首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In cattle and other species in which the pool of resting, primordial follicles is formed during fetal life, little is known about the regulation of the early stages of ovarian follicular development. We used histological morphometry and a combination of observations in vivo and experiments in vitro to study the timing and regulation of follicle formation and the acquisition of the capacity of primordial follicles to initiate growth in cattle. In vivo, primordial, primary, and secondary follicles were first observed around Days 90, 140, and 210 of gestation, respectively. The long interval between the first appearance of primordial and primary follicles suggests that primordial follicles are not capable of activating when they are first formed, or they are inhibited from activating. This hypothesis was confirmed by the finding that most primordial follicles in pieces of ovarian cortex obtained from fetal ovaries older than 140 days activated (i.e., initiated growth) after 2 days in vitro, whereas follicles in cortical pieces from 90- to 140-day-old fetal ovaries did not. We tested the hypothesis that the oocytes of newly formed primordial follicles are not in meiotic arrest and found that before Day 141, most oocytes ( approximately 73%) were in prediplotene stages of prophase I, whereas after Day 140, the majority of oocytes ( approximately 85%) had arrested at the diplotene stage. This observation was further confirmed by the finding that levels of mRNA for YBX2, a protein associated with meiotic arrest, were 2.3 times higher in ovarian cortical pieces isolated after versus before Day 141. Primordial follicles in cortical pieces from 90- to 140-day-old fetal ovaries did activate during a longer, 10-day culture, but activation could be inhibited by adding estradiol or progesterone, but not dihydrotestosterone (all at 10(-6) M). Fetal ovaries secreted estradiol in vitro, and secretion by ovaries from 83 to 140-day-old fetuses declined precipitously ( approximately 30-fold) with age, consistent with the hypothesis that estradiol inhibits activation of newly formed primordial follicles in vivo. In summary, the results show that newly formed primordial follicles do not activate in vivo or within 2 days in vitro and that capacity to activate is correlated with achievement of meiotic arrest by the oocyte and can be inhibited by estradiol, which fetal ovaries actively produce around the time of follicle formation.  相似文献   

2.
In the mammalian ovary, FGF10 is expressed in oocytes and theca cells and is a candidate for paracrine signaling to the developing granulosa cells. To gain insight into the participation of FGF10 in the regulation of fetal folliculogenesis, we assessed mRNA expression patterns of FGF10 and its receptors, FGFR1B and FGFR2B, in relation to fetal follicle dynamics and localized FGF10 protein in bovine fetal ovaries at different ages. Primordial, primary, secondary, and antral follicles were first observed on Days 75, 90, 150, and 210 of gestation, respectively. The levels of GDF9 and BMP15 mRNA, markers for primordial and primary follicles, respectively, increased during fetal ovary development in a consistent manner with fetal follicle dynamics. CYP17A1 mRNA abundance increased from Day 60 to Day 75 and then from Day 120 to Day 150, coinciding with the appearance of secondary follicles. FGF10 mRNA abundance increased from Day 90, and this increase was temporally associated with increases in FGFR1B mRNA abundance and in the population of primary follicles. In contrast, FGFR2B mRNA expression was highest on Day 60 and decreased thereafter. FGF10 protein was localized to oogonia and oocytes and surrounding granulosa cells at all fetal ages. The present data suggest a role for FGF10 in the control of fetal folliculogenesis in cattle.  相似文献   

3.
It has been proposed that bile acid suppression of CYP7A1 gene expression is mediated through a gut-liver signaling pathway fibroblast growth factor (FGF)15/19-fibroblast growth factor receptor 4 which is initiated by activation of farnesoid X receptor in the ileum but not in the liver. This study evaluated whether FGF15/19 protein levels in the portal blood reflected changes in FGF15/19 mRNA in the ileum. Studies were conducted in Sprague Dawley rats and New Zealand white rabbits fed regular chow (controls), supplemented with cholesterol (Ch) or cholic acid (CA). After feeding CA, ileal FGF15 mRNA increased 8.5-fold in rats and FGF19 rose 16-fold in rabbits associated with 62 and 75% reduction of CYP7A1 mRNA, respectively. Neither FGF15 nor FGF19 protein levels changed in the portal blood to correspond with the marked increase of FGF15/19 mRNA levels in the ileum or inhibited CYP7A1 expression in the liver. Further, in Ch-fed rats, CYP7A1 mRNA increased 1.9-fold (P < 0.001) although FGF15 mRNA levels in the ileum and portal blood FGF15 protein levels were not decreased. In Ch-fed rabbits, although FGF19 mRNA levels in the ileum and liver did not increase significantly, CYP7A1 mRNA declined 49% (P < 0.05). We were unable to find corresponding changes of FGF15/19 protein levels in the portal blood in rats and rabbits where the mRNA levels of FGF15/19 in the ileum and CYP7A1 in the liver change significantly.  相似文献   

4.
Angiogenin is a member of the ribonuclease A superfamily of proteins that has been implicated in stimulating angiogenesis but whether angiogenin can directly affect ovarian granulosa or theca cell function is unknown. Therefore, the objective of these studies was to determine the effect of angiogenin on proliferation and steroidogenesis of bovine granulosa and theca cells. In experiments 1 and 2, granulosa cells from small (1 to 5 mm diameter) follicles and theca cells from large (8 to 22 mm diameter) follicles were cultured to evaluate the dose-response effect of recombinant human angiogenin on steroidogenesis. At 30 and 100 ng/ml, angiogenin inhibited (P<0.05) granulosa cell progesterone production and theca cell androstenedione production but did not affect (P>0.10) granulosa cell estradiol production or theca cell progesterone production, and did not affect numbers of granulosa or theca cells. In experiments 3 and 4, granulosa and theca cells from both small and large follicles were cultured with 300 ng/ml of angiogenin to determine if size of follicle influenced responses to angiogenin. At 300 ng/ml, angiogenin increased large follicle granulosa cell proliferation but decreased small follicle granulosa cell progesterone and estradiol production and large follicle theca cell progesterone production. In experiments 5 and 6, angiogenin stimulated (P<0.05) proliferation and DNA synthesis in large follicle granulosa cells. In experiment 7, 300 ng/ml of angiogenin increased (P<0.05) CYP19A1 messenger RNA (mRNA) abundance in granulosa cells but did not affect CYP11A1 mRNA abundance in granulosa or theca cells and did not affect CYP17A1 mRNA abundance in theca cells. We conclude that angiogenin appears to target both granulosa and theca cells in cattle, but additional research is needed to further understand the mechanism of action of angiogenin in granulosa and theca cells, as well as its precise role in folliculogenesis.  相似文献   

5.
Matrix metalloproteinases (MMP) are key enzymes involved in tissue remodeling. Within the ovary, they are believed to play a major role in ovulation, and have been linked to follicle atresia. To gain insight into the regulation of MMPs, we measured the effect of hormones and growth factors on MMP2 and MMP9 mRNA levels in non-luteinizing granulosa cells in serum-free culture. FSH and IGF1 both stimulated estradiol secretion and inhibited MMP2 and MMP9 mRNA abundance. In contrast, EGF and FGF2 both inhibited estradiol secretion but had no effect on MMP expression. At physiological doses, none of these hormones altered the proportion of dead cells. Although we cannot link MMP expression with apoptosis, the specific down regulation by the gonadotropic hormones FSH and IGF1 in vitro suggests that excess MMP2 and MMP9 expression is neither required nor desired for follicle development.  相似文献   

6.
Resistin is an adipokine that has not been extensively studied in cattle but is produced by adipocytes in greater amounts in lactating versus non-lactating cattle. Seven experiments were conducted to determine the effect of resistin on proliferation, steroidogenesis, and gene expression of theca and granulosa cells from small (1-5mm) and/or large (8-22 mm) cattle follicles. Resistin had no effect on IGF-I-induced proliferation of large-follicle theca cells or small-follicle granulosa cells, but decreased IGF-I-induced proliferation of large-follicle granulosa cells. Resistin weakly stimulated FSH plus IGF-I-induced estradiol production by large-follicle granulosa cells, but had no effect on IGF-I- or insulin-induced progesterone and androstenedione production by theca cells or progesterone production by granulosa cells of large follicles. In small-follicle granulosa cells, resistin attenuated the stimulatory effect of IGF-I on progesterone and estradiol production of small-follicle granulosa cells. RT-PCR measuring abundance of side-chain cleavage enzyme (CYP11A1), aromatase (CYP19A1), FSH receptor (FSHR) and LH receptor (LHCGR) mRNA in large- and small-follicle granulosa cells indicated that resistin reduced the stimulatory effect of IGF-I on CPY11A1 mRNA abundance in large-follicle granulosa cells but had no effect on CYP19A1, FSHR or LHCGR mRNA abundance in large- or small-follicle granulosa cells. Resistin had no effect on CYP11A1, CYP17A1 or LHCGR mRNA abundance in theca cells. These results indicate that resistin preferentially inhibits steroidogenesis of undifferentiated (small follicle) granulosa cells and inhibits proliferation of differentiated (large follicle) granulosa cells, indicating that the ovarian response to resistin is altered during follicular development.  相似文献   

7.
8.
9.
10.
Developmental regulation of baboon fetal ovarian maturation by estrogen   总被引:1,自引:0,他引:1  
Ovarian function in adult human and nonhuman primates is dependent on events that take place during fetal development, including the envelopment of oocytes by granulosa (i.e., folliculogenesis). However, our understanding of fetal ovarian folliculogenesis is incomplete. During baboon pregnancy, placental production and secretion of estradiol into the fetus increases with advancing gestation, and the fetal ovary expresses estrogen receptors alpha and beta in mesenchymal-epithelial cells (i.e., pregranulosa) as early as midgestation. Therefore, the current study determined whether estrogen regulates fetal ovarian follicular development. Pregnant baboons were untreated or treated with the aromatase inhibitor CGS 20267, or with CGS 20267 plus estradiol benzoate administered s.c. to the mother on Days 100-164 (term = Day 184). On Day 165, baboon fetuses were delivered by cesarean section and the number of total follicles and interfollicular nests consisting of oocytes and mesenchymal-epithelial cells in areas (0.33 mm(2)) of the outer and inner cortices of each fetal ovary were quantified using image analysis. Maternal and umbilical serum estradiol levels were decreased by >95% with CGS 20267. Treatment with CGS 20267 and estrogen restored maternal estradiol to normal and fetal estradiol to 30% of normal. Although fetal ovarian weight was unaltered, the mean number of follicles +/- SEM/0.33 mm(2) in the inner (59.0 +/- 1.7) and outer (95.3 +/- 2.4) cortical regions of fetal ovaries in untreated animals was 35%-50% lower (P < 0.01) in estrogen-depleted baboons (25.9 +/- 1.4, inner cortex; 62.5 +/- 2.7, outer cortex) and was restored to normal by treatment with CGS 20267 and estrogen. In contrast, the number of interfollicular nests was 2-fold greater (P < 0.01) in fetal ovaries of estrogen-suppressed animals, a change that was prevented by treatment with estrogen. In summary, fetal ovarian follicular development was significantly altered in baboons in which estrogen was depleted during the second half of gestation and restored to normal by estradiol. We propose that estrogen plays an integral role in regulating, and perhaps programming, primate fetal ovarian development.  相似文献   

11.
There is an autonomous renin–angiotensin system (RAS) in the adult ovary. Renin is present in the primitive kidney, and the fetal ovary develops from the nephrogenic ridge. We hypothesised that components of the ovarian RAS would be present from early gestation, with potential roles in ovarian development. We studied fetal pig ovaries from approximately day 45 (~0.39 gestation) to term and measured mRNA (RT-PCR) for prorenin, angiotensinogen and the angiotensin II (AngII) Type 1 and 2 receptors (AT1 and AT2), and protein expression (Western blot) and localization (immunohistochemistry) of the AT1 and AT2 receptors. mRNA for prorenin was present in relatively low abundance from at least day 45 and rose to ~day 75 of gestation, whilst mRNA for angiotensinogen rose steadily. mRNA for the AT1 receptor was present from approximately day 45 and did not alter significantly with increasing gestation but AT2 receptor mRNA was initially high, falling sharply through pregnancy. The AT1 receptor protein abundance fell steadily to term, whereas the AT2 receptor protein did not change during gestation. Both receptors were localised in the surface epithelium and egg nests, the granulosa cells of primordial, primary and secondary follicles, and the oocytes of all except the secondary follicles. Collectively, our results support the hypothesis that there is a functional RAS in the fetal ovary from at least approximately day 45 of gestation until term and that it may have a paracrine role in ovarian growth and development.  相似文献   

12.
Ovarian hormone secretion is regulated by gonadotropins, and it has been demonstrated that this response is modulated by nitric oxide (NO). The focus of this study was to determine the effect of chronic NO deficiency on the secretion of ovarian steroids. Female rats were given N-nitro-L-arginine (L-NNA; 0.6 g/L) in their drinking water, and vaginal smears were obtained daily. By 4 wk of treatment, all the rats were in constant estrus or proestrus. At 6-8 wk the animals were killed; the ovaries were removed and incubated in the presence of eCG (1 IU/ml) and hCG (1 IU/ml) and/or S-nitroso-L-acetyl penicillamine (an NO donor, S-NAP; 0.1 mM) for 4 h. Medium was collected at 30-min intervals, and estradiol, progesterone, and androstenedione were measured. Ovaries from proestrous rats served as controls. Ovaries from L-NNA-treated animals had a greater basal and gonadotropin-stimulated release of estradiol but not of androstenedione or progesterone in comparison to ovaries from untreated controls. S-NAP decreased the gonadotropin-stimulated estradiol, progesterone, and androstenedione in ovaries from NO-deficient rats. Steroid secretion in controls was not responsive to S-NAP. We conclude that chronic NO inhibition produces constant estrus due to increased estradiol production and that NO acts to inhibit estradiol and androstenedione production.  相似文献   

13.
We determined 1) whether the previously observed induction of estradiol secretion in bovine granulosa cells cultured in serum-free conditions is associated with an increase in cytochrome P450 aromatase (P450(arom)) mRNA abundance and 2) whether P450(arom) mRNA levels are responsive to FSH in vitro. Granulosa cells from small (2-4-mm) follicles were cultured in serum-free medium. Estradiol secretion increased with time in culture and was correlated with increased P450(arom) mRNA abundance. Progesterone secretion also increased with time in culture, but P450 cholesterol side-chain cleavage (P450(scc)) mRNA abundance did not. FSH stimulated estradiol secretion and P450(arom) mRNA abundance; the effect was quadratic for both estradiol and P450(arom) mRNA. Estradiol secretion and P450(arom) mRNA levels were correlated. FSH stimulated progesterone secretion and P450(scc) mRNA abundance, although the minimum effective dose of FSH was lower for estradiol (0.1 ng/ml) than for progesterone (10 ng/ml) production. Insulin alone stimulated estradiol secretion and P450(arom) mRNA levels but not progesterone or P450(scc) mRNA abundance. We conclude that this cell culture system maintained both estradiol secretion and P450(arom) mRNA abundance responsiveness to FSH and insulin, whereas P450(scc) mRNA abundance and progesterone secretion were responsive to FSH but not insulin.  相似文献   

14.
15.
16.
Adiponectin and its receptors (AdipoR1 and AdipoR2) are novel endocrine systems that act at various levels to control male and female fertility. The aim of this study was to determine whether adiponectin and its receptors gene expression levels differ between dominant follicle (DF) and atretic follicle (AF) and also between oocytes which were stained positively and negatively with brilliant cresyl blue (BCB(+) and BCB(-)). Based on estradiol/progesterone ratio, follicles from ovaries were classified as AFs and DFs. The stages of estrous cycle (follicular or luteal phases) were defined by macroscopic observation of the ovaries and the uterus. Oocytes were stained with BCB for 90 min. The relative expression of adiponectin, AdipoR1 and AdipoR2 mRNA in theca and cumulus cells and oocytes of different follicles were determined by quantitative real time PCR. Adiponectin and its receptors genes were clearly expressed higher (P<0.05) in theca and cumulus cells and oocytes of DFs than those of AFs during the follicular and luteal phases. BCB(+) oocytes showed a higher (P<0.05) expression of adiponectin and its receptors compared with their BCB(-) counterparts. Positive correlation (r>0.725, P<0.001) was observed between adiponectin mRNA level in ovarian cells of DFs and follicular fluid E2 concentration in follicular phase. Adiponectin mRNA abundance in ovarian cells of AFs showed a significant negative correlation with follicular fluid progesterone concentration in follicular and luteal phases (r<-0.731, P<0.001). This work has revealed the novel association of adiponectin and its receptors genes with follicular dominance and oocyte competence, thereby opening several new avenues of research into the mechanisms of dominance and competence in animal and human.  相似文献   

17.
Biotin deficiency and biotin excess have both been found to affect reproduction and cause teratogenic effects. In the reproductive tract, however, the effects of biotin have not been well established yet. We investigated the effects of varying biotin content diets on the oestrus cycle, ovarian morphology, estradiol and progesterone serum levels, and the uterine mRNA abundance of their nuclear receptors, as well as on the activity of the estradiol-degrading group of enzymes cytochrome P450 (CYP) in the liver. Three-week-old female BALB/cAnN Hsd mice were fed a biotin-deficient, a biotin-control, or a biotin-supplemented diet (0, 7.2 or 400 μmol of free biotin/kg diet, respectively) over a period of nine weeks. Striking effects were observed in the biotin-deficient group: mice showed arrested estrous cycle on the day of diestrus and changes in ovary morphology. Estradiol serum concentration increased 49.2% in biotin-deficient mice compared to the control group, while the enzymatic activities of CYP1A2 and CYP2B2 increased (P < 0.05). The mRNA abundance of nuclear estrogen and progesterone receptors decreased in the biotin-deficient mice. In the biotin-supplemented group we found that, in spite of a significant (P < 0.05) decrease in the number of primary and Graafian follicles and in CYP1A2 activities, mice exhibited 105.4% higher serum estradiol concentration than the control group. No changes in the expression of the nuclear receptors were observed. No significant differences were observed in serum progesterone among the groups. Our results indicate that both the deficiency and the excess of biotin have significant effects on the female mouse reproductive system.  相似文献   

18.
19.
20.
This study was undertaken to examine ovarian steroid production during the early stages of hCG-induced ovarian cyst formation in the hypothyroid rat. Rats were placed into two groups with one group made hypothyroid by adding thiouracil to their diet. After 10 days, each group was divided into two subgroups with one subgroup receiving daily injections of hCG for 2 days and the other subgroup receiving saline. On the morning of Day 13, ovaries were removed and incubated for 2 hr. No significant difference in progesterone secretion was observed. However, ovaries from hypothyroid, hCG-treated rats secreted significantly more testosterone and estradiol than ovaries from vehicle-treated, hypothyroid rats and euthyroid, hCG-treated rats. In a second experiment, ovaries from euthyroid and hypothyroid rats treated with hCG were incubated in medium supplemented with 100 nM androstenedione and 0 or 100 ng FSH/ml. FSH failed to affect progesterone, testosterone, and estradiol secretions by ovaries from euthyroid, hCG-treated rats. In contrast, FSH significantly enhanced testosterone and estradiol secretion by ovaries from hypothyroid, hCG-treated rats. These results support the hypothesis that increased levels of testosterone and estradiol secretion have a central role in the induction of polycystic ovaries by hCG in the hypothyroid rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号