首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Smart photovoltaic windows (SPWs) are functional devices possessing the capabilities of electrical power output, energy saving, and privacy protection by managing sunlight under external stimuli and potentially applicable in the fields of energy‐saving buildings, automobiles, and switchable optoelectronics. However, long response time, low power conversion efficiency (PCE), poor stability and cycling performance, and monostimuli responsive behavior restrict their practical applications. To address these issues, high‐efficiency and reliable SPWs are demonstrated by coupling multiresponsive liquid crystal/polymer composite (LCPC) films and semi‐transparent perovskite solar cells (ST‐PSCs). In this design, fast and multiple stimuli‐responsive LCPC films are utilized as an inside layer to control the transparency of SPWs. The ST‐PSCs with competitive PCE and qualified transparency acting as an outside layer offer energy generation functionality. Benefiting from repeatable transparency transition modulated by external stimuli, a series of working modes are achieved in the SPWs providing distinguished and stable energy generation, energy saving, and privacy protection performances.  相似文献   

2.
3.
Dye‐sensitized solar cells (DSCs) have attracted great interest as one of the most promising photovoltaic technologies, and transparent DSCs show potential applications as photovoltaic windows. However, the competition between light absorption for photocurrent generation and light transmittance for obtaining high transparency limits the performance of transparent DSCs. Here, transparent DSCs exhibiting a high light transmittance of 60.3% and high energy conversion efficiency (3.66%) are reported. The strategy is to create a cocktail system composed of ultraviolet and near‐infrared dye sensitizers that selectively and efficiently harvest light in the invisible or low‐eye‐sensitivity region while transmitting light in high‐eye‐sensitivity regions. This new design provides a reasonable approach for realizing high efficiency and transparency DSCs that have potential applications as photovoltaic windows.  相似文献   

4.
5.
6.
A smart window that dynamically modulates light transmittance is crucial for building energy efficiently, and promising for on‐demand optical devices. The rapid development of technology brings out different categories that have fundamentally different transmittance modulation mechanisms, including the electro‐, thermo‐, mechano‐, and photochromic smart windows. In this review, recent progress in smart windows of each category is overviewed. The strategies for each smart window are outlined with particular focus on functional materials, device design, and performance enhancement. The advantages and disadvantages of each category are summarized, followed by a discussion of emerging technologies such as dual stimuli triggered smart window and integrated devices toward multifunctionality. These multifunctional devices combine smart window technology with, for example, solar cells, triboelectric nanogenerators, actuators, energy storage devices, and electrothermal devices. Lastly, a perspective is provided on the future development of smart windows.  相似文献   

7.
The record efficiency of the state‐of‐the‐art polymer solar cells (PSCs) is rapidly increasing, due to the discovery of high‐performance photoactive donor and acceptor materials. However, strong questions remain as to whether such high‐efficiency PSCs can be produced by scalable processes. This paper reports a high power conversion efficiency (PCE) of 13.5% achieved with single‐junction ternary PSCs based on PTB7‐Th, PC71BM, and COi8DFIC fabricated by slot‐die coating, which shows the highest PCE ever reported in PSCs fabricated by a scalable process. To understand the origin of the high performance of the slot‐die coated device, slot‐die coated photoactive films and devices are systematically investigated. These results indicate that the good performance of the slot‐die PSCs can be due to a favorable molecule‐structure and film‐morphology change by introducing 1,8‐diiodooctane and heat treatment, which can lead to improved charge transport with reduced carrier recombination. The optimized condition is then used for the fabrication of large‐area modules and also for roll‐to‐roll fabrication. The slot‐die coated module with 30 cm2 active‐area and roll‐to‐roll produced flexible PSC has shown 8.6% and 9.6%, respectively. These efficiencies are the highest in each category and demonstrate the strong potential of the slot‐die coated ternary system for commercial applications.  相似文献   

8.
Mixed iodide‐bromide organolead perovskites with a bandgap of 1.70–1.80 eV have great potential to boost the efficiency of current silicon solar cells by forming a perovskite‐silicon tandem structure. Yet, the stability of the perovskites under various application conditions, and in particular combined light and heat stress, is not well studied. Here, FA0.15Cs0.85Pb(I0.73Br0.27)3, with an optical bandgap of ≈1.72 eV, is used as a model system to investigate the thermal‐photostability of wide‐bandgap mixed halide perovskites. It is found that the concerted effect of heat and light can induce both phase segregation and decomposition in a pristine perovskite film. On the other hand, through a postdeposition film treatment with benzylamine (BA) molecules, the highly defective regions (e.g., film surface and grain boundaries) of the film can be well passivated, thus preventing the progression of decomposition or phase segregation in the film. Besides the stability improvement, the BA‐modified perovskite solar cells also exhibit excellent photovoltaic performance, with the champion device reaching a power conversion efficiency of 18.1%, a stabilized power output efficiency of 17.1% and an open‐circuit voltage (V oc) of 1.24 V.  相似文献   

9.
10.
In this work, a new combination of a wide bandgap polymer poly[4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]‐dithiophene‐alt‐N‐(2‐hexyldecyl)‐5′5‐bis[3‐(decylthio)thiophene‐2‐yl]‐2′2‐bithiophene‐3′3‐dicarboximide] (PBTIBDTT) and a non‐fullerene small molecule acceptor based on a bulky seven‐ring fused core (indacenodithieno[3,2‐b]thiophene) end‐capped with 2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene)malononitrile groups with one fluorine substituent (ITIC‐F) is proposed, and as‐cast non‐fullerene organic solar cells (NFOSCs) with 11.2% efficiency are achieved. The device efficiencies are also insensitive to the variation of photoactive layer (PAL) thickness and can maintain over 9% efficiency as PAL thickness increases to 350 nm, which is one of the best results for as‐cast organic solar cells. More importantly, non‐fullerene organic photovoltaic (OPV) modules are demonstrated via laser ablation technique for the first time, which delivers a record efficiency of 8.6% (with active area of 3.48 cm2) among large‐area OPV modules. Furthermore, the morphology and performance evolutions of the as‐cast NFOSCs and the ones processed with solvent additive are systematically investigated. The results demonstrate the great advantage of as‐cast solar cells in achieving constant morphology and high performance with thick PALs. The NFOSCs fabricated with simple procedure, insensitive to film thickness and compatible with large‐area OPV modules, show significant potential for application the future.  相似文献   

11.
12.
13.
14.
A universal strategy for efficient light trapping through the incorporation of gold nanorods on the electron transport layer (rear) of organic photovoltaic devices is demonstrated. Utilizing the photons that are transmitted through the active layer of a bulk heterojunction photovoltaic device and would otherwise be lost, a significant enhancement in power conversion efficiency (PCE) of poly[N‐9′‐heptadecanyl‐2,7‐carbazole‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)]:phenyl‐C71‐butyric acid methyl ester (PCDTBT:PC71BM) and poly[[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b] thiophenediyl]] (PTB7):PC71BM by ≈13% and ≈8%, respectively. PCEs over 8% are reported for devices based on the PTB7:PC71BM blend. A comprehensive optical and electrical characterization of our devices to clarify the influence of gold nanorods on exciton generation, dissociation, charge recombination, and transport inside the thin film devices is performed. By correlating the experimental data with detailed numerical simulations, the near‐field and far‐field scattering effects are separated of gold nanorods (Au NRs), and confidently attribute part of the performance enhancement to the enhanced absorption caused by backscattering. While, a secondary contribution from the Au NRs that partially protrude inside the active layer and exhibit strong near‐fields due to localized surface plasmon resonance effects is also observed but is minor in magnitude. Furthermore, another important contribution to the enhanced performance is electrical in nature and comes from the increased charge collection probability.  相似文献   

15.
16.
17.
18.
Photovoltaic (PV) waste is expected to significantly increase. However, legislation on producer responsibility for the collection and recovery of PV panels is limited to the European Union (EU) Waste Electrical and Electronic Equipment Directive Recast, which lays down design, collection, and recovery measures. Academic knowledge of closed‐loop supply chains (CLSCs) for PV panels is scarce. We analyze the supply chain using multiple cases involving the main stakeholders in the design, production, collection, and recovery of PV panels. Our article answers two research questions: How does the PV supply chain operate, and what are critical factors affecting the reverse supply chain management of used panels? Our research seeks to fill the gap in the CLSC literature on PV panels, as well as to identify barriers and enablers for PV panel design, collection, and recycling.  相似文献   

19.
20.
Whereas the role of molecularly mixed domains in organic photovoltaic devices for charge generation is extensively discussed in the literature, the impact on charge recombination and thus fill factor is largely unexplored. Here, a combination of soft X‐ray techniques enables the quantification of phases at multiple length scales to reveal their role regarding charge recombination in a highly efficient solution processed small molecule system 7,7′‐(4,4‐bis(2‐ethylhexyl)‐4H‐silolo[3,2‐b:4,5‐b′]dithiophene‐2,6‐diyl)bis(6‐fluoro‐4‐(5′‐hexyl‐[2,2′‐bithiophen]‐5‐yl)benzo[c][1,2,5]thiadiazole) (p‐DTS(FBTTh2)2) . A quantitative (linear) relationship between the average composition variations and the device fill‐factor is observed. The results establish the complex interrelationship between average phase purity, domain size, and structural order and highlight the requirement of achieving sufficient phase purities to diminish bimolecular and geminate recombination in solution processed small molecule solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号