首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laser scanning cytometry (LSC) is a relatively new slide-based technology developed for commercial use by CompuCyte (Cambridge, MA) for performing multiple fluorescence measurements on individual cells. Because techniques developed for performing four or more measurements on individual lymphoid cells based on light scatter as a triggering parameter for cell identification are not suitable for the identification of fixed epithelial tumor cells, an alternative approach is required for the analysis of such cells by LSC. Methods for sample preparation, event triggering, and the performance of multiple LSC measurements on disaggregated fixed human cells were developed using normal lymphocytes and two human breast cancer cell lines, JC-1939 and MCF-7, as test populations. Optimal conditions for individual cell identification by LSC were found to depend on several factors, including deposited cell density (cells per unit area), the dynamic range of probe fluorescence intensities, and intracellular distribution of the fluorescent probe. Sparsely deposited cells exhibited the least cell overlap and the brightest immunofluorescent staining. Major advantages of using DNA probes over a cytoplasmic immunofluorescent protein marker such as tubulin for event triggering are that the former exhibit greater fluorescence intensity within a relatively sharply demarcated nuclear region. The DNA-binding dye LDS-751 was found to be suboptimal for quantitative DNA measurements but useful as a triggering measurement that permits the performance of simultaneous fluorescein isothiocyanate-, phycoerythrin-, and indodicarbocyanine-based measurements on each cell. A major potential advantage of LSC over flow cytometry is the high yields of analyzable cells by LSC, permitting the performance of multiple panels of multicolor measurements on each tumor. In conclusion, we have developed and optimized a technique for performing multiple fluorescence measurements on fixed epithelial cells by LSC based on event triggering using the DNA-binding dye LDS 751. Although not ideal for quantitative measurements of cell DNA content, the large Stokes shift of this dye permits the performance of three or more additional fluorescence measurements on each cell.  相似文献   

2.
BACKGROUND: Conventional staining of cells or tissue sections on microscope slides involves immersing the slides into solutions of dyes then rinsing to remove the unbound dye. There are instances, however, when use of stain solutions is undesirable-e.g., at microgravity conditions in space, where the possibility of accidental spill (many dyes are known carcinogens) introduces health hazard. Likewise, transporting bulk of liquid stains and rinses may be burdensome in certain situations such as field expeditions or combat. METHODS: The "liquidless" staining procedure is proposed in which the dyes are contained in thin strips of hydrated polyacrylamide or gelatin gels that have been presoaked in the stain solutions. Fluorochromes that have affinity to DNA (propidium iodide, PI; 4,6-diamidino-2-phenylindole, DAPI, Hoechst 33342) or to protein (sulforhodamine 101) were used to saturate the gels. The gel strips were placed over the prefixed cells or tissue sections deposited on microscope slides and relatively low (20 g/cm2) pressure was applied to ensure the contact. The cells were also stained by using commercially available mounting media into which DAPI or PI were admixed. Intensity of fluorescence of the PI stained cells was measured by laser scanning cytometry (LSC). RESULTS: Satisfactory cell and tissue staining, with minimal background, was achieved after 10-20 min contact between the cells and gels. Optimal concentrations of the dyes in the solutions used to presoak the gels was found to be 2-4-fold higher than the concentrations used routinely in cytometry. The measurements of intensity of cellular fluorescence by LSC revealed that the staining of DNA was stoichiometric as reflected by the characteristic cellular DNA content frequency histograms with distinct G1, S, and G2/M cell populations and 2:1 ratio of G2/M to G1 peak fluorescence. Individual gels can be saturated with more than a single dye-e.g., to obtain differential DNA and protein staining. Cell staining with DAPI or PI in the gelatin-based mounting media led to high fluorescence background while staining with DAPI in "aqueous" medium was satisfactory. CONCLUSIONS: Relatively fast staining of cells or tissue sections on microscope slides can be achieved by nonconvective dye diffusion using hydrated gels permeated with the dyes, applied to cells at low pressure. The quality of the staining provided by this methodology is comparable to conventional cell staining in dye solutions.  相似文献   

3.
BACKGROUND: The cytometric methods of bivariate analysis of cellular RNA versus DNA content have limitations. The method based on the use of metachromatic fluorochrome acridine orange (AO) requires rigorous conditions of the equilibrium staining whereas pyronin Y and Hoechst 33342 necessitate the use of an instrument that provides two-laser excitation, including the ultraviolet (UV) light wavelength. METHODS: Phytohemagglutinin (PHA)-stimulated human lymphocytes were deposited on microscope slides and fixed. DNA and double-stranded (ds) RNA were stained with propidium iodide (PI) and protein was stained with BODIPY 630/650-X or fluorescein isothiocyanate (FITC). Cellular fluorescence was measured with a laser scanning cytometer (LSC). The cells were treated with RNase A and their fluorescence was measured again. The file-merge feature of the LSC was used to record the cell PI fluorescence measurements prior to and after the RNase treatment in list mode, as a single file. The integrated PI fluorescence intensity of each cell after RNase treatment was subtracted from the fluorescence intensity of the same cell measured prior to RNase treatment. This RNase-specific differential value of fluorescence (differential fluorescence [DF]) was plotted against the cell fluorescence measured after RNase treatment or against the protein-associated BODIPY 630/650-X or FITC fluorescence. RESULTS: The scattergrams were characteristic of the RNA versus DNA bivariate distributions where DF represented cellular ds RNA content and fluorescence intensity of the RNase-treated cells, their DNA content. The distributions were used to correlate cellular ds RNA content with the cell cycle position or with protein content. CONCLUSIONS: One advantage of this novel approach based on the recording and plotting of DF is that only the RNase -specific fraction of cell fluorescence is measured with no contribution of nonspecific components (e.g., due to the emission spectrum overlap or stainability of other than RNA cell constituents). Another advantage is the method's simplicity, which ensues from the use of a single dye, the same illumination, and the same emission wavelength detection sensor for measurement of both DNA and ds RNA. The method can be extended for multiparameter analysis of cell populations stained with other fluorochromes of the same-wavelength emission but targeted (e.g., immunocytochemically) for different cell constituents.  相似文献   

4.
Trypsin and protease V (pronase) were studied for their ability to enhance immunofluorescent labelling of papovavirus antigens in glycol methacrylate embedded sections of organs infected with murine K-papovavirus. Treatment of Bouin's fixed sections with 0.4% trypsin for 30 minutes resulted in specific immunofluorescent staining equal to that seen in frozen sections and produced little if any loss of histological detail. Treatment with protease V resulted in less brilliant fluorescence and less satisfactory tissue preservation. Studies were then conducted to determine the fluorescence and less satisfactory tissue preservation. Studies were then conducted to determine the fixative which would produce brightest specific fluorescent antibody staining of papovavirus-infected cells while providing clearest definition of intranuclear inclusions and best morphological detail in histologically stained adjacent sections. Brightest immunofluorescence staining was accomplished on material fixed in 96% ethanol/1% glacial acetic acid or Bouin's solution. These fixatives also gave clear definition of intranuclear inclusions with histological stains and provided excellent morphological detail. Phosphate buffered paraformaldehyde/picric acid and 3.7% formalin gave less satisfactory fluorescence and obscured intranuclear inclusions in histological preparations. Sections fixed in 4% paraformaldehyde, 4% paraformaldehyde/1% glutaraldehyde, and 0.5 M p-toluenesulfonic acid were negative for specific fluorescence. Glycol methacrylate, used with proper fixation and trypsin pretreatment of sections, provides a useful embedding medium for immunofluorescent identification of virus-infected cells, and the 1.0-2.0 micron sections routinely obtainable with GMA permit study of individual infected cells by fluorescent antibody and histological staining of adjacent sections.  相似文献   

5.

Background

Photodynamic therapy and photodiagnosis of cancer requires preferential accumulation of fluorescent photosensitizers in tumors. Clinical evidence documents feasibility of ALA-based photodiagnosis for tumor detection. However, false positive results and large variations in fluorescence intensities are also reported. Furthermore, selective accumulation of fluorescent species of photosensitizers in tumor cell lines, as compared to normal ones, when cultured in vitro, is not always observed. To understand this discrepancy we analyzed the impact of various factors on the intensity of detected PpIX fluorescence.

Methods

Impacts of cell type, mitochondrial potential, cell–cell interactions and relocalization of PpIX among different cell types in co-cultures of different cell lines were analyzed by confocal microscopy and flow cytometry. Fluorescence spectroscopy was used to estimate absolute amounts of ALA-induced PpIX in individual cell lines. Immunofluorescence staining was applied to evaluate the ability of cell lines to produce collagen.

Results

Higher ALA-induced PpIX fluorescence in cancer cell lines as compared to normal ones was not detected by all the methods used. Mitochondrial activity was heterogeneous throughout the cell monolayers and could not be clearly correlated with PpIX fluorescence. Positive collagen staining was detected in all cell lines tested.

Conclusions

Contrary to in vivo situation, ALA-induced PpIX production by cell lines in vitro may not result in higher PpIX fluorescence signals in tumor cells than in normal ones. We suggest that a combination of several properties of tumor tissue, instead of tumor cells only, is responsible for increased ALA-induced PpIX fluorescence in solid tumors.

General significance

Understanding the reasons of increased ALA-induced PpIX fluorescence in tumors is necessary for reliable ALA-based photodiagnosis, which is used in various oncological fields.  相似文献   

6.
Trypsin and protease V (pronase) were studied for their ability to enhance immuno-fluorescent labelling of papovavirus antigens in glycol methacrylate embedded sections of organs infected with murine K-papovavirus. Treatment of Bouin's fixed sections with 0.4% trypsin for 30 minutes resulted in specific immunofluorescent staining equal to that seen in frozen sections and produced little if any loss of histological detail. Treatment with protease V resulted in less brilliant fluorescence and less satisfactory tissue preservation. Studies were then conducted to determine the fixative which would produce brightest specific fluorescent antibody staining of papovavirus-infected cells while providing clearest definition of intranuclear inclusions and best morphological detail in histologically stained adjacent sections. Brightest immunofluorescence staining was accomplished on material fixed in 96% ethanol/1% glacial acetic acid or Bouin's solution. These fixatives also gave clear definition of intranuclear inclusions with histological stains and provided excellent morphological detail. Phosphate buffered paraformaldehyde/picric acid and 3.7% formalin gave less satisfactory fluorescence and obscured intranuclear inclusions in histological preparations. Sections fixed in 4% paraformaldehyde, 4% paraformaldehyde/1% glutaraldehyde, and 0.5 M p-toluenesulfonic acid were negative for specific fluorescence. Glycol methacrylate, used with proper fixation and trypsin pretreatment of sections, provides a useful embedding medium for immunofluorescent identification of virus-infected cells, and the 1.0-2.0 μm sections routinely obtainable with GMA permit study of individual infected cells by fluorescent antibody and histological staining of adjacent sections.  相似文献   

7.
BACKGROUND: The Laser Scanning Cytometry (LSC) offers quantitative fluorescence analysis of cell suspensions and tissue sections. METHODS: We adapted this technique to immunohistochemical labelled human brain slices. RESULTS: We were able to identify neurons according to their labelling and to display morphological structures such as the lamination of the entorhinal cortex. Further, we were able to distinguish between neurons with and without cyclin B1 expression and we could assign the expression of cyclin B1 to the cell islands of layer II and the pyramidal neurons of layer V of the entorhinal cortex in Alzheimer's disease effected brain. In addition, we developed a method depicting the three-dimensional distribution of the cells in intact tissue sections. CONCLUSIONS: In this pilot experiments we could demonstrate the power of the LSC for the analysis of human brain sections.  相似文献   

8.
BACKGROUND: Low transient transfection efficiency limits the ability to characterize putative proapoptotic gene function in neurons. Laser scanning cytometry (LSC), with its high capacity, medium throughput means of collecting fluorescent emissions from cultured cells, offers an effective technology for scoring cell death in neuronal transfectants. METHODS: Cerebellar granule neurons (CGNs) were transfected with EGFP-fusion constructs of Caspase-3 and Caspase-9 using a DNA-calcium phosphate coprecipitation method. CGNs were fixed, permeablized, and stained with propidium iodide (PI) nuclear dye. An LSC method, based on a combination of Long Red Max Pixel, Long Red Integral, and Green Integral fluorescence parameters was validated for the scoring of apoptotic cell death in CGNs. RESULTS: In Caspase-3 and Caspase-9 transfected CGNs, cell death was scored both in transfectants and nontransfected culture-mates. The cell death phenotype was found to be independent of transfection efficiency. LSC scoring of Caspase-9 transfectants was compared with visual scoring following Hoechst 33342 staining, yielding results that were similar qualitatively, but not quantitatively, likely owing to the greater sensitivity to green fluorescence of laser scanning compared to human vision. CONCLUSION: LSC scoring of transiently transfected CGNs offers a rapid and reliable means of characterizing proapoptotic gene effects.  相似文献   

9.
BACKGROUND: Removal of the nucleic acid-bound fluorochrome is desirable when stained cells have to be reanalyzed using other fluorochromes. It is also often desirable to remove DNA-bound antitumor drugs from drug-treated cells, to improve cell staining. We have previously observed that in aqueous solutions, the methylxanthine caffeine (CFN) decreases interactions between planar aromatic molecules such as intercalating dyes or antitumor drugs and nucleic acids. The aim of this study was to explore whether this property of CFN can be utilized to remove the DNA-bound intercalating dyes propidium iodide (PI) or 7-aminoactinomycin D (7-AAD) from the cells and whether the bleached cells can be restained and reanalyzed. METHODS: HL-60 cells were fixed in 70% ethanol and their DNA was stained with PI or 7-AAD. The cells were then rinsed with a 0.05 M solution of CFN in phosphate-buffered saline (PBS) or with PBS alone. The decrease in intensity of cell fluorescence during rinsing was measured by laser scanning cytometry (LSC) to obtain the bleaching kinetics of individual cells. The bleached cells were then restained with PI, 7-AAD, or the protein-specific fluorochrome sulforhodamine 101(S101). Their fluorescence was measured again by LSC. In addition, free DNA was subjected to gel electrophoresis, DNA bands in the gels were stained with ethidium bromide (EB), and the gels were rinsed with a solution of CFN or PBS to bleach the DNA band's fluorescence. RESULTS: Rinsing the PI or 7-AAD-stained cells with solutions of CFN led to nearly complete removal of PI and a more than 75% decrease in 7-AAD fluorescence after 10 min. The rinse with PBS decreased the PI cell fluorescence intensity by less than 30% and the 7-AAD fluorescence by about 50%. The differences in kinetics of PI or 7-AAD removal by CFN from G2/M versus G1 cells suggest that these intercalators bind more strongly to DNA in chromatin of G2/M than G1 cells. The CFN-bleached cells were then successfully stained with S101 and again with PI or 7-AAD. The bivariate analysis of the LSC merged files of the cells sequentially stained with PI and S101 revealed typical DNA/protein distributions. The fluorescence of EB-stained DNA bands in gels was also nearly completely removed by rinsing gels in 0.05 M CFN; PBS alone had a distinctly lesser effect. CONCLUSION: Solutions of CFN can dissociate the DNA-bound PI, 7-AAD, EB, and possibly other intercalating fluorochromes. The bleached cells can be restained and reanalyzed by LSC. This approach can also be used to remove such fluorochromes from nucleic acids immobilized in gels and perhaps in other solid matrices. Analysis of the kinetics of fluorochrome removal from cells can possibly be used to study their binding affinities to nucleic acids in situ.  相似文献   

10.
BACKGROUND: An electronic radio frequency (RF) microchip, the microtransponder (MTP), has been developed as a platform for assays in the fields of genomics and proteomics. Upon activation by light, each MTP provides a unique RF identification (ID) signal that matches a chip to the specific biological material attached to it. The MTP is powered by a photocell and has an antenna that transmits the signal. The aim of the present study was to explore utility of MTPs as a platform for cell growth in cytotoxicity assays. METHODS: The MCF-7, MCF-116, A549, or T-24 cells growing on MTPs placed in petri dishes or slide chambers were cultured untreated or exposed to antitumor drugs topotecan, mitoxantrone, or onconase for up to 4 days. Their attachment to- and growth on- MTPs was assessed by fluorescence microscopy and laser scanning cytometry (LSC) and compared with growth on the dish surface in the MTP neighborhood. The MTPs were fixed in ethanol, stained with propidium iodide (PI), and interrogated in flow in the instrument capable to rapidly (up to 103 MTPs/s) identify their ID signal and measure fluorescence. RESULTS: The cells plated on MTPs exhibited similar attachment properties to those plated in culture dishes. When measured by LSC, they had similar mitotic activity, growth rate, and cell cycle distributions as the cells adhering to the culture dish in the neighborhood of MTPs. The fluorescence intensity of MTPs provided information about the cell number per MTP, which made it possible to assess cell growth rate and monitor the cytostatic/cytotoxic effects of the tested drugs. CONCLUSIONS: The MTP-based system holds promise for the multiplexed cell assays in which numerous different cell lines can be screened for their growth rate or sensitivity while exposed to particular agents in the same vessel. Other advantages of the system are the rapidity of the screening and a very large number of ID codes. Because many cell lines/types can be assayed in a single dish, the system also offers cost savings on tissue culture reagents.  相似文献   

11.
SAMM 368, a plasmacytoma which produces IgA-kappa and IgG2b-kappa was established in vitro from primary explants or after animal passage. The 9 lines that were established produced both paraproteins. The production of both immunoglobulins by single cells was demonstrated by immunofluorescent staining and cloning. Continuous culture of 3 parent lines for 18 months and 11 cloned lines for periods from 5 to 7 months demonstrated that double production is a stable characteristic of this plasmacytoma. Two single paraprotein-producing varients (IgG2b or IgA) were derived when cells were cultured in the presence of Fungizone. Chromosomal analysis of SAMM 368 indicates that this double producing tumor has a modal number similar to those observed in myelomas producing a single immunoglobulin class.  相似文献   

12.
Clinical applications of laser scanning cytometry   总被引:3,自引:0,他引:3  
Tárnok A  Gerstner AO 《Cytometry》2002,50(3):133-143
This study reviews existing and potential clinical applications of laser scanning cytometry (LSC) and outlines possible future developments. LSC provides a technology for solid phase cytometry. Fluorochrome-labeled specimens are immobilized on microscopic slides that are placed on a conventional epifluorescence microscope and analyzed by one or two lasers. Data comparable to flow cytometry are generated. In addition, the position of each event is recorded, a feature that allows relocalization and visualization of each measured event. The major advantage of LSC compared with other cytometric methods is the combination of two features: (a) the minimal clinical sample volume needed and (b) the connection of fluorescence data and morphological information for the measured event. Since the introduction of LSC, numerous methods have been established for the analysis of cells, cellular compartments, and tissues. Although most cytometric methods use only two or three colors, the characterization of specimens with up to five fluorochromes is possible. Most clinical applications have been designed to determine ploidy and immunophenotype; other applications include analyses of tissue biopsies and sections, fluorescence in situ hybridization, and the combination of vital and nonvital information on a single-cell basis. With the currently available assays, LSC has proven its wide spectrum of clinical applicability in slide-based cytometry and can be introduced as a standard technology in multiple clinical settings.  相似文献   

13.
BACKGROUND: Effectiveness of antitumor drugs to suppress unrestricted proliferation of cancer cells is commonly measured by cell clonogenicity assays. Assays of clonogenicity are also used in studies of stem/progenitor cells and in analysis of carcinogenic transformation. The conventional assays are limited to providing information about frequency of colonies (cloning efficiency) and do not reveal the qualitative (phenotype) attributes of individual colonies that may yield clues on mechanisms by which cell proliferation was affected by the studied agent. METHODS: Laser scanning cytometry (LSC) was adapted to identify and characterize size and phenotype of colonies of MCF-7 cells growing in microscope slide chambers, untreated and treated with the cytotoxic ribonuclease, onconase (Onc). Individual colonies were located and data representing each colony were segmented based on >650-nm fluorescence excited by a He-Ne laser of the cells whose protein was stained with BODIPY 630/650-X. The DNA of the cells was stained with propidium iodide (red fluorescence) whereas specific proteins (estrogen receptor [ER] or tumor suppressor p53) were detected immunocytochemically (green fluorescence), each excited by an Ar ion laser. RESULTS: A plethora of attributes of individual colonies were measured, such as (a) morphometric features (area, circumference, area/circumference ratio, DNA or protein content per area ratio), (b) number of cells (nuclei), (c) DNA content, (d) protein content and protein/DNA ratio, and (e) expression of ER or p53 per colony, per total protein, per nucleus or per DNA, within a colony. Also cell cycle distribution within individual colonies and heterogeneity of colonies with respect to all the measured features could be assessed. The colonies growing in the presence of Onc had many of the above attributes different than the colonies from the untreated cultures. CONCLUSIONS: Analysis of the features of cell colonies by LSC provides a wealth of information about the progeny of individual cells. Changes in colony size and phenotype, reflecting altered cell shape, cell size, colony protein/DNA ratio, and expression of individual proteins, may reveal mechanisms by which drugs suppress the proliferative capacity of the cells. This may include inducing growth imbalance and differentiation and modulating expression of the genes that may be associated with cell cycle, apoptosis, or differentiation in a progeny of individual cells. Extensions of LSC may make it applicable for automatic analysis of cloning efficiency and multiparameter analysis of cell colonies in soft agar. Such analyses may be useful in studies of the mechanisms and effectiveness of antitumor drugs, in the field of carcinogenesis, and for analyzing primary cultures and assessing tumor prognosis and drug sensitivity. The assay can also be adapted to analysis of microbial colonies.  相似文献   

14.
An indirect immunofluorescent test based on globulin preparation from a highly specific antiserum against rat liver DNA polymerase alpha was used to direct the enzyme in sections of various tissues of the rat. The immunofluorescent staining was found in cells of the thymus and the wall of intestine crypt, in sparse cells of the intestinal muscular layer, and in cells of the embryo skin epithelium. In sections of liver the intensity of staining and the number of stained cells increased significantly during regeneration. The immunoglobulins did not interact with the cytoplasm and nuclei of skeletal muscle myotubes, with the epithelial cells at the top of intestinal villi, and with erythrocytes. The intracellular localization of the fluorescence observed was of two general types: 1) staining in the region of the nuclear envelope and/or in the cytoplasm; 2) an additional intranuclear staining. The staining of the first type is characteristic of the cells of intact liver and of leyomyocytes. It was also observed in the proliferating cells of thymus and crypt wall, and in cultured myogenic L6 cells. Cells of the embryo skin epithelium, the satellite cells in the skeletal muscle, and about one half of the regenerating liver cells appeared to have the second type of staining. These data serve an indication of possible histotypical differences in in the intracellular localization of DNA polymerase alpha in proliferating cells. It is proposed that the presence of DNA polymerase in resting cells is in association with their ability to respond to the mitogenic stimulus.  相似文献   

15.
BACKGROUND: During induction of apoptosis, the pro-apoptotic member of the Bcl-2 protein family (Bax) undergoes translocation to the mitochondria. The translocation, which leads to accumulation of Bax in the mitochondrial intermembrane space, appears to be the critical event determining release of cytochrome c to cytosol: the latter event triggers the irreversible steps of apoptosis, namely, the activation of caspases and the initiation of the degradation of many proteins. The aim of this study was to utilize the morphometric capabilities of the laser scanning cytometer (LSC) and adapt this instrument to detect and measure in situ the process of translocation of Bax to mitochondria. METHODS: Human breast carcinoma MCF-7 cells growing on microscope slides were treated with the DNA topoisomerase I inhibitor, camptothecin (CPT). CPT is known to induce apoptosis preferentially of S-phase cells. The cells were fixed and permeabilized on the slides, their DNA was stained with propidium iodide (PI), Bax was detected immunocytochemically with the fluoresceinated antibody, and red and green fluorescence emission was measured by the LSC. RESULTS: Prior to induction of apoptosis, Bax was uniformly and diffusely dispersed in the cell nucleus and cytoplasm. Its translocation and accumulation in mitochondria in cells undergoing apoptosis were detected and measured by the LSC as the increase in intensity of maximal pixel of Bax immunofluorescence. Bivariate analysis of DNA content versus maximal pixel of Bax fluorescence revealed that the CPT-induced Bax translocation into mitochondria was preferential to S-phase cells. Total cellular Bax immunofluorescence measured by flow cytometry, however, was increased in all phases of the cycle without a preference to S-phase cells. CONCLUSION: Changes in abundance and localization of particular proteins that undergo translocation within the cell, leading to their altered local density, may be conveniently detected by the LSC by taking advantage of its morphometric capabilities. Measurement of total cellular Bax immunofluorescence by flow cytometry combined with analysis of its translocation by LSC revealed that apoptosis of S-phase cells induced by CPT was unrelated to overall Bax abundance per cell but correlated with its accumulation in mitochondria.  相似文献   

16.
To apply the bromodeoxyuridine (BrdU) labeling method using a monoclonal antibody to the study of cell proliferation in the mouse uterus, methods of fixation and embedding of tissues and of immunofluorescent staining were compared in terms of the rate of detection of labeled cells and specificity and stability of fluorescence obtained. BrdU was administered intravenously 2 hr before death and uterine blocks were embedded in polyester wax and Technovit resin after fixation in formalin and periodate-lysine-paraformaldehyde, respectively. The indirect method with anti-BrdU and fluorescein isothiocyanate (FITC) conjugated antimouse IgG antisera and the direct method with FITC conjugated anti-BrdU antibody were applied to both wax- and resin-embedded sections. Labeled and total cells were counted in luminal and glandular epithelia and stomata adjoining them. Counterstaining with hematoxylin for counting total cells produced intense fluorescence over the whole of resin sections and made counting of labeled cells impossible. On wax sections, on the other hand, the results were satisfactory, although the number of labeled cells detected was decreased slightly. In wax sections fluorescence due to nuclear incorporation of BrdU in the indirect method could be easily distinguished from the cytoplasmic or extracellular emission seen in some cells by its location and characteristic color. In resin sections, however, more careful observation was needed since the second antibody used in the indirect method cross-reacted with IgG in eosinophils and produced cytoplasmic fluorescence of the same color. By the indirect method greater numbers of labeled cells were detected in wax sections than in resin sections. The difference was distinct in tissues with extensive cell proliferation. By the direct method the fluorescence obtained was weaker and apt to fade more quickly than that obtained by the indirect method; use of the direct method reduced the number of labeled cells detected in both wax- and resin-embedded sections.  相似文献   

17.
Summary Neuroblastoma is a tumor of neuroectodermal origin arising most commonly from the adrenal medulla. We have examined the ability of several monoclonal antibodies which recognize markers predominantly expressed on human natural killer (NK) cells to react with neuroblastoma cell lines in vivo derived sections of tumor. HNK-1 (Leu 7) is a monoclonal IgM antibody which recognizes a carbohydrate epitope on NK cells and a wide range of tumor cell types. We have shown that HNK-1 recognizes the human neuroblastoma lines SMS-KCNR, SMS-KAN, NMB/N7, and IMR/5. Expression of this antigen on cell lines can be slightly increased by retinoic acid-induced differentiation of the cells. N901 (NKH1), a monoclonal antibody raised against interleukin 2-dependent human NK cell lines also recognizes all human neuroblastoma cell lines examined. This expression is independent of differentiation induction and levels remain unaltered following retinoic acid treatment of the cell lines. Lastly, with monoclonal antibody 49H.8, it has been found that reactivity of the lines is weak until induction of differentiation, after which highly significant increases of reactivity are seen. 49H.8 recognizes several cryptic carbohydrate antigens with varying affinities, shown to identify mouse and rat NK cells. In contrast to other NK markers, human neuroblastoma cell lines did not express significant reactivity with B73.1, Leu 11b, or Leu 18. Immunohistochemical staining of sections of human neuroblastoma tumors correlated with the in vitro findings; however, staining with N901 and 49H.8 was only seen on frozen sections, not paraffin-embedded. The significance of shared NK cell-neuroblastoma/neuron antigens is currently under investigation.  相似文献   

18.
The quinacrine dihydrochloride (QDH) staining and the [3H]thymidine incorporation patterns were simultaneously analyzed in nuclei of rat cells from a proliferating (granulation tissue) and a nonproliferating tissue (liver). Nuclei from freshly isolated and cultured cells of the rapidly proliferating subcutaneous granulation tissue showed a cell cycle-related pattern similar to that previously described with growing fibroblast-like cells in vitro. Nuclei of liver cells in smears from biopsies and in histological sections showed a fluorescence pattern similar to that of serum-deprived arrested G0 cells from established cell lines. Treatment of primary cultured rat hepatocytes with phenobarbital altered their degree of chromatin condensation similar to that seen after treatment of rats in vivo. The data indicate that the QDH staining pattern is an early marker, suitable for detecting the cell cycle-promoting activity of chemicals (e.g., of tumor promoters) in nonproliferating cells from various tissues in vivo and in vitro.  相似文献   

19.
TO apply the bromodeoxyuridine (BrdU) labeling method using a monoclonal antibody to the study of cell proliferation in the mouse uterus, methods of fixation and embedding of tissues and of immunofluorescent staining were compared in terms of the rate of detection of labeled cells and specificity and stability of fluorescence obtained. BrdU was administered intravenously 2 hr before death and uterine blocks were embedded in polyester wax and Technovit resin after fixation in formalin and periodate-lysine-paraformaldehyde, respectively. The indirect method with anti-BrdU and fluorescein isothiocyanate (FITC) conjugated antimouse IgG antisera and the direct method with FITC conjugated anti-BrdU antibody were applied to both wax- and resin-embedded sections. Labeled and total cells were counted in luminal and glandular epithelia and stromata adjoining them. Counterstaining with hematoxylin for counting total cells produced intense fluorescence over the whole of resin sections and made counting of labeled cells impossible. On wax sections, on the other hand, the results were satisfactory, although the number of labeled cells detected was decreased slightly. In wax sections fluorescence due to nuclear incorporation of BrdU in the indirect method could be easily distinguished from the cytoplasmic or extracellular emission seen in some cells by its location and characteristic color. In resin sections, however, more careful observation was needed since the second antibody used in the indirect method cross-reacted with IgG in eosinophils and produced cyctoplasmic fluorescence of the same color. By the indirect method greater numbers of labeled cells were detected in wax sections than in resin sections. The difference was distinct in tissues with extensive cell proliferation. By the direct method the fluorescence obtained was weaker and apt to fade more quickly than that obtained by the indirect method; use of the direct method reduced the number of labeled cells detected in both wax- and resin-embedded sections.  相似文献   

20.
Mouse lymphoma L5178Ytk+/- (MOLY) cells and human lymphoblastoid TK6 and WTK-1 cells are widely used to detect mutagens in vitro. MOLY and WTK-1 cells have a p53 mutation, while TK6 cells, which were derived from the same parental line as WTK-1 cells, do not. In this study, we tested the clastogen 5-fluorouracil (5-FU) in the Tk assay and the in vitro micronucleus (MN) assay in MOLY, TK6, and WTK-1 cells to clarify whether differential responses were related to p53 gene status. We also determined the effect of 5-FU on the frequency of apoptotic cells and on cell cycle distribution in each cell line. Furthermore, we measured the activity of the 5-FU metabolizing enzymes (thymidylate synthetase (TS), dihydrouracil dehydrogenase (DPD), orotate phosphoribosyl transferase (OPRT), and thymidine phosphorylase (TP)) in each cell line. We treated MOLY cells with 1.0-8.0 microg/mL 5-FU for 3 h and TK6 and WTK-1 cells with 1.56-25 and 3.13-50 microg/mL, respectively, for 4 h. In MOLY cells, the mutation frequency (MF) and MN frequency increased. In WTK-1 cells, the MN frequency but not the MF increased. In TK6 cells, neither the MF nor the MN frequency increased. Furthermore, the IC50 of 5-FU was lower in MOLY cells than in the human cells. The response to 5-FU treatment differed in other ways as well. At the same level of cytotoxicity, the frequency of apoptotic cell was highest in TK6 cells. The cell cycle was delayed just after treatment in MOLY cells while the delay appeared 24 h later in TK6 and WTK-1 cells. Nothing in our analysis, however, revealed marked differences between the cell lines that could account for the severe cytotoxic and mutagenic responses that 5-FU elicited only in MOLY cells. 5-FU is phosphorylated by OPRT and TP and detoxified by DPD. MOLY cells have higher OPRT activity and markedly lower DPD and TP activity than TK6 and WTK-1 cells. The content of TS, however, the target enzyme of 5-FU, was similar in all cell lines, suggesting that 5-FU was more readily phosphorylated and less readily detoxified in MOLY cells than in TK6 and WTK-1 cells. MOLY cells were more sensitive to 5-FU than WTK-1 cells even though both have a mutated p53 gene, suggesting that the different responses to 5-FU were due to differences in 5-FU metabolism rather than the p53 status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号