首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cranial suture morphogenesis requires soluble, heparin-binding factors secreted by the dura mater to resist premature osseous obliteration. Elevated levels of transforming growth factor (TGF)-beta 1, TGF-beta 2, and TGF-beta 3 have previously been noted in cranial sutures undergoing normal and premature sutural obliteration. To examine the role of TGF-beta s in regulating cranial suture morphogenesis, an established in vitro, serum-free, calvarial culture system was used. In this system, fetal rat coronal sutures undergo apparently normal suture morphogenesis in the presence of dura mater, but undergo osseous obliteration in the absence of dura mater. Neutralizing polyclonal antibodies to TGF-beta 1, TGF-beta 2, or TGF-beta 3 were added to cultures of fetal day 19 rat calvaria, which were harvested at 3, 4, or 5 days, processed for histology, sectioned, and examined. Coronal sutures from calvaria cultured in the presence of dura mater resisted obliteration, either alone or in the presence of TGF-beta 1 or TGF-beta 2 neutralizing antibodies. However, sutures from calvaria cultured in the presence of TGF-beta 3 neutralizing antibodies became obliterated. Conversely, sutures from calvaria cultured in the absence of dura mater became obliterated by bone, either alone or in the presence of neutralizing antibodies to TGF-beta 1 or TGF-beta 3. However, those sutures cultured in the presence of neutralizing antibodies to TGF-beta 2 were rescued from osseous obliteration.  相似文献   

3.
Using a physiologic model of mouse cranial suture fusion, the authors' laboratory has previously demonstrated that transforming growth factor (TGF)-betas appear to be more abundantly expressed in the suture complex of the fusing posterior frontal compared with the patent sagittal suture. Furthermore, the authors have shown that by blocking TGF-beta signaling with a replication-deficient adenovirus encoding a defective, dominant negative type II TGF-beta receptor (AdDN-TbetaRII), posterior frontal suture fusion was inhibited. In this study, the authors attempt to further elucidate the role of TGF-beta in cranial suture fusion by investigating possible mechanisms of AdDN-TbetaRII-mediated cranial suture patency using both an established organ culture model and a novel in vitro co-culture system that recapitulates the in vivo anatomic dura mater/cranial suture relationship. In this article, the authors demonstrate that blocking TGF-beta signaling with the AdDN-TbetaRII construct led to inhibition of cellular proliferation in the suture mesenchyme and subjacent dura mater during the early period of predicted posterior frontal suture fusion. Interestingly, co-culture experiments revealed that transfecting osteoblasts with AdDN-TbetaRII led to alterations in the gene expression levels of two important bone-related molecules (Msx2 and osteopontin). Inhibiting TGF-beta signaling prevented time-dependent suppression of Msx2 and prevented induction of osteopontin, thereby retarding osteoblast differentiation. Furthermore, the authors demonstrated that the AdDN-TbetaRII construct was capable of blocking TGF-beta -mediated up-regulation of collagen IalphaI, an extracellular matrix molecule important for bone formation. Collectively, these data strongly suggest that AdDN-TbetaRII maintains posterior frontal patency, in part by altering early events in de novo bone formation, including cellular proliferation and early extracellular matrix production.  相似文献   

4.
Cranial sutures are important growth sites of the skull. During suture closure, the dura mater is one of the most important sources of various positive and negative regulatory signals. Previous results indicate that TGF-beta2 from dura mater strongly accelerates suture closure, however, its exact regulatory mechanism is still unclear. In this study, we confirmed that removal of dura mater in calvarial organ culture strongly accelerates sagittal suture closure and that this effect is further enhanced by TGF-beta2 treatment. TGF-beta2 stimulated cell proliferation in the MC3T3-E1 cell line. Similarly, it stimulated the proliferation of cells in the sutural space in calvarial organ culture. Furthermore, TGF-beta2-mediated enhanced cell proliferation and suture closure were almost completely inhibited by an Erk-MAPK blocker, PD98059. These results indicate that TGF-beta2-induced activation of Erk-MAPK is an important signaling component that stimulates cell proliferation to enrich osteoprogenitor cells, thereby promoting their differentiation into osteoblasts to achieve a rapid calvarial bone expansion.  相似文献   

5.
The dura mater, the outermost layer of the meninges, is thought to be essential for calvarial morphogenesis, postnatal suture fusion, and osseous repair of calvarial defects. Despite numerous studies illustrating the fundamental role of the dura mater, there is little information about the autocrine and paracrine mechanisms regulating dural cell biology during calvarial ossification. Previous work conducted in the authors' laboratory demonstrated that non-suture-associated dural cells from 6-day-old rat pups expressed high levels of fibroblast growth factor 2 (FGF-2), whereas dural cells from 60-day-old adult rats expressed very little FGF-2. Because young mammals can successfully heal large calvarial defects, the authors sought to investigate the autocrine and/or paracrine effects of FGF-2 on the proliferation, gene expression, and alkaline phosphatase production of dural cells.Cultures of non-suture-associated dural cells were established from 6-day-old Sprague-Dawley rat pups and then stimulated with recombinant human FGF-2 (rhFGF-2; 10 ng/ml). Dural cells stimulated with rhFGF-2 proliferated significantly faster than untreated dural cells at 24 hours (2.1 x 10(5) +/- 3.2 x 10(4) versus 1.1 x 10(5) +/- 1.8 x 10(4), p < or = 0.001) and 48 hours (2.3 x 10(5) +/- 4.2 x 10(4) versus 1.2 x 10(5) +/- 1.3 x 10(4), p < or = 0.001). Moreover, dural cells stimulated with rhFGF-2 expressed 7-fold more proliferating cell nuclear antigen than did control cultures. Treatment with rhFGF-2 increased dural cell expression of genes important for skeletal repair: FGF-2 (7-fold), transforming growth factor beta 1 (3-fold), transforming growth factor beta 3 (4-fold), and type I collagen (4-fold). Furthermore, rhFGF-2 increased dural cell expression of osteopontin (2-fold), a "late" marker of osteoblastic differentiation. Interestingly, dural cell alkaline phosphatase activity, an "earlier" marker of osteoblast differentiation, was significantly decreased by treatment with rhFGF-2 compared with control cultures at 24 hours (0.005 +/- 0.001 versus 0.01 +/- 0.003, p < or = 0.01) and 48 hours (0.004 +/- 0.0009 versus 0.01 +/- 0.0009). Together these data provide insight into the autocrine and paracrine effects of FGF-2 on the biology of the dura mater.  相似文献   

6.
Total RNA extracted from developing calvarial bones of 15- to 18-week human fetuses was studied by Northern hybridization: in addition to high levels of type I collagen mRNAs, the presence of mRNAs for type III and type IV collagen, TGF-beta and c-fos was observed. In situ hybridization of sections containing calvarial bone, overlying connective tissues, and skin was employed to identify the cells containing these mRNAs. Considerable variation was observed in the distribution of pro alpha 1(I) collagen mRNA in osteoblasts: the amount of the mRNA in cells at or near the upper surface of calvarial bone was distinctly greater than that in cells at the lower surface, indicating the direction of bone growth. High levels of type I collagen mRNAs were also detected in fibroblasts of periosteum, dura mater, and skin. Type III collagen mRNA revealed a considerably different distribution: the highest levels were detected in upper dermis, lower levels were seen in fibroblasts of the periosteum and the fibrous mesenchyme between bone spiculas, and none was seen in osteoblasts. Type IV collagen mRNAs were only observed in the endothelial cells of blood capillaries. Immunohistochemical localization of type III and IV collagens agreed well with these observations. The distribution of TGF-beta mRNA resembled that of type I collagen mRNA. In addition, high levels of TGF-beta mRNA were observed in osteoclasts of the calvarial bone. These cells, responsible for bone resorption, were also found to contain high levels of c-fos mRNA. Production of TGF-beta by osteoclasts and its activation by the acidic environment could form a link between bone resorption and new matrix formation.  相似文献   

7.
Recent studies have implicated the transforming growth factor (TGF)-beta family in the regulation of pathological sporadic cranial suture fusion. In addition, these studies have shown that TGF-beta is highly expressed by the dura mater underlying fusing murine cranial sutures. The purpose of the present experiments was to analyze the effects of disrupting TGF-beta signaling during programmed mouse cranial suture fusion. Using recombinant DNA technology, a replication-deficient adenovirus encoding a defective TGF-beta receptor (Ad.DN-TbetaRII) capable of blocking TGF-beta biological activity was constructed. Mouse posterior frontal sutures were harvested before the initiation of suture fusion (postnatal day 25), and the dura mater underlying the suture was infected with vehicle, Ad.DN-TbetaRII, or control virus (Ad.LacZ; n = 10 each). Sutures were cultured for 14 or 30 days in an organ culture system and analyzed macroscopically and histologically.X-gal staining of Ad.LacZ-infected sutures 14 days after culture revealed strong staining of cells localized to the dura mater. Macroscopic analysis revealed complete sutural fusion in vehicle and Ad.LacZ-infected sutures. In contrast, Ad.DN-TBRII-infected sutures demonstrated nearly complete patency. Histological analysis confirmed our macroscopic observations with sutural fusion in 81.3 +/- 10 percent and 74.5 +/- 9 percent of vehicle and Ad.LacZ-infected sutures, respectively, versus 38.1 +/- 12 percent (p < 0.001) in Ad.DN-TbetaRII-infected sutures. In addition, transfection with the Ad.DN-TbetaRII virus resulted in a significant attenuation of anterior-to-posterior suture fusion, with the majority of fused sections localized to anterior sections. These data strongly implicate TGF-beta biological activity in the dura mater underlying the posterior frontal suture in the regulation of programmed sutural fusion. In addition, this study demonstrates the utility of adenovirus-mediated gene transfer in preventing programmed sutural fusion.  相似文献   

8.
Although dura mater tissue is believed to have an important role in calvarial reossification in many in vivo studies, few studies have shown the direct effect of dura mater cells on osteoblasts. In addition, no reports have yet identified the potential factor(s) responsible for various biological activities exerted by dura mater on calvarial reossification (e.g., cell proliferation). In this study, we tested the effect of dura mater on calvarial-derived osteoblasts by performing both heterotypic coculture and by culturing osteoblast cells with conditioned media harvested from dura mater cells of juvenile (3-day-old) and adult (30-day-old) mice. The results presented here demonstrate that cellular proliferation of juvenile osteoblast cells was significantly increased by juvenile dura mater either in the coculture system or when dura mater cell-conditioned medium was applied to the osteoblast cells. Moreover, high levels of FGF-2 protein were detected in juvenile dura mater cells and their conditioned medium. In contrast, low levels of FGF-2 protein were detected in adult dura mater cells, whereas FGF-2 protein was not detectable in their conditioned medium. Abrogation of the mitogenic effect induced by juvenile dura mater cell-conditioned medium was achieved by introducing a neutralizing anti-FGF-2 antibody, thus indicating that FGF-2 may be responsible for the mitogenic effect of the juvenile dura mater. Moreover, data obtained by exploring the three major FGF-2 signaling pathways further reinforced the idea that FGF-2 might be an important paracrine signaling factor in vivo supplied by the underlying dura mater to the overlying calvarial osteoblasts.  相似文献   

9.
Recent work has demonstrated that fusion of the calvarial sutures is mediated by locally elaborated soluble growth factors, including the transforming growth factor-betas (TGF-betas), leading some to speculate that external biomechanical forces play little role in suture development. Clinical evidence has long suggested, however, that fetal head constraint may play a critical role in the pathogenesis of many cases of nonsyndromic craniosynostosis. The purpose of these experiments was to test the hypothesis that intrauterine constraint leads to an alteration in normal patterns of TGF-beta expression and that these alterations are associated with craniosynostosis. Fetal constraint was induced by allowing C57Bl/6 murine fetuses to grow for 2.5 days beyond the normal 20-day gestation by performing uterine cerclage on the eighteenth day. Cranial suture morphology was examined in hematoxylin and eosin-stained sections and in cleared whole-mount specimens, double stained with alizarin red S and Alcian blue. Expression patterns of TGF-beta1 and TGF-beta3 were examined by immunohistochemical techniques. Gross and microscopic examination of the cranial sutures of 17 constrained fetuses revealed changes that ranged from narrowing to complete osseous obliteration of the coronal and squamosal sutures. All sutures of 14 nonconstrained control pups remained patent. Fetal head constraint was associated with increased TGF-beta1 immunoreactivity within the new bone and the underlying dura when compared with nonconstrained age-matched controls. TGF-beta3 immunoreactivity was associated with the dura underlying patent, nonconstrained sutures, whereas constraint-induced synostosis was characterized by down-regulation of dural TGF-beta3 expression. These experiments confirm the ability of intrauterine constraint to induce premature fusion of the cranial sutures and provide evidence that intrauterine head constraint induces the expression of osteogenic growth factors in fetal calvarial bone and the underlying dura.  相似文献   

10.
Coordinated growth of the skull and brain are vital to normal human development. Craniosynostosis, the premature fusion of the calvarial bones of the skull, is a relatively common pediatric disease, occurring in 1 in 2500 births, and requires significant surgical management, especially in syndromic cases. Syndromic craniosynostosis is caused by a variety of genetic lesions, most commonly by activating mutations of FGFRs 1-3, and inactivating mutations of TWIST1. In a mouse model of TWIST1 haploinsufficiency, cell mixing between the neural crest-derived frontal bone and mesoderm-derived parietal bone accompanies coronal suture fusion during embryonic development. However, the relevance of lineage mixing in craniosynostosis induced by activating FGFR mutations is unknown. Here, we demonstrate a novel mechanism of suture fusion in the Apert Fgfr2(S252W) mouse model. Using Cre/lox recombination we simultaneously induce expression of Fgfr2(S252W) and β-galactosidase in either the neural crest or mesoderm of the skull. We show that mutation of the mesoderm alone is necessary and sufficient to cause craniosynostosis, while mutation of the neural crest is neither. The lineage border is not disrupted by aberrant cell migration during fusion. Instead, the suture mesenchyme itself remains intact and is induced to undergo osteogenesis. We eliminate postulated roles for dura mater or skull base changes in craniosynostosis. The viability of conditionally mutant mice also allows post-natal assessment of other aspects of Apert syndrome.  相似文献   

11.
12.
In the cranial vault, suture morphogenesis occurs when the growing cranial bones approximate and overlap or abut one another. Patency of developing sutures is regulated by the underlying dura mater. Once cranial sutures form, bone growth proceeds from the sutures in response to growth signals from the rapidly expanding neurocranium. Facial sutures do not develop in contact with the dura mater. It was therefore hypothesized that facial suture morphogenesis and bone growth from facial sutures are regulated by tissues with an equivalent role to the dura mater. The present study was designed to test this hypothesis by characterizing the morphology and growth factor expression in developing transpalatal (TP) sutures and their surrounding tissues, and then assessing the role of the overlying nasal capsular (NC) cartilages in maintaining suture patency. TP sutures develop as overlapping sutures, similar to cranial coronal sutures, and expression of Tgf-betas in TP sutures was similar to their distribution in cranial coronal sutures. To establish whether NC cartilages play a role in regulating TP suture morphogenesis, fetal rat TP sutures were cultured with associated attached NC cartilages or with NC cartilages removed. Sutures cultured for upward of 5 days with intact NC cartilages remained patent and maintained their cellular and fibrous components. However, in the absence of NC cartilages, the cellular nature of the sutures was not maintained and they became progressively acellular, with bony bridging across the suture. This finding is similar to that for cranial vault sutures cultured in the absence of dura mater, indicating that NC cartilages play an equivalent role to dura mater in maintaining the patency of developing sutures. These studies indicate that tissue interactions likely regulate morphogenesis of all cranial and facial sutures.  相似文献   

13.
The ability of newborns and immature animals to reossify calvarial defects has been well described. This capacity is generally lost in children greater than 2 years of age and in mature animals. The dura mater has been implicated as a regulator of calvarial reossification. To date, however, few studies have attempted to identify biomolecular differences in the dura mater that enable immature, but not mature, dura to induce osteogenesis. The purpose of these studies was to analyze metabolic characteristics, protein/gene expression, and capacity to form mineralized bone nodules of cells derived from immature and mature dura mater. Transforming growth factor beta-1, basic fibroblast growth factor, collagen type IalphaI, osteocalcin, and alkaline phosphatase are critical growth factors and extracellular matrix proteins essential for successful osteogenesis. In this study, we have characterized the proliferation rates of immature (6-day-old rats, n = 40) and mature (adult rats, n = 10) dura cell cultures. In addition, we analyzed the expression of transforming growth factor beta-1, basic fibroblast growth factor-2, proliferating cell nuclear antigen, and alkaline phosphatase. Our in vitro findings were corroborated with Northern blot analysis of mRNA expression in total cellular RNA isolated from snap-frozen age-matched dural tissues (6-day-old rats, n = 60; adult rats, n = 10). Finally, the capacity of cultured dural cells to form mineralized bone nodules was assessed. We demonstrated that immature dural cells proliferate significantly faster and produce significantly more proliferating cell nuclear antigen than mature dural cells (p < 0.01). Additionally, immature dural cells produce significantly greater amounts of transforming growth factor beta-1, basic fibroblast growth factor-2, and alkaline phosphatase (p < 0.01). Furthermore, Northern blot analysis of RNA isolated from immature and mature dural tissues demonstrated a greater than 9-fold, 8-fold, and 21-fold increase in transforming growth factor beta-1, osteocalcin, and collagen IalphaI gene expression, respectively, in immature as compared with mature dura mater. Finally, in keeping with their in vivo phenotype, immature dural cells formed large calcified bone nodules in vitro, whereas mature dural cells failed to form bone nodules even with extended culture. These studies suggest that differential expression of growth factors and extracellular matrix molecules may be a critical difference between the osteoinductive capacity of immature and mature dura mater. Finally, we believe that the biomolecular bone- and matrix-inducing phenotype of immature dura mater regulates the ability of young children and immature animals to heal calvarial defects.  相似文献   

14.
15.
Premature cranial suture fusion, or craniosynostosis, can result in gross aberrations of craniofacial growth. The biology underlying cranial suture fusion remains poorly understood. Previous studies of the Sprague-Dawley rat posterior frontal suture, which fuses at between 12 and 20 days, have suggested that the regional dura mater beneath the cranial suture directs the overlying suture's fusion. To address the dura-suture paracrine signaling that results in osteogenic differentiation and suture fusion, the authors investigated the possible role of insulin-like growth factors (IGF) I and II. The authors studied the temporal and spatial patterns of the expression of IGF-I and IGF-II mRNA and IGF-I peptide and osteocalcin (bone morphogenetic protein-4) protein in fusing posterior frontal rat sutures, and they compared them with patent coronal (control) sutures. Ten Sprague-Dawley rats were studied at the following time points: 16, 18, and 20 days of gestation and 2, 5, 10, 15, 20, 30, 50, and 80 days after birth (n = 110). Posterior frontal and coronal (patent, control) sutures were analyzed for IGF-I and IGF-II mRNA expression by in situ hybridization by using 35S-labeled IGF-I and IGF-II antisense riboprobes. Levels of IGF-I and IGF-II mRNA were quantified by counting the number of autoradiograph signals per cell. IGF-I and osteocalcin immunoreactivity were identified by avidin-biotin peroxidase immunohistochemistry. IGF-I and IGF-II mRNA were expressed in dural cells beneath fusing sutures, and the relative mRNA abundance increased between 2 and 10 days before initiation of fusion. Subsequently, IGF-I and IGF-II mRNA were detected in the suture connective tissue cells at 15 and 20 days during the time of active fusion. In contrast, within large osteoblasts of the osteogenic front, the expression of IGF-I and IGF-II mRNA was minimal. However, IGF-I peptide and osteocalcin protein were intensely immunoreactive within these osteoblasts at 15 days (during the period of suture fusion). These data suggest that the dura-suture interaction may be signaled in a paracrine fashion by dura-derived growth factors, such as IGF-I and IGF-II. These peptides, in turn, stimulate nearby osteoblasts to produce bone-promoting growth factors, such as osteocalcin.  相似文献   

16.
The ability of immature animals and newborns to orchestrate successful calvarial reossification is well described. This capacity is markedly attenuated in mature animals and in humans greater than 2 years of age. Previous studies have implicated the dura mater as critical to successful calvarial reossification. The authors have previously reported that immature, but not mature, dural tissues are capable of elaborating a high expression of osteogenic growth factors and extracellular matrix molecules. These findings led to the hypothesis that a differential expression of osteogenic growth factors and extracellular matrix molecules by immature and mature dural tissues may be responsible for the clinically observed phenotypes (i.e., immature animals reossify calvarial defects; mature animals do not). This study continues to explore the hypothesis through an analysis of transforming growth factor (TGF)-beta3, collagen type III, and alkaline phosphatase mRNA expression. Northern blot analysis of total RNA isolated from freshly harvested immature (n = 60) and mature (n = 10) dural tissues demonstrated a greater than three-fold, 18-fold, and nine-fold increase in TGF-beta3, collagen type III, and alkaline phosphatase mRNA expression, respectively, in immature dural tissues as compared with mature dural tissues. Additionally, dural cell cultures derived from immature (n = 60) and mature dura mater (n = 10) were stained for alkaline phosphatase activity to identify the presence of osteoblast-like cells. Alkaline phosphatase staining of immature dural cells revealed a significant increase in the number of alkaline phosphatase-positive cells as compared with mature dural tissues (p < 0.001). In addition to providing osteogenic humoral factors (i.e., growth factors and extracellular matrix molecules), this finding suggests that immature, but not mature, dura mater may provide cellular elements (i.e., osteoblasts) that augment successful calvarial reossification. These studies support the hypothesis that elaboration of osteogenic growth factors (i.e., TGF-beta33) and extracellular matrix molecules (i.e., collagen type III and alkaline phosphatase) by immature, but not mature, dural tissues may be critical for successful calvarial reossification. In addition, these studies suggest for the first time that immature dural tissues may provide cellular elements (i.e., osteoblasts) to augment this process.  相似文献   

17.
18.
Transforming growth factor-beta(3) (TGF-beta(3)), a multi-functional growth modulator of embryonic development, tissue repair and morphogenesis, immunoregulation, fibrosis, angiogenesis and carcinogenesis, is the third mammalian isoform of the TGF-beta subfamily of proteins. The pleiotropism of the signalling proteins of the TGF-beta superfamily, including the TGF-beta proteins per se, are highlighted by the apparent redundancy of soluble molecular signals initiating de novo endochondral bone induction in the primate only. In the heterotopic bioassay for bone induction in the subcutaneous site of rodents, the TGF-beta(3) isoform does not initiate endochondral bone formation. Strikingly and in marked contrast to the rodent bioassay, recombinant human (h)TGF-beta(3), when implanted in the rectus abdominis muscle of adult non-human primates Papio ursinus at doses of 5, 25 and 125 mug per 100 mg of insoluble collagenous matrix as carrier, induces rapid endochondral bone formation resulting in large corticalized ossicles by day 30 and 90. In the same animals, the delivery of identical or higher doses of theTGF-beta(3) protein results in minimal repair of calvarial defects on day 30 with limited bone regeneration across the pericranial aspect of the defects on day 90. Partial restoration of the bone induction cascade by the hTGF-beta(3) protein is obtained by mixing the hTGF-beta(3) device with minced fragments of autogenous rectus abdominis muscle thus adding responding stem cells for further bone induction by the hTGF-beta(3) protein. The observed limited bone induction in hTGF-beta(3)/treated and untreated calvarial defects in Papio ursinus and therefore by extension to Homo sapiens, is due to the influence of Smad-6 and Smad-7 down-stream antagonists of the TGF-beta signalling pathway. RT-PCR, Western and Northern blot analyses of tissue specimens generated by the TGF-beta(3) isoform demonstrate robust expression of Smad-6 and Smad-7 in orthotopic calvarial sites with limited expression in heterotopic rectus abdominis sites. Smad-6 and -7 overexpression in hTGF-beta(3)/treated and untreated calvarial defects may be due to the vascular endothelial tissue of the arachnoids expressing signalling proteins modulating the expression of the inhibitory Smads in pre-osteoblastic and osteoblastic calvarial cell lines controlling the induction of bone in the primate calvarium.  相似文献   

19.
Craniosynostosis (CS), the premature ossification of cranial sutures, is attributed to increased osteogenic potential of resident osteoblasts, yet the contribution of the surrounding extracellular matrix (ECM) on osteogenic differentiation is unclear. The osteoblast-secreted ECM provides binding sites for cellular adhesion and regulates the transport and signaling of osteoinductive factors secreted by the underlying dura mater. The binding affinity of each osteoinductive factor for the ECM may amplify or mute its relative effect, thus contributing to the rate of suture fusion. The purpose of this paper was to examine the role of ECM composition derived from calvarial osteoblasts on protein binding and its resultant effect on cell phenotype. We hypothesized that potent osteoinductive proteins present during sutural fusion (e.g., bone morphogenetic protein-2 (BMP-2) and transforming growth factor beta-1 (TGF-β1)) would exhibit distinct differences in binding when exposed to ECMs generated by human calvarial osteoblasts from unaffected control individuals (CI) or CS patients. Decellularized ECMs produced by osteoblasts from CI or CS patients were incubated in the presence of BMP-2 or TGF-β1, and the affinity of each protein was analyzed. The contribution of ECM composition to protein binding was interrogated by enzymatically modulating proteoglycan content within the ECM. BMP-2 had a similar binding affinity for each ECM, while TGF-β1 had a greater affinity for ECMs produced by osteoblasts from CI compared to CS patients. Enzymatic treatment of ECMs reduced protein binding. CS osteoblasts cultured on enzymatically-treated ECMs secreted by osteoblasts from CI patients in the presence of BMP-2 exhibited impaired osteogenic differentiation compared to cells on untreated ECMs. These data demonstrate the importance of protein binding to cell-secreted ECMs and confirm that protein-ECM interactions have an important role in directing osteoblastic differentiation of calvarial osteoblasts.  相似文献   

20.
Although it is one of the most commonly occurring craniofacial congenital disabilities, craniosynostosis (the premature fusion of cranial sutures) is nearly impossible to prevent because the molecular mechanisms that regulate the process of cranial suture fusion remain largely unknown. Recent studies have implicated the dura mater in determining the fate of the overlying cranial suture; however, the molecular biology within the suture itself has not been sufficiently investigated. In the murine model of cranial suture fusion, the posterior frontal suture is programmed to begin fusing by postnatal day 12 in rats (day 25 in mice), reliably completing bony union by postnatal day 22 (day 45 in mice). In contrast, the sagittal suture remains patent throughout the life of the animal. Using this model, this study sought to examine for the first time what differences in gene expression--if any--exist between the two sutures with opposite fates. For each series of experiments, 35 to 40 posterior frontal and sagittal suture complexes were isolated from 6-day-old Sprague-Dawley rat pups. Suture-derived cell cultures were established, and ribonuicleic acid was derived from snap-frozen, isolated suture tissue. Results demonstrated that molecular differences between the posterior frontal and sagittal suture complexes were readily identified in vivo, although these distinctions were lost once the cells comprising the suture complex were cultured in vitro. Hypothetically, this change in gene expression resulted from the loss of the influence of the underlying dura mater. Significant differences in the expression of genes encoding extracellular matrix proteins existed in vivo between the posterior frontal and sagittal sutures. However, the production of the critical, regulatory cytokine transforming growth factor beta-1 was equal between the two suture complexes, lending further support to the hypothesis that dura mater regulates the fate of the overlying cranial suture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号