首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organic anion transporters (OATs, SLC22) interact with a remarkably diverse array of endogenous and exogenous organic anions. However, little is known about the structural features that determine their substrate selectivity. We examined the substrate binding preferences and transport function of olfactory organic anion transporter, Oat6, in comparison with the more broadly expressed transporter, Oat1 (first identified as NKT). In analyzing interactions of both transporters with over 40 structurally diverse organic anions, we find a correlation between organic anion potency (pKi) and hydrophobicity (logP) suggesting a hydrophobicity-driven association with transporter-binding sites, which appears particularly prominent for Oat6. On the other hand, organic anion binding selectivity between Oat6 and Oat1 is influenced by the anion mass and net charge. Smaller mono-anions manifest greater potency for Oat6 and di-anions for Oat1. Comparative molecular field analysis confirms these mechanistic insights and provides a model for predicting new OAT substrates. By comparative molecular field analysis, both hydrophobic and charged interactions contribute to Oat1 binding, although it is predominantly the former that contributes to Oat6 binding. Together, the data suggest that, although the three-dimensional structures of these two transporters may be very similar, the binding pockets exhibit crucial differences. Furthermore, for six radiolabeled substrates, we assessed transport efficacy (Vmax) for Oat6 and Oat1. Binding potency and transport efficacy had little correlation, suggesting that different molecular interactions are involved in substrate binding to the transporter and translocation across the membrane. Substrate specificity for a particular transporter may enable design of drugs for targeting to specific tissues (e.g. olfactory mucosa). We also discuss how these data suggest a possible mechanism for remote sensing between OATs in different tissue compartments (e.g. kidney, olfactory mucosa) via organic anions.  相似文献   

2.
Gastrin has significant growth and metabolic effects on colonic mucosal cells. It is, however, not known if gastrin receptors are present on colonic mucosal cells that may directly mediate the reported biological effects of gastrin. In the present studies, the presence of specific gastrin binding sites on colonic mucosal membranes was investigated and the binding sites were further characterized. Crude membranes from colonic mucosa of guinea pigs were analyzed for specific binding to gastrin by our published procedures. A significant number (14.7 ± 1.8 fmoles/mg protein) of high affinity gastrin binding sites (Kd = 0.49 = 0.05 mM) were measured, that were specific for binding gastrin/CCK related peptides and demonstrated negligible binding affinity for all other unrelated peptides examined. In addition a large number of low-affinity (Kd = M) binding sites were present. In order to further characterize the molecular size of gastrin binding proteins, we used the chemical cross-linking methods, and observed at least four bands of gastrin binding proteins (GBPs) ( 33, 45, 80 and 250 KDa), both under reducing and non-reducing conditions, indicating that these proteins were not sub-units of forms linked by disulfide bonds. Interestingly, majority of the specific gastrin binding sites ( 70%) were present on the 45 KDa protein, unlike other target cells of gastrin. The presence of N- and O-linked glycosylated moieties were indicated on the 45 KDa protein, based on enzymatic de-glycosylation studies. The relative binding affinity (RBA) of gastrin and a closely related peptide, cholecystokinin octapeptide (CCK), for GBPs on colonic mucosal membranes was measured in order to determine if GBPs were similar to the CCK-A or CCK-B binding proteins reported in literature. The RBA of gastrin and CCK for displacing the binding of gastrin to the 33, 45, 80 and 250 KDa GBPs on colonic mucosal membranes were calculated to be 39, 100, 78 and 70% (gastrin), and 5.4, 2.9, 3.9 and 2.0% (CCK), respectively, wherein the binding affinity of gastrin for the 45 KDa protein was arbitrarily taken as 100%. Based on the RBA values, it appears more likely that the GBPs on colonic mucosal membranes are more akin to the unique GBPs described on colon cancer cells, and do not represent either the CCK-A or CCK-B binding sites. Based on the cross-linking studies we were not able to determine if the high- and low-affinity binding sites were differentially distributed on the different molecular forms of GBPs measured on the colonic mucosal membranes. The above studies thus indicate for the first time that specific gastrin binding proteins (receptors) are present on colonic mucosal membranes and that these receptor proteins may be directly mediating the observed effects of gastrin on colonic mucosal cells.  相似文献   

3.
Distinguishing bombesin receptor subtypes using the oocyte assay.   总被引:1,自引:0,他引:1  
Physiological responses to mammalian bombesin-like peptides were studied in Xenopus oocytes injected with mRNA isolated from Swiss 3T3 cells and rat esophagus in order to identify and characterize bombesin receptor subtypes. Both groups respond similarly to either gastrin releasing peptide or neuromedin B, but only the response to neuromedin B in oocytes expressing the esophagus mRNA is not blocked by a specific gastrin releasing peptide receptor antagonist, des-Met-[D-Phe6]Bn(6-13) ethyl ester. Complete desensitization of gastrin releasing peptide-evoked responses in oocytes expressing esophagus mRNA does not abolish neuromedin B-evoked responses. A single application of neuromedin B abolishes responses to subsequently applied gastrin releasing peptide in oocytes expressing esophagus, but not Swiss 3T3, mRNA. RNA blot hybridization studies using a Swiss 3T3 gastrin releasing peptide receptor cDNA probe show no detectable hybridization in esophagus mRNA samples. These data suggest that a gastrin releasing peptide receptor is expressed in the esophagus and that it is distinct from that expressed in Swiss 3T3 cells and may represent a third subtype of mammalian bombesin receptor.  相似文献   

4.
Various gastrin analogues and CCK-8 (Asp-Tyr(SO3H)-Met-Gly-Trp-Met-Asp-Phe-NH2) are hydrolyzed in vitro by angiotensin-converting enzyme (ACE), the main and initial cleavage occurring at the Met-Asp (or Leu-Asp) bond, releasing the C-terminal dipeptide amide Asp-Phe-NH2. Tetragastrin analogues (e.g., Boc-Trp-Leu-Asp-Phe-NH2) are degraded by a vesicular membrane fraction from rat gastric mucosa, yielding the C-terminal dipeptide Asp-Phe-NH2. We report here on the degradation of gastrin analogues and CCK-8 by a gastric mucosal cell preparation containing specific gastrin receptors. We have shown that gastrin analogues were specifically degraded by gastric mucosal cells from different species (e.g., rabbit and dog) at 37 degrees C (pH 7.4), releasing the C-terminal dipeptide Asp-Phe-NH2, similarly to ACE. This cleavage was found to be temperature and pH sensitive, and was inhibited by metalloproteinase inhibitors and by captopril, strongly suggesting that this enzymatic system closely resembles ACE. We have also demonstrated that a close correlation seems to exist between the apparent affinity of the gastrin analogues for gastrin receptors on gastric mucosal cells, and their ability of being hydrolyzed by this cell preparation. Moreover, all gastrin analogues which have been demonstrated to act as gastrin antagonists remained unaffected in the incubation conditions.  相似文献   

5.
Specific binding sites for somatostatin have been characterized in cytosolic fraction of rat intestinal mucosa by using 125I-labelled Tyr11-somatostatin and a variety of physicochemical conditions. The binding depended on time, temperature and pH, and was reversible, saturable and specific. At apparent equilibrium, the specific binding of 125I-Tyr11-somatostatin was competitively inhibited by native somatostatin in the 1 nM-4 microM concentration range. Binding studies suggested the presence of two classes of binding sites: a class with high affinity (Kd = 0.07 microM) and low capacity (4.6 pmol/mg protein) and a class with low affinity (Kd = 1.05 microM) and high capacity (277 pmol/mg protein) at 25 degrees C. Somatostatin exhibited competitive inhibition of tracer binding, while neuropeptides such as neurotensin, substance P, Leu-enkephalin, and vasoactive intestinal peptide were ineffective. The presence of somatostatin binding sites in cytosolic fraction of intestinal mucosa, together with the known occurrence of somatostatin in D-cells and nerve endings in the small intestine, strongly suggest that this peptide may be involved in the physiology and physiopathology of intestinal epithelium.  相似文献   

6.
Sundaram S  Roy SK  Kompella UB 《Peptides》2009,30(2):351-358
Deslorelin, a luteinizing hormone releasing hormone (LHRH) agonist, is transported via the LHRH-receptor (LHRH-R) and exhibits regional variation as follows: inferior turbinate posterior (ITP)>medium turbinate posterior (MTP)>medium turbinate anterior (MTA) of the bovine nasal mucosa. Differential LHRH-R expression in various regions of the nose is a potential explanation for regional variation in deslorelin transport. Thus, the objective was to determine whether LHRH-R expression exhibits regional variation in bovine nasal mucosa. LHRH-R density (B(max)) and affinity constant (K(d)) were determined by saturation experiments using 0.5mg tissue in the presence of increasing amounts of I(125)-deslorelin (100-100,000 cpm) at 4 degrees C for 4h. The 50% inhibitory concentration (IC(50)) was determined by competition experiments using various amounts of unlabelled deslorelin (0.01-3000 ng) at 4 degrees C for 4h. LHRH-R mRNA and protein expressions were determined using real-time PCR and Western blot analysis, respectively. LHRH-R B(max) and K(d) varied between the regions of excised bovine nasal mucosa: ITP>MTP>MTA. The inhibition experiments yielded two IC(50) concentrations which exhibited trends similar to B(max) and K(d). Real-time PCR and Western blot analysis indicated that LHRH-R expression exhibits similar trends: ITP>MTP>MTA. We identified two deslorelin binding sites in the nasal tissues, with high affinity sites representing approximately 60-70% of the total sites available. In summary, regional differences in nasal deslorelin transport correlate with regional differences in LHRH-R expression, with LHRH-R expression, peptide binding, and transport being the highest in the inferior turbinate posterior region of the nose.  相似文献   

7.
Adenosine specifically inhibits superoxide anion generation by N-formyl-methionyl-leucyl-phenylalanine-stimulated neutrophils without affecting either degranulation or "aggregation." We present data that also supports the hypothesis that adenosine engages a specific cell surface receptor to mediate inhibition of stimulated neutrophils. Theophylline (10 and 100 mu M), a competitive antagonist at adenosine receptors, reversed the effects of adenosine (0.1 mu M) on superoxide anion generation by stimulated neutrophils. The adenosine analogue 5'N-ethylcarboxamidoadenosine (NECA) was a more potent inhibitor of superoxide anion generation than either N6-phenylisopropyladenosine (PIA) or adenosine, an order of potency consistent with that previously demonstrated for adenosine A2 receptors. 2-Chloroadenosine inhibited superoxide anion generation at concentrations similar to NECA. [3H]-NECA and [3H]-2-chloroadenosine bound to a single receptor on intact neutrophils. The characteristics of the receptors for [3H]-NECA and [3H]-2-chloroadenosine were similar (Kd = 0.22 and 0.23 mu M, respectively; number of binding sites = 9.31 and 11.1 X 10(3) sites/cell, respectively). NECA, 2-chloroadenosine, adenosine, and PIA inhibited binding of [3H]-NECA with a rank order similar to that for inhibition of superoxide anion generation (NECA = 2-chloroadenosine greater than adenosine greater than PIA). There was 50% inhibition of superoxide anion generation by NECA at approximately 20% receptor occupancy. Adenosine, derived from damaged tissues, may serve as a specific, endogenous modulator of superoxide anion generation by activated neutrophils through interaction at this newly described receptor on human neutrophils.  相似文献   

8.
The characteristics of atrial natriuretic factor (ANF) receptors where studied in rat retinal particulate preparations. Specific 125I-ANF binding to retinal particulate preparations was greater than 90% of total binding and saturable at a density (Bmax) of 40 +/- 8 fmol/mg protein with an apparent dissociation constant (Kd) of 6.0 +/- 2.0 pM (n = 3). Apparent equilibrium conditions were established within 30 min. The Kd value of 125I-ANF binding calculated by kinetic analysis was 4.0 pM. The Bmax of 60 +/- 10 fmol/mg protein and the Kd of 5 +/- 2 pM, calculated by competition analysis, were in close agreement with the values obtained from Scatchard plots or kinetic analysis. The 125I-ANF binding to retinal particulate preparations was not inhibited by 1 microM concentration of somatostatin, vasopressin, vasoactive intestinal peptide, adrenocorticotropin, thyrotropin releasing hormone, or leu-enkephalin. The rank order of potency of the unlabelled atrial natriuretic peptides for competing with specific 125I-ANF (101-126) binding sites was rANF (92-126) greater than rANF (101-126) greater than rANF (99-126) greater than rANF (103-126) greater than Tyro-Atriopeptin I greater than hANF (105-126) greater than rANF (1-126). Similar results have been obtained in peripheral tissues and mammalian brain, indicating that central and peripheral ANF-binding sites have somewhat similar structural requirements. Affinity cross-linking of 125I-ANF to retinal particulate preparations resulted in the labelling of two sites of molecular weight 140 and 66 kDa, respectively. This demonstration of specific high-affinity ANF receptors suggests that the peptide may act as a neurotransmitter or neuromodulator in the retina.  相似文献   

9.
A single duodenal ulcerogenic dose of cysteamine administered into rats induced time-dependent depletion of immunoreactive somatostatin in the gastric corporeal, antral, and duodenal mucosa with a parallel increase (up-regulation) of somatostatin binding sites. The concentration of somatostatin binding sites returned to the control level in the corporeal mucosa when measured at 24 hrs; however, in the duodenal mucosa there was only a partial return to the control level. Somatostatin binding sites in the antral mucosa did not return to control level even after 24 hrs. Except for the duodenum mucosal immunoreactive gastrin level was unaffected by cysteamine administration, but corporeal mucosal gastrin I binding sites were diminished (down-regulation) after 24 hrs.  相似文献   

10.
Specific binding sites for somatostatin have been identified in cytosolic fraction of both small and large intestinal mucosa. The stoichiometric data suggested the presence of two classes of binding sites in each part of the intestine. The binding capacity varied depending on the segment considered (rectum greater than duodenum = jejunum greater than ileum, caecum and colon). However, the affinities of the binding sites were similar throughout the whole intestinal mucosa, with the exception of rectum which showed higher Kd values. The binding sites were shown to be highly specific for somatostatin since neuropeptides such as vasoactive intestinal peptide, neurotensin, substance P and Leu-enkephalin did not show any effect upon somatostatin binding.  相似文献   

11.
Distribution of bombesin binding sites in the rat gastrointestinal tract   总被引:2,自引:0,他引:2  
In an attempt to identify potential target sites for the satiety action of bombesin (BN), the distribution and pharmacological specificity of bombesin binding sites were examined in the rat gastrointestinal tract by in vitro autoradiography utilizing (125I-Tyr4) bombesin. Specific BN binding was localized to the circular muscle level of the gastric fundus and antrum, submucosal layer of the small intestine and longitudinal and circular muscle and submucosal layers of the colon. Pharmacological studies indicated that gastrin releasing peptide (GRP), Ac-GRP20-27 and BN-like compounds, litorin and ranatensin, inhibited the binding of (125I-Tyr4)BN with high affinity while compounds which lacked COOH-terminal homology with BN demonstrated a low affinity for BN binding sites. The wide distribution of BN binding sites in the gastrointestinal tract provides a number of potential sites for the mediation of the satiety action of BN.  相似文献   

12.
Using mono[125I]iodinated vasoactive intestinal peptide (125I-VIP), a very high number of specific binding sites for VIP were identified at the surface of the human melanoma cell line IGR39. The Scatchard analysis of competitive displacement experiments between native VIP and 125I-VIP was consistent with the existence of two classes of VIP-binding sites. IGR39 cells possess 0.54 x 10(6) high-affinity sites with a dissociation constant (Kd) of 0.66 nM and 1.3 x 10(6) sites of moderate affinity with a Kd of 4.7 nM. Pharmacological studies indicated that the order of potency in inhibiting 125I-VIP binding of the VIP/secretin family peptides was VIP much greater than peptide histidine methioninamide greater than human growth-hormone-releasing factor(1-44) greater than secretin. Glucagon has no effect on the binding of the labelled peptide. By means of photoaffinity labelling a polypeptide of Mr 63,000 was characterized. The labelling of this species was completely abolished by native VIP. The order of potency of VIP-related peptides in inhibiting 125I-VIP cross-linking to its receptor was the same as in the competition experiments. The glycoprotein nature of the VIP-binding sites of IGR39 cells has been investigated by affinity chromatography on wheat-germ-agglutinin-Sepharose.  相似文献   

13.
Specific binding sites for human gastrin I (gastrin) were identified in a crude membrane preparation from the gastric carcinoid tumor of Mastomys (Praomys) natalensis. The binding of 125I-gastrin to the carcinoid tumor membrane was saturable, and Scatchard analysis of the data revealed a single class of binding site with a dissociation constant of 139.2 pM and a maximal binding capacity of 23.5 fmol/mg protein. Gastrin and CCK8 equipotently and dose-dependently displaced the binding of 125I-gastrin to the membrane. GTP but not ATP decreased 125I-gastrin binding to the membrane, and removal of Mg2+ attenuated this inhibitory action of GTP. The GTP-induced reduction of 125I-gastrin binding was found to be due to a decrease in binding affinity without a change in binding capacity. These results clearly indicate the presence of specific binding sites for gastrin, probably coupled to guanine nucleotide-binding protein, in the carcinoid tumor membrane of Mastomys, and suggest that gastrin has possible biological actions on these tumors.  相似文献   

14.
Autoradiographic localisation of VIP receptors in human lung   总被引:1,自引:0,他引:1  
Localisation and pharmacological properties of the VIP receptor in human lung sections are described. The receptor density determined by saturation analysis using 125I-VIP is approx. 100 fmol/mg protein, with a Kd of approx. 600 pM. Inhibition of 125I-VIP binding with VIP and related peptides gives a rank order of potency: VIP greater than peptide histidine methionine greater than secretin. Light microscope autoradiography reveals specific VIP binding sites, with a high density over the pulmonary artery smooth muscle and the alveolar walls and with a lower density over the bronchial epithelium.  相似文献   

15.
ECL cells are endocrine/paracrine cells in the oxyntic mucosa. They produce, store and secrete histamine and chromogranin A-derived peptides such as pancreastatin. The regulation of ECL-cell secretion has been studied by several groups using purified ECL cells, isolated from rat stomachs. Reports from different laboratories often disagree. The purpose of the present study was to re-evaluate the discrepancies by studying histamine (or pancreastatin) secretion from standardized preparations of pure, well-functioning ECL cells. Cells from rat oxyntic mucosa were dispersed by pronase digestion, purified by repeated counter-flow elutriation and subjected to density gradient centrifugation. The final preparation consisted of more than 90% ECL cells (verified by histamine and/or histidine decarboxylase immunocytochemistry). They were maintained in primary culture for 48 h before they were exposed to candidate stimulants and inhibitors for 30 min after which the medium was collected for determination of mobilized histamine (or pancreastatin). Gastrin-17 and sulphated cholecystokinin octapeptide (CCK-8s) raised histamine secretion 4-fold, the EC(50) for both peptides being around 100 pM. The neuropeptide pituitary adenylate cyclase activating peptide (PACAP-27) (5-fold increase) and the related neuropeptides vasoactive intestinal peptide (VIP) and peptide histidine isoleucine (PHI) (3-fold increase) mobilized histamine with similar potency (EC(50) ranging from 80 to 140 pM). Adrenaline, isoprenaline and terbutaline stimulated secretion by activating a beta2 receptor subtype, while acetylcholine and carbachol were without effect. Secretion experiments were invariably run in parallel with a gastrin standard curve. Somatostatin, prostaglandin E2 (PGE2) and the PGE1 congener misoprostol inhibited PACAP- and gastrin-stimulated secretion by more than 90%, with IC(50) values ranging from 90-720 (somatostatin) to 40-200 (misoprostol) pM. The neuropeptide galanin inhibited secretion by 60-70% with a potency similar to that of somatostatin. Proposed inhibitors such as peptide YY, neuropeptide Y and the cytokines interleukin 1-beta and tumor necrosis factor alpha induced at best a moderate inhibition of gastrin- or PACAP-stimulated secretion at high concentrations, while calcitonin gene-related peptide, pancreatic polypeptide and histamine itself were without effect. Inhibition of gastrin- or PACAP-stimulated secretion was routinely compared to a somatostatin standard curve. In conclusion, gastrin, PACAP, VIP/PHI and adrenaline stimulated secretion. Somatostatin and PGE2 were powerful inhibitors of both gastrin- and PACAP-stimulated secretion; although equally potent, galanin was less effective than somatostatin and PGE2.  相似文献   

16.
Studies indicating evidence for the presence of the amphibian octapeptide xenopsin in gastric mucosa of mammals prompted us to investigate the cellular localization of this peptide. Using the peroxidase-antiperoxidase method and a specific antiserum to xenopsin (Xen-7) on paraffin and adjacent semithin sections of gastric antral mucosa from man, dog, and Tupaia belangeri, we found numerous epithelial cells showing a specific positive immunoreaction. These cells were of typical pyramidal shape and could be classified as of the "open" type. Cell quantification in serial sections processed for xenopsin and gastrin immunoreactivity, respectively, revealed an identical number of cells per section and an identical distribution of these cells in the middle zone of the antral mucosa. Furthermore, adjacent semithin sections demonstrated the colocalization of xenopsin and gastrin immunoreactivity within the same G-cell. The xenopsin antiserum could be completely absorbed with synthetic xenopsin but not with gastrin. Preabsorption tests with neurotensin, a xenopsin related peptide, or with somatostatin, glucagon, and enkephalins gave no evidence for crossreactivity of the xenopsin antiserum with these peptides. It is concluded that gastric antral G-cells in addition to gastrin also contain the amphibian peptide xenopsin.  相似文献   

17.
Mammalian gastrin releasing peptide, similar to frog skin bombesin lowers body temperature and increases plasma levels of epinephrine and glucose. Both peptides produce stereotypic scratching behavior in rats. Similarity of biological responses to these peptides and their common C-terminal decapeptide homology supports the concept that gastrin releasing peptide is a mammalian bombesin.  相似文献   

18.
Isolation and sequence analysis of human bombesin-like peptides   总被引:4,自引:0,他引:4  
The decapeptide form of human gastrin releasing peptide was isolated from acid extracts of liver tissue containing a metastatic human bronchial carcinoid tumor. A larger form also was isolated and partially characterized. During gel permeation chromatography the major immunoreactive peak eluted in the same region as synthetic gastrin releasing decapeptide while a second minor immunoreactive peak eluted near gastrin releasing peptide. Bombesin-like immunoreactivity (BLI) was purified by successive applications to reverse phase high pressure liquid chromatography (HPLC) columns. After four successive HPLC purifications a single peak of bombesin-like immunoreactivity was detected. Amino acid analysis, microsequence analysis and coelution with synthetic peptide indicated that the predominant form present in metastatic tumor tissue was identical to the decapeptide form of canine gastrin-releasing peptide. The less abundant form was purified by cation exchange chromatography followed by reverse phase high pressure liquid chromatography. Partial microsequence analysis of this peptide, through the first 11 residues, was Val-Pro-Leu-Pro-Ala-Gly-Gly-Gly-Thr-Val-Leu. This sequence differed from that of hog heptacosapeptide gastrin releasing peptide at positions 1,3,4 and 5 and from the canine peptide as positions 1,3,5, and 7.  相似文献   

19.
The binding of a radiolabeled bombesin analogue to human small cell lung cancer (SCLC) cell lines was investigated. (125I-Tyr4)bombesin bound with high affinity (Kd = 0.5 nM) to a single class of sites (2,000/cell) using SCLC line NCI-H446. Binding was reversible, saturable and specific. The pharmacology of binding was investigated using NCI-H466 and SCLC line NCI-H345. Bombesin and structurally related peptides, such as gastrin releasing peptide (GRP), but not other peptides, such as substance P or vasopressin, inhibited high affinity (125I-Tyr4)BN binding activity. Finally, the putative receptor, a 78,000 dalton polypeptide, was identified by purifying radiolabeled cell lysates on bombesin or GRP affinity resins and then displaying the bound polypeptides on sodium dodecylsulfate polyacrylamide gels. Because SCLC both produces bombesin/GRP-like peptides and contains high affinity receptors for these peptides, they may function as important autocrine regulatory factors for human SCLC.  相似文献   

20.
Vasoactive intestinal peptide (VIP) is a putative neurotransmitter in both the brain and peripheral tissues. To define possible target tissues of VIP we have used quantitative receptor autoradiography to localize and quantify the distribution of 125I-VIP receptor binding sites in the canine gastrointestinal tract. While the distribution of VIP binding sites was different for each segment examined, specific VIP binding sites were localized to the mucosa, the muscularis mucosa, the smooth muscle of submucosal arterioles, lymph nodules, and the circular and longitudinal smooth muscle of the muscularis externa. These results identify putative target tissues of VIP action in the canine gastrointestinal tract. In correlation with physiological data, VIP sites appear to be involved in the regulation of a variety of gastrointestinal functions including epithelial ion transport, gastric secretion, hemodynamic regulation, immune response, esophageal, gastric and intestinal motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号