA double mutants have an unexpected phenotype in which specific markers to the left and right of oriC can be captured in the prespore compartment but the central oriC region is efficiently excluded. This 'residual' trapping requires Spo0J protein. We suggest that the Soj RacA DivIVA system is required to extract the oriC region from its position determined by the vegetative chromosome segregation machinery and anchor it to the cell pole.  相似文献   

5.
To clarify the function of DivIVA in Streptococcus pneumoniae, we localized this protein in exponentially growing cells by both immunofluorescence microscopy and immunoelectron microscopy and found that S. pneumoniae DivIVA (DivIVA(SPN)) had a unique localization profile: it was present simultaneously both as a ring at the division septum and as dots at the cell poles. Double-immunofluorescence analysis suggested that DivIVA is recruited to the septum at a later stage than FtsZ and is retained at the poles after cell separation. All the other cell division proteins that we tested were localized in the divIVA null mutant, although the percentage of cells having constricted Z rings was significantly reduced. In agreement with its localization profile and consistent with its coiled-coil nature, DivIVA interacted with itself and with a number of known or putative S. pneumoniae cell division proteins. Finally, a missense divIVA mutant, obtained by allelic replacement, allowed us to correlate, at the molecular level, the specific interactions and some of the facets of the divIVA mutant phenotype. Taken together, the results suggest that although the possibility of a direct role in chromosome segregation cannot be ruled out, DivIVA in S. pneumoniae seems to be primarily involved in the formation and maturation of the cell poles. The localization and the interaction properties of DivIVA(SPN) raise the intriguing possibility that a common, MinCD-independent function evolved differently in the various host backgrounds.  相似文献   

6.
Mutation of the divIVB locus in Bacillus subtilis causes misplacement of the septum during cell division and allows the formation of anucleate minicells. The divIVB locus contains five open reading frames (ORFs). The last two ORFs (minCD) are homologous to minC and minD of Escherichia coli but a minE homolog is lacking in B. subtilis. There is some similarity between minicell formation and the asymmetric septation that normally occurs during sporulation in terms of polar septum localization. However, it has been proposed that MinCD has no essential role in sporulation septum formation. We have used electron microscopic studies to show septation events during sporulation in some minD strains. We have observed an unusually thin septum at the midcell position in minD and also in minD spoIIE71 mutant cells. Fluorescence microscopy also localized a SpoIIE-green fluorescent protein fusion protein at the midcell site in minD cells. We propose that the MinCD complex plays an important role in asymmetric septum formation during sporulation of B. subtilis cells.  相似文献   

7.
In both rod-shaped Bacillus subtilis and Escherichia coli cells, Min proteins are involved in the regulation of division septa formation. In E. coli , dynamic oscillation of MinCD inhibitory complex and MinE, a topological specificity protein, prevents improper polar septation. However, in B. subtilis no MinE is present and no oscillation of Min proteins can be observed. The function of MinE is substituted by that of an unrelated DivIVA protein, which targets MinCD to division sites and retains them at the cell poles. We inspected cell division when the E. coli Min system was introduced into B. subtilis cells. Expression of these heterologous Min proteins resulted in cell elongation. We demonstrate here that E. coli MinD can partially substitute for the function of its B. subtilis protein counterpart. Moreover, E. coli MinD was observed to have similar helical localization as B. subtilis MinD.  相似文献   

8.
DivIVA from Bacillus subtilis is a bifunctional protein with distinct roles in cell division and sporulation. During vegetative growth, DivIVA regulates the activity of the MinCD complex, thus helping to direct cell division to the correct mid-cell position. DivIVA fulfils a quite different role during sporulation in B. subtilis when it directs the oriC region of the chromosome to the cell pole before asymmetric cell division. DivIVA is a 19.5 kDa protein with a large part of its structure predicted to form a tropomyosin-like alpha-helical coiled-coil. Here, we present a model for the quaternary structure of DivIVA, based on cryonegative stain transmission electron microscopy images. The purified protein appears as an elongated particle with lateral expansions at both ends producing a form that resembles a 'doggy-bone'. The particle mass estimated from these images agrees with the value of 145 kDa measured by analytical ultracentrifugation suggesting 6- to 8-mers. These DivIVA oligomers serve as building blocks in the formation of higher order assemblies giving rise to strings, wires and, finally, two-dimensional lattices in a time-dependent manner.  相似文献   

9.
During spore formation in Bacillus subtilis, cell division occurs at the cell pole and is believed to require essentially the same division machinery as vegetative division. Intriguingly, although the cell division protein DivIB is not required for vegetative division at low temperatures, it is essential for efficient sporulation under these conditions. We show here that at low temperatures in the absence of DivIB, formation of the polar septum during sporulation is delayed and less efficient. Furthermore, the polar septa that are complete are abnormally thick, containing more peptidoglycan than a normal polar septum. These results show that DivIB is specifically required for the efficient and correct formation of a polar septum. This suggests that DivIB is required for the modification of sporulation septal peptidoglycan, raising the possibility that DivIB either regulates hydrolysis of polar septal peptidoglycan or is a hydrolase itself. We also show that, despite the significant number of completed polar septa that form in this mutant, it is unable to undergo engulfment. Instead, hydrolysis of the peptidoglycan within the polar septum, which occurs during the early stages of engulfment, is incomplete, producing a similar phenotype to that of mutants defective in the production of sporulation-specific septal peptidoglycan hydrolases. We propose a role for DivIB in sporulation-specific peptidoglycan remodelling or its regulation during polar septation and engulfment.  相似文献   

10.
Morphological studies of a conditionally temperature-sensitive ribonucleic acid polymerase mutant of Bacillus subtilis have revealed that sporulation is inhibited at stage II when the cells are grown at 47.5 C. Growth and sporulation occur normally at 30 C with the mutant. The mutant grows normally at 47.5 C but is prevented from sporulating at the nonpermissive temperature by an abnormal septation during forespore membrane formation which prevents the subsequent engulfment process (stage III). The mutation affects the normal functioning of ribonucleic acid polymerase at the nonpermissive temperature resulting in abortive sporulation.  相似文献   

11.
O Resnekov  A Driks    R Losick 《Journal of bacteriology》1995,177(19):5628-5635
We report the identification and characterization of an additional sporulation gene from Bacillus subtilis called spoVS, which is induced early in sporulation under the control of sigma H. We show that spoVS is an 86-codon-long open reading frame and is capable of encoding a protein of 8,796 Da which exhibits little similarity to other proteins in the databases. Null mutations in spoVS have two contrasting phenotypes. In otherwise wild-type cells they block sporulation at stage V, impairing the development of heat resistance and coat assembly. However, the presence of a spoVS mutation in a spoIIB spoVG double mutant (which is blocked at the stage [II] of polar septation) acts as a partial suppressor, allowing sporulation to advance to a late stage. The implications of the contrasting phenotypes are discussed in the context of the formation and maturation of the polar septum.  相似文献   

12.
13.
The Bacillus subtilis divIVB1 mutation causes aberrant positioning of the septum during cell division, resulting in the formation of small, anucleate cells known as minicells. We report the cloning of the wild-type allele of divIVB1 and show that the mutation lies within a stretch of DNA containing two open reading frames whose predicted products are in part homologous to the products of the Escherichia coli minicell genes minC and minD. Just upstream of minC and minD, and in the same orientation, are three genes whose products are homologous to the products of the E. coli shape-determining genes mreB, mreC, and mreD. The B. subtilis mreB, mreC, and mreD genes are the site of a conditional mutation (rodB1) that causes the production of aberrantly shaped cells under restrictive conditions. Northern (RNA) hybridization experiments and disruption experiments based on the use of integrational plasmids indicate that the mre and min genes constitute a five-cistron operon. The possible involvement of min gene products in the switch from medial to polar placement of the septum during sporulation is discussed.  相似文献   

14.
DivIVA is involved in placement of the division septum and chromosome segregation in Bacillus subtilis and it plays important roles in cell division or morphogenesis in diverse Gram-positive bacteria. In Staphylococcus aureus, DivIVA is localized at the division septum, but it does not colocalize with the chromosomal origin of replication, as labeled with SpoOJ protein. Unexpectedly, a divIVA null mutant is not impaired in growth, nor is it affected in chromosome segregation or cell morphology.  相似文献   

15.
Deletion of the citC gene, coding for isocitrate dehydrogenase, arrests sporulation of Bacillus subtilis at stage I after bipolar localization of the cell division protein FtsZ but before formation of the asymmetric septum. A spontaneous extragenic suppressor mutation that overcame the stage I block was found to map within the spoVG gene. The suppressing mutation and other spoVG loss-of-function mutations enabled citC mutant cells to form asymmetric septa and to activate the forespore-specific sigma factor sigmaF. However, little induction of mother cell-specific, sigmaE-dependent sporulation genes was observed in a citC spoVG double mutant, indicating that there is an additional defect(s) in compartmentalized gene expression in the citC mutant. These other defects could be partially overcome by reducing the synthesis of citrate, by buffering the medium, or by adding excess MnCl2. Overexpression of the spoVG gene in wild-type cells significantly delayed sigmaF activation. Increased expression and stability of SpoVG in citC mutant cells may contribute to the citC mutant phenotype. Inactivation of the spoVG gene caused a population of otherwise wild-type cells to produce a small number of minicells during growth and caused sporulating cells to complete asymmetric septation more rapidly than normal. Unlike the case for inactivation of the cell division inhibitor gene minD, many of these minicells contained DNA and appeared only when the primary sporulation signal transduction pathway, the Spo0A phosphorelay, was active. These results suggest that SpoVG interferes with or is a negative regulator of the pathway leading to asymmetric septation.  相似文献   

16.
We have isolated mutations that block sporulation after formation of the polar septum in Bacillus subtilis. These mutations were mapped to the two genes of a new locus, spoIIS. Inactivation of the second gene, spoIISB, decreases sporulation efficiency by 4 orders of magnitude. Inactivation of the first gene, spoIISA, has no effect on sporulation but it fully restores sporulation of a spoIISB null mutant, indicating that SpoIISB is required only to counteract the negative effect of SpoIISA on sporulation. An internal promoter ensures the synthesis of an excess of SpoIISB over SpoIISA during exponential growth and sporulation. In the absence of SpoIISB, the sporulating cells show lethal damage of their envelope shortly after asymmetric septation, a defect that can be corrected by synthesizing SpoIISB only in the mother cell. However, forced synthesis of SpoIISA in exponentially growing cells or in the forespore leads to the same type of morphological damage and to cell death. In both cases protection against the killing effect of SpoIISA can be provided by simultaneous synthesis of SpoIISB. The spoIIS locus is unique to B. subtilis, and since it is completely dispensable for sporulation its physiological role remains elusive.  相似文献   

17.
The spo-279(ts) mutation, originally thought to be located in the spoIIG operon of Bacillus subtilis, has been mapped in close proximity but outside of the spoIIG locus. This mutation defines a new gene, spoIIN, located midway between the spoIIG and the spoVE loci, and whose product is required for successful completion of the asymmetric septation step. The spoIIN locus was cloned using a combination of 'walking steps' upstream from the spoIIG region and hybridization screening of a bacteriophage lambda library. Sequencing of DNA fragments able to rescue the spoIIN279(ts) mutation revealed that the spoIIN locus is identical with the B subtilis counterpart of the Escherichia coli ftsA gene. After cloning the ftsA region from a strain containing the spoIIN279(ts) mutation we found that this mutation converts the ninth residue of the FtsA protein from serine to asparagine. The spoIIN279(ts) mutation, which is recessive, leads to filamentation during growth at 42 degrees C and causes defective formation of the sporulation septum at this non-permissive temperature. The FtsA protein is therefore required for proper cell septation, both during vegetative growth and sporulation. Possible additional roles of FtsA during sporulation are discussed.  相似文献   

18.
Strain SRB15T+, a streptomycin-resistant, oligosporogenous mutant of Bacillus subtilis, contains two mutations, fun and strR. These mutations were mapped by PBS-1 mediated transduction and by transformation to two different sites in the cysA-linked region of the B. subtilis chromosome. The fun mutation mapped very close to rpsLl, a classic strA mutation, whereas strR mapped to a site distal to rpsE. The effects of these mutations on growth, sporulation, and streptomycin resistance in vivo and in vitro were determined. The fun mutation gave a different phenotype than did the rpsLl mutation and caused altered migration of a ribosomal protein which was identified as S12, the protein encoded by rpsL. It therefore appears that fun is an allele of the rpsL gene.  相似文献   

19.
The Bacillus subtilis divIVA gene encodes a coiled-coil protein that shows weak similarity to eukaryotic tropomyosins. The protein is targeted to the sites of cell division and mature cell poles where, in B.subtilis, it controls the site specificity of cell division. Although clear homologues of DivIVA are present only in Gram-positive bacteria, and its role in division site selection is not conserved in the Gram-negative bacterium, Escherichia coli, a DivIVA-green fluorescent protein (GFP) fusion was targeted accurately to division sites and retained at the cell pole in this organism. Remarkably, the same fusion protein was also targeted to nascent division sites and growth zones in the fission yeast Schizosaccharomyces pombe, mimicking the localization of the endogenous tropomyosin-like cell division protein Cdc8p, and F-actin. The results show that a targeting signal for division sites is conserved across the eukaryote-prokaryote divide.  相似文献   

20.
We conducted a series of experiments examining the effect of polymer stability on FtsZ localization dynamics in Bacillus subtilis. A loss-of-function mutation in ezrA, a putative polymer-destabilizing factor, suppresses the defects in FtsZ polymer stability associated with minCD overexpression. In addition, a mutation that is predicted to stabilize the FtsZ polymer leads to the formation of polar FtsZ rings. These data support the hypothesis that carefully balanced polymer stability is important for the assembly and localization of FtsZ during the bacterial cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号