首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bombyx mori is one of the key lepidopteran model species, and is economically important for silk production and proteinaceous drug expression. Baculovirus and insect host are important natural biological models for studying host–pathogen interactions. The impact of Bombyx mori nucleopolyhedrovirus (BmNPV) infection on the proteome and acetylome of Bombyx mori ovarian (BmN) cells are explored to facilitate a better understanding of infection‐driven interactions between BmNPV and host in vitro. The proteome and acetylome are profiled through six‐plex Tandem mass tag (TMT) labeling‐based quantitative proteomics. A total of 4194 host proteins are quantified, of which 33 are upregulated and 47 are downregulated in BmN cells at 36 h post‐infection. Based on the proteome, quantifiable differential Kac proteins are identified and functionally annotated to gene expression regulation, energy metabolism, substance synthesis, and metabolism after BmNPV infection. Altogether, 644 Kac sites in 431 host proteins and 39 Kac sites in 22 viral proteins are identified and quantified in infected BmN cells. Our study demonstrates that BmNPV infection globally impacts the proteome and acetylome of BmN cells. The viral proteins are also acetylated by the host acetyltransferase. Protein acetylation is essential for cellular self‐regulation and response to virus infection. This study provides new insights for understanding the host–virus interaction mechanisms, and the role of acetylation in BmN cellular response to viral infection.  相似文献   

2.
Previous study showed that exogenously applied recombinant thymosin from Bombyx mori (BmTHY) reduces B. mori nucleopolyhedrovirus (BmNPV) proliferation in silkworm. Which stands to reason that BmTHY in B. mori is crucial for the defense against BmNPV. However, little is known about the effect of endogenously overexpressed or repressed BmTHY on B. mori resistance to virus infection. To study this issue, we constructed an overexpression and inhibited expression systems of BmTHY in BmN cells. The viral titer and the analysis from the quantitative real‐time polymerase chain reaction (PCR) revealed that overexpression of BmTHY decreased the copies of BmNPV gene gp41, which goes over to inhibit the proliferation of BmNPV in BmN cells, while the inhibited expression of BmTHY significantly enhanced viral proliferation in infected BmN cells. These results indicated that endogenous BmTHY can inhibit BmNPV proliferation and replication in infected BmN cells. Furthermore, Co‐IP showed that BmTHY could bind to actin in BmN cells. Also, the overexpression or inhibited expression of BmTHY shifted the ratio of F/G‐actin in infected BmN cells. Lastly, the BmTHY, an actin‐interacting protein, might be one of the key host factors against BmNPV, which inhibits viral proliferation and replication in BmN cells.  相似文献   

3.
4.
Ser/Thr protein phosphatase 2A (PP2A) is one of the type 2 protein phosphatases, which is required for many intracellular physiological processes and pathogen infection. However, the function of PP2A is unclear in silkworm, Bombyx mori. Here, we cloned and identified BmPP2A, a PP2A gene from B. mori, which has two HEAT domains and a high similarity to PP2A from other organisms. Our results showed that BmPP2A is localized in the cytoplasm and highly expressed in silkworm epidermis and midgut, and that Bombyx mori nucleopolyhedrovirus (BmNPV) infection induces down‐regulation of BmPP2A expression. Furthermore, up‐regulation of BmPP2A via overexpression significantly inhibited BmNPV multiplication. In contrast, down‐regulation of BmPP2A via RNA interference and okadaic acid (a PP2A inhibitor) treatment allowed robust BmNPV replication. This is the first report of PP2A having an antiviral effect in silkworm and provides insights into the function of BmPP2A, a potential anti‐BmNPV mechanism, and a possible target for the breeding of silkworm‐resistant strains.  相似文献   

5.
[目的]家蚕核型多角体病毒(Bombyx mori nucleopolyhedrovirus,BmNPV)是生产上危害最严重的病原之一。BmNPV感染BmN-SWU1细胞将细胞周期阻滞于G2/M期。CyclinB是调控细胞周期G2期向M期转换的重要细胞周期蛋白。因此,研究BmNPV感染后CyclinB变化对解析病毒调控细胞周期的机制具有重要意义,同时探究这个过程中与CyclinB互作的病毒蛋白,可为构建家蚕转基因品系提供分子靶标。[方法]qRT-PCR检测BmNPV感染后BmCyclinB的表达变化;免疫荧光观察病毒感染前后BmCyclinB的定位变化,通过细胞质细胞核蛋白分离实验验证。免疫共沉淀钓取与BmCyclinB互作的病毒蛋白。BmNPV感染期间敲除BmNPV IAP1观察BmCyclinB的入核比例。[结果]BmNPV感染后BmCyclinB转录水平下调。BmNPV感染前BmCyclinB主要定位于细胞质,而感染后主要定位于细胞核。BmNPV感染BmN-SWU1细胞后促进BmCyclinB在核内积累。共钓取了7个与BmCyclinB互作的病毒蛋白,免疫共沉淀和细胞共定位证明BmNPV IAP1与BmCyclinB之间存在相互作用。敲除BmNPV IAP1后BmCyclinB进入细胞核的数量显著减少。[结论]BmNPV IAP1可通过与BmCyclinB互作,促进BmCyclinB在核内积累。  相似文献   

6.
We recently documented the identification of a 26.5 kDa protein named BmNox in the gut fluid of Nistari strain of Bombyx mori, which possessed antiviral activity against BmNPV in vitro. In this report, we report the characterization of the full‐length gene encoding BmNOX and the levels of expression of this gene in select tissues of silkworm larvae from a BmNPV‐susceptible and a BmNPV‐resistant strain to the defense capability in Bombyx mori larvae challenged with BmNPV. We also evaluated the BmNox expression in various stages of larval life of a resistant and a susceptible strain of Bombyx mori selected from among a panel of strains of silkworm. Nistari, a multivoltine strain of silkworm, expressed BmNOX during all five larval stages, and were highly resistant to BmNPV infection. In sharp contrast, CSR2, a bivoltine strain, showed weaker expression of BmNOX in the anterior midgut in larval life and was highly susceptible to BmNPV infection. BmNOX is a secretory protein with dual expression in gut fluid and mid gut tissue. BmNOX is expressed heavily in the posterior mid gut, with weaker expression in the fore‐ and mid‐gut regions. © 2010 Wiley Periodicals, Inc.  相似文献   

7.
8.
9.
10.
Katsuma S  Mita K  Shimada T 《Journal of virology》2007,81(24):13700-13709
Mitogen-activated protein kinases (MAPKs) often play important roles in virus infection. To explore intracellular signaling pathways induced by baculovirus infection, we examined the involvement of MAPKs in Bombyx mori nucleopolyhedrovirus (BmNPV) infection of BmN cells. We found that specific inhibitors of extracellular signal-regulated kinase (ERK) kinase and c-Jun NH2-terminal kinase (JNK) significantly reduced occlusion body (OB) formation and budded virus (BV) production. Next, we quantified OB and BV production after applying the inhibitors at different times postinfection (p.i.). The inhibitors significantly reduced OB and BV production to various extents when applied at 12 h p.i., indicating that the reduction of BmNPV infectivity by these inhibitors occurs at the late stage of infection. Also, we observed that these inhibitors markedly repressed or deregulated the expression of delayed early, late, and very late gene products. Western blot analysis using phospho-MAPK-specific antibodies showed that ERK and JNK were activated at the late stage of BmNPV infection. In addition, the magnitude and pattern of MAPK activation were dependent on the multiplicity of infection. To verify the effects of the inhibitors on BmNPV infection, we also attempted to knock down the B. mori genes BmErk and BmJnk, which encode ERK and JNK, respectively. Knockdown of BmErk and BmJnk resulted in the reduced production of OBs and BVs, confirming that BmERK and BmJNK are involved in the BmNPV infection process. Taken together, these results indicate that the activation of MAPK signaling pathways is required for efficient infection by BmNPV.  相似文献   

11.
Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the most acute infectious diseases in silkworm, which has led to great economic loss in sericulture. Previous study showed that the content of secondary metabolites in mulberry leaves, particularly for moracin N, was increased after UV‐B irradiation. In this study, the BmNPV resistance of silkworms reared on UV‐B treated and moracin N spread mulberry leaves was improved. To uncover the mechanism of enhanced BmNPV resistance, silkworm midguts from UV‐B treated mulberry leaves (BUM) and moracin N (BNM) groups were analyzed by SWATH‐based proteomic technique. Of note, the abundance of ribosomal proteins in BUM and BNM groups was significantly changed to maintain the synthesis of total protein levels and cell survival. While, cytochrome c oxidase subunit II, calcium ATPase and programmed cell death 4 involved in apoptotic process were up‐regulated in BNM group. Expressions of lipase‐1, serine protease precursor, Rab1 protein, and histone genes were increased significantly in BNM group. These results suggest that moracin N might be the main active component in UV‐B treated mulberry leaves which could improve the BmNPV‐resistance of silkworm through promoting apoptotic cell death, enhancing the organism immunity, and regulating the intercellular environment of cells in silkworm. It also presents an innovative process to reduce the mortality rate of silkworms infected with BmNPV.  相似文献   

12.
Bombyx mori nucleopolyhedrovirus (BmNPV) orf4 has been shown to be expressed at very early stage of Bm-NPV infection cycle. In this study, using transient expression experiment, we demonstrated for the first time that orf4 promoter is an immediate early promoter, indicating that orf4 may play a role in the immediate-early stage of BmNPV infection. Moreover, with the recently developed Bac-to-Bac/BmNPV baculovirus expression system and a modified pFast-Bac1 whose polyhedrin promoter was replaced with orf4 promoter, a recombinant bacmid baculovirus expressing enhanced green fluorescent protein (EGFP) under the control of orf4 promoter in Bombyx mori (Bm) cells was successfully constructed. The result not only showed that the polyhedrin promoter can be replaced easily with other promoters to direct the expression of foreign genes by using this novel system but also laid the foundation for the rescue experiment of orf4 deletion mutant.  相似文献   

13.
【目的】家蚕核型多角体病毒(Bombyx mori nucleopolyhedrovirus,BmNPV)隶属于杆状病毒,需要借助宿主细胞能量代谢进行自身增殖复制。家蚕ADP/ATP转运酶(Bombyx mori ADP/ATP translocase,BmANT)是线粒体转运蛋白,在BmNPV感染条件下和家蚕热休克蛋白60(heatshockprotein60,BmHSP60)具有直接的相互作用。因此,鉴定Bmant基因在BmNPV感染过程中的功能特征,有助于解析杆状病毒劫持宿主细胞因子促进自身增殖复制机制,完善杆状病毒和宿主相互作用网络。【方法】通过结构域预测BmANT蛋白的结构特征,荧光定量PCR分析Bmant基因在BmNPV感染后的变化特征;并过表达BmANT检测其对病毒DNA复制和病毒蛋白表达变化影响;进一步在转录水平分析Bmant和Bmhsp60基因的调控关系;最后通过流式细胞术等技术鉴定Bmant和Bmhsp60基因共同调控BmNPV增殖复制的机制。【结果】SMART软件预测显示BmANT包含3个线粒体载体结构域,BmNPV感染24 h后Bmant基因持续下调表达。过表达Bmant基因能够显著抑制BmNPV DNA的复制和VP39蛋白表达。荧光定量PCR分析显示Bmant和Bmhsp60基因具有相互拮抗作用,能够相互抑制转录。Bmant和Bmhsp60共同过表达分析显示,BmANT和BmHSP60共同作用BmNPV能够抑制病毒的增殖复制。【结论】结果表明,BmANT是一个线粒体载体蛋白,具有显著的抗病毒作用,能够下调Bmhsp60基因表达,并抑制BmNPV增殖复制。  相似文献   

14.
Silkworm (Bombyx mori) larvae are widely used to express exogenous proteins. Moreover, some silkworm pupal proteins can be used as drug‐loading materials for selfexpressed oral tolerance drugs. However, several proteins expressed in silkworm pupae cause severe allergic reactions in humans and animals. Interestingly, some baculovirus vectors have been shown to alter the host gene and its expression in insect cells, but this has not been confirmed in silkworm. Here, we analyzed the effects of infection with an empty B. mori baculovirus (BmNPV) vector on silkworm pupal protein expression. Using a proteomics approach, the allergens thiol peroxiredoxin (Jafrac1), 27‐kDa glycoprotein (p27k), arginine kinase, and paramyosin as well as 32 additional differentially expressed proteins were identified. Downregulation of the messenger RNA expression of the four known allergens was observed after BmNPV infection; subsequent changes in protein expression were confirmed by the western blot analysis using polyclonal antibodies prepared with recombinant proteins of the four allergens. Collectively, these data indicate that the four known allergens of silkworm pupae can be reduced by infection ith an empty BmNPV vector to increase the safety of silkworm pupa‐based exogenous protein expression and drug delivery of oral pharmaceuticals. In addition, the four recombinant allergen proteins may contribute to the diagnosis of allergic diseases of silkworm pupa.  相似文献   

15.
Bombyx mori nucleopolyhedrovirus (BmNPV) is a primary pathogen in silkworm, and the molecular mechanism of B. mori defense to BmNPV infection is still unclear. RNA interference (RNAi) is well-known as an intracellular conserved mechanism that is critical in gene regulation and cell defense. The antiviral RNAi pathway processes viral double-stranded RNA (dsRNA) into viral small interfering RNAs that guide the recognition and cleavage of complementary viral target RNAs. In this study, a Dicer-2 (Dcr2) gene was identified in B. mori and its antiviral function was explored. Dcr2 messenger RNA (mRNA) expression was the highest in hemocytes and expressed in all stages of silkworm growth. After infection with BmNPV, the expression of Dcr2 mRNA was significantly increased after infection in midgut and hemocytes. The expression of Dcr2 was significantly upregulated by injecting dsRNA (dsBmSPH-1) into silkworm after 48 hr. Knocking down the expression level of Dcr2 using specific dsRNA in silkworm, which modestly enhanced the production of viral genomic DNA. Our results suggested that the Dcr2 gene in B. mori plays an important role in against BmNPV invasion.  相似文献   

16.
The baculovirus ie2 gene is one of the immediate early genes, and its product is known to transactivate viral promoters. However, the roles of Bombyx mori nucleopolyhedrovirus (BmNPV) ie2 in insect larvae are poorly understood. Here we investigated the functions of BmNPV IE2 in cultured cells and in insect larvae using two mutant viruses, BmIE2D and BmIE2CS. BmIE2D lacks the IE2 C-terminal coiled-coil domain that is required for IE2 dimerization. The other mutant BmIE2CS expresses an E3 ligase activity-deficient IE2 derivative, which is degraded more slowly compared with wild-type IE2. We found that ie2 mutations had little effect on BmNPV infection in cultured cells, whereas budded virus and occlusion body production was significantly reduced in the hemolymph of B. mori larvae infected with ie2 mutants. These results indicate that both dimerization and proper degradation of BmNPV IE2 are crucial steps for efficient virus growth in B. mori larvae, but not in cultured cells. Oral infection assays also revealed that the infectivity of the occluded form of ie2 mutants was normal in B. mori larvae, which is inconsistent with the results reported from ie2 mutants of Autographa californica NPV. This suggests that loss of IE2 function causes virus-specific effects in host insects.  相似文献   

17.
A new cell line, designated as NIAS-Boma-529b, was established from the larval fat bodies of Bombyx mandarina (B. mandarina), which is believed to be an ancestor of Bombyx mori (B. mori). This cell line has been cultured for approximately 150 passages during 2 years in an IPL-41 medium supplemented with 10% fetal bovine serum at a constant temperature of 26 °C. The morphology of this line includes adhesive round and spindle-shaped cells. Random-amplified polymorphic DNA analysis (RAPD) using 7 primers and a statistical analysis based on Nei’s genetic distance revealed that this cell line was closely related to B. mori-derived cell lines. An infection study also revealed that this cell line was susceptible to B. mori nucleopolyhedrovirus (BmNPV); however, it had no apparent susceptibility to Autographa californica NPV (AcNPV), which is closely related to BmNPV. Nevertheless, cells infected with AcNPV showed an extensive cytopathic effect (CPE), including a rough cell surface, rounding, nuclear expansion, and cell blebbing. These results suggest that this cell line can be useful to clarify the mechanism of host range determination of BmNPV and AcNPV.  相似文献   

18.
AcNPV (Autographa californica nuclear polyhedrosis virus) and BmNPV(Bombyx mori nuclear polyhedrosis virus) are two principal insectbaculovirus expression systems, each having different characteristics. AcNPV has a wider host range and can infect a series of cell lines thus making it suitable for cell suspension culture expression, but the small size of the host insect,A. californica, makes AcNPV less suitable for large scale protein synthesis. In contrast, BmNPV can only infect the silkworm,Bombyx mori, which is wellknown for its easy rearing and large size. These characteristics make the BmNPV system especially suitable for largescale industrial expression. To utilize the advantages of both AcNPV and BmNPV, we tried to expand their host range through homologous recombination and successfully constructed a hybrid baculovirus of AcNPV and BmNPV, designated as HyNPV The hybrid baculovirus can infect the hosts of both AcNPV and BmNPV. Taking the human basic fibroblast growth factor (bFGF) gene as an application example, we constructed a recombinant, HyNPV-bFGF. This construct is able to express the bFGF protein both in silkworm larvae and in commonuse cell lines, sf21, sf9 and High-five. Moreover, to reduce the loss of recombinant protein due to degradation by proteases that are simultaneously expressed by the baculovirus, we knocked out the cysteinase gene coding for one of the most important baculovirus proteases. This knockout mutation improves the production efficiency of the bFGF recombinant protein.  相似文献   

19.
Bombyx mori nucleopolyhedrovirus (BmNPV) is a serious viral pathogen of silkworm, and no drug or specific protection against BmNPV infection is available at present time. Although functions of most BmNPV genes were depicted in recent years, knowledge on the mechanism of BmNPV entry into insect cells is still limited. Here BmNPV cell entry mechanism is investigated by different endocytic inhibitor application and subcellular analysis. Results indicated that BmNPV enters BmN cells by clathrin-independent macropinocytic endocytosis, which is mediated by cholesterol in a dose-dependent manner, and cholesterol replenishment rescued the BmNPV infection partially.  相似文献   

20.
In this study, glutathione-S-transferase pull-down combined with mass spectrometry techniques were used to identify the candidate proteins interacting with protein tyrosine phosphatase of the Bombyx Mori nucleopolyhedrovirus in the B. mori (BmNPV-PTP) brain. A total of 36 proteins were identified from BmNPV-PTP coprecipitate samples by searching the NCBI_Bombyx Mori database with the original mass spectrum data. Among those proteins, the interaction between BmNPV-PTP and B. mori cyclophilin A may accelerate the apoptosis of certain nerve cells involved in regulating behavior, and thus may be an inducer of enhanced locomotor activity (ELA). After the BmNPV invasion, BmNPV-PTP binding to peripheral-type benzodiazepine receptors may initiate a series of abnormal cascades of the nervous system, which results in abnormal hyperactive behavior in B. mori. Besides this, vacuolar ATP synthase catalytic subunit A, annexin, and several enzymes for energy conversion were identified, which may play a role in enhancing viral entry and infectivity and provide energy for enhancing the locomotor activity of B. mori. In general, the results of this study will facilitate the understanding of the molecular mechanisms underlying the ELA of B. mori larva induced by BmNPV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号