首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a previous study we have shown that the addition of growth hormone (GH) during in vitro maturation accelerates nuclear maturation, induces cumulus expansion, and promotes subsequent cleavage and embryonic development. The aim of this study was to investigate whether the promotory effect of GH on subsequent cleavage and blastocyst formation is due to an improved fertilization and whether this effect is caused by an improved cytoplasmic maturation of the oocyte. Therefore, bovine cumulus oocyte complexes (COCs) were cultured for 22 hours in M199 supplemented with 100 ng/ml bovine GH (NIH-GH-B18). Subsequently the COCs were fertilized in vitro. Cultures without GH served as controls. To verify whether the promoted fertilization is caused by the effect of GH on cumulus expansion or oocyte maturation, cumulus cells were removed from the oocytes after in vitro maturation (IVM) and denuded MII oocytes were selected and fertilized in vitro. Both IVM and in vitro fertilization (IVF) were performed at 39°C in a humidified atmosphere with 5% CO2 in air. At 18 hours after the onset of fertilization, the nuclear stage of the oocytes was assessed using 4,6-diamino-2-phenylindole (DAPI) staining. Oocytes with either an metaphase I (MI) or MII nuclear stage and without penetrated sperm head were considered unfertilized; oocytes with two pronuclei, zygotes, and cleaved embryos were considered normally fertilized; and oocytes with more than two pronuclei were considered polyspermic. To evaluate cytoplasmic maturation, the distribution of cortical granules 22 hours after the onset of IVM, and sperm aster formation 8 hours after the onset of fertilization were assessed. In addition, to assess the sperm-binding capacity, COCs were fertilized in vitro, and 1 hour after the onset of fertilization the number of spermatozoa bound to the oocytes was counted. The addition of GH during IVM significantly (P < 0.001) enhanced the proportion of normal fertilized oocytes. Removal of the cumulus cells prior to fertilization and selection of the MII oocytes did not eliminate the positive effect of GH on fertilization. No effect of GH on the sperm-binding capacity of the oocyte was observed. In addition, GH supplementation during IVM significantly (P < 0.001) enhanced the migration of cortical granules and sperm aster formation. It can be concluded that the promotory effect of GH on the developmental competence of the oocyte is due to a higher fertilization rate as a consequence of an improved cytoplasmic maturation. Mol. Reprod. Dev. 49:444–453, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
Early preantral mouse follicles with a diameter of 110-160 microm were cultured in vitro for 10 or 12 days. Mature oocytes were retrieved following hCG, and fertilization was attempted either by in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI). Two-cell and blastocyst formation rates and blastocyst cell numbers were compared between 10-day and 12-day in vitro-matured oocytes versus in vivo-matured oocytes. Uncleaved IVF oocytes were subjected to chromosome analysis. The 2-cell formation rate was significantly improved by ICSI compared with IVF both in 10-day (72.1% versus 56.1%; P = 0.03) and 12-day cultures (74.1% versus 54.5%; P = 0.028). Cytogenetic analysis of uncleaved MII oocytes following IVF showed that about 30% of MII oocytes showed no sign of sperm penetration. The blastocyst formation rate was significantly lower in 12-day versus 10-day cultures, whether fertilization was by IVF (40.7% versus 62.4%, P = 0.016) or by ICSI (32.5% versus 57.1%, P = 0.035). Blastocyst cell numbers from IVF and ICSI 10-day groups were similar and both significantly higher (P < 0.001) than from IVF 12-day cultures. All above expressed values were significantly higher for in vivo-matured oocytes. In conclusion, fertilization of oocytes from in vitro-matured mouse preantral follicles can be optimized with ICSI, giving significantly higher 2-cell formation rates than IVF. Blastocyst formation rate was not influenced by the technique of fertilization but rather by the extent of the in vitro culture period. Best results on preimplantation development of oocytes for in vitro-matured preantral follicles were obtained with ICSI on oocytes from 10-day in vitro cultures.  相似文献   

3.
Cryopreservation of bovine oocytes would be beneficial both for nuclear transfer and for preservation efforts. The overall objective of this study was to evaluate the viability as well as the cryodamage to the nucleus vs. cytoplasm of bovine oocytes following freezing-thawing of oocytes at immature (GV) and matured (MII) stages using in vitro fertilization (IVF), parthenogenetic activation, or nuclear transfer assays. Oocytes were collected from slaughterhouse ovaries. Oocytes at the GV, MII, or MII but enucleated (MIIe) stages were cryopreserved in 5% (v/v) ethylene glycol; 6% (v/v) 1,2-propanediol; and 0.1-M sucrose in PBS supplemented with 20% (v/v) fetal bovine serum. Frozen-thawed oocytes were subjected to IVF, parthenogenetic activation, or nuclear transfer assays. Significantly fewer GV oocytes survived (i.e., remained morphologically intact during freezing-thawing) than did MII oocytes (47% vs. 84%). Subsequent development of the surviving frozen-thawed GV and MII oocytes was not different (58% and 60% cleavage development; 7% and 12% blastocyst development at Day 9, respectively, P > 0.05). Parthenogenetic activation of frozen-thawed oocytes resulted in significantly lower rates of blastocyst development for the GV than the MII oocyte groups (1% vs. 14%). Nuclear transfer with cytoplasts derived from frozen-thawed GV, MII, MIIe, and fresh-MII control oocytes resulted in 5%, 16%, 14%, and 17% blastocyst development, respectively. However, results of preliminary embryo transfer trials showed that fewer pregnancies were produced from cloned embryos derived from frozen oocytes or cytoplasts (9%, n = 11 embryos) than from fresh ones (19%, n = 21 embryos). Transfer of embryos derived by IVF from cryopreserved GV and MII oocytes also resulted in term development of calves. Our results showed that both GV and MII oocytes could survive freezing and were capable of developing into offspring following IVF or nuclear transfer. However, blastocyst development of frozen-thawed oocytes remains poorer than that of fresh oocytes, and our nuclear transfer assay suggests that this poorer development was likely caused by cryodamage to the oocyte cytoplasm as well as to the nucleus. Mol. Reprod. Dev. 51:281–286, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
This study evaluated the effects of exposure and/or vitrification of porcine metaphase II (MII) oocytes on their in vitro viability and ultra-structural changes with two experiments. Experiment 1 examined the effect of vitrified oocytes on microtubule localization, mitochondrial morphology, chromosome organization and the developmental rate in IVF control and vitrified oocytes. Oocytes matured for 44 h were subjected to IVF (IVF control). Oocytes matured for 42 h were exposed to cryoprotectants (CPA control), followed by 2h culture, and subjected to IVF. Oocytes vitrified at 42 h post-maturation were warmed, cultured for 2h, and subjected to IVF (vitrified). Experiment 2 evaluated the effect of oocytes freezing on development of ICSI with and without activation and parthenotes. Fresh and vitrified oocytes were subjected to ICSI with and without electrical activation. Cleavage and blastocyst rates were significantly (P<0.05) lower in vitrified IVF, parthenote and ICSI embryos than those in fresh counterparts. Between ICSI embryos from fresh oocytes and vitrified oocytes, the rates of blastocyst were significantly higher (P<0.05) in activated group than the group without activation. Significant differences (P<0.05) were observed in normal spindle configuration of vitrified (43.5%) compared to control (81.0%) oocytes, but no significant difference was observed between CPA exposed and control groups. In conclusion, porcine oocytes at MII stage are very sensitive to vitrification with altered microtubule localization and mitochondrial organization thus resulting in impaired fertilization and embryo development.  相似文献   

5.
The present study aimed to investigate the effect of vitrification on the expression of fertilization related genes (CD9 and CD81) and DNA methyl transferases (DNMT1 and DNMT3b) in bovine germinal vesicle (GV) oocytes and their resulting metaphase Ⅱ (MⅡ) stages after in vitro maturation culture. GV oocytes were vitrified using the open-pulled straw method; after warming, they were cultured in vitro. The vitrified-warmed GV oocytes and more developed MII oocytes were used to calculate the maturation rates (first polar body extrusion under a stereomicroscopy), and to detect mRNA expression (qRT-PCR). Fresh GV oocytes and their in vitro-derived MII oocytes served as controls. The results showed that both the maturation rate (54.23% vs. 42.93%) and the relative abundance of CD9 mRNA decreased significantly (p < 0.05) in bovine GV oocytes after vitrification, but the expression of CD81 and DNMT3b increased significantly. After in vitro maturation of vitrified GV oocytes, the resulting MII oocytes showed lower (p < 0.05) mRNA expression of genes (CD9, CD81, DNMT1 and DNMT3b) when compared to the control group (MII oocytes). Altogether, vitrification decreased the maturation rate of bovine GV oocytes and changed the expression of fertilization related genes and DNA methyl transferases during in vitro maturation.  相似文献   

6.
We investigated whether the small litter size in the 129 inbred mouse strain results from a reduction in oocyte fertilizability. Sensitivity of the zona pellucida to α-chymotrypsin was examined for oocytes collected at 14 h (shortly after ovulation), 17 h, and 20 h after hCG injection. Passage of spermatozoa through the zona pellucida (using an in vitro fertilization (IVF) technique) and the density of cortical granules were examined for oocytes collected at 14 and 17 h after hCG injection. The capability of the oolemma to fuse with the sperm plasma membrane was also evaluated by IVF using zona-free eggs. The zona pellucida became markedly resistant to the enzyme 17 h after hCG injection. IVF rates significantly decreased at this time. In addition, there was a significant reduction in the density of cortical granules. When zona-free oocytes were inseminated, high fertilization rates were obtained at both 17 and 14 h after hCG injection. These results indicate that accelerated modification of the zona pellucida primarily causes a decreased fertilizability of oocytes in 129 mice, resulting in the low reproductive performance of this strain.  相似文献   

7.
Development of an effective activation protocol is of great importance for studying oocyte competence and embryo cloning. Experiments were designed to examine effects of intracellular calcium elevating agents such as calcium ionophore A23187 (CaA) and ethanol, or protein synthesis and phosphorylation inhibitors such as cycloheximide (CH) and 6-dimethylaminopurine (6-DMAP), or a sequential combination of these agents on both parthenogenetic development and protein patterns of newly matured bovine oocytes. Oocytes were matured for 24 hr in M-199 supplemented with follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol at 39°C in humidified air. They were then activated by various treatments and cultured in KSOM. Protein patterns at 15 hr after treatment were determined on 8–15% gradient SDS-PAGE and silver stained. Results demonstrated that none of the chemical agents—CaA, ethanol, 6-DMAP, or cycloheximide—could effectively induce parthenogenetic development of young bovine oocytes. When compared with the single treatments, sequentially combined treatments of CaA with 6-DMAP or with cycloheximide plus cytochalasin D (CD) significantly increased the rates of cleavage (78–82% versus 3–13%) and blastocyst development (31–40% versus 0%), which were comparable with those of IVF group (80% and 35%, respectively; P > 0.05). Supplementation with CD to the combined CaA and CH treatment improved rates of cleavage and blastocyst development versus without CD supplementation (31% versus 7%; P < 0.05). Fluorescent microscopy revealed that 95% (n = 40) of oocytes treated with CaA plus 6-DMAP had one pronucleus (PN) and one polar body (PB), while 88% (n = 40) in the CaA plus cycloheximide–treated group had one PN and two PBs and 85% (n = 40) in CaA plus cycloheximide and CD group had two PNs and one PB. Treatment by CaA alone resulted in 73% of oocytes (n = 40) arrested at a metaphase stage with two PBs (named as metaphase III or MIII). Protein patterns were similar for chemically activated and in vitro–fertilized (IVF) oocytes in that the 138- and 133-kDa proteins, whose functions are not yet known, were present in the metaphase-stage (MII 24 hr, MII 40 hr, and MIII) oocytes but were absent in PN-stage oocytes regardless of treatment. Therefore, these proteins seem to be metaphase-associated proteins. Taken together, we conclude that optimal parthenogenetic development of newly matured bovine oocytes can be obtained by calcium ionophore treatment followed by incubation in either 6-DMAP or cycloheximide plus cytochalasin D and that the reduction of the 138- and 133-kDa proteins might be necessary for the full activation of bovine oocytes. Mol. Reprod. Dev. 49:298–307, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
9.
《Reproductive biology》2023,23(2):100733
ART is an important treatment method for infertile patients with endometriosis. However, the effects of endometriosis on embryo quality and endometrial receptivity remain unclear. Thus, we aimed to simultaneously investigate the impact of endometriosis and its stage on embryo quality and endometrial receptivity in women undergoing ART. We retrospectively analyzed the data from patients with and without endometriosis who underwent oocyte retrieval and/or high-quality embryos transfer between July 2015 and December 2020, including 1312 IVF cycles and 608 IVF or frozen-thawed embryo transfer (FET) cycles, respectively. The endometriosis group had a lower percentage of good cleavage-stage embryos and fertilization rates than those in the control group (p = 0.038 and 0.008, respectively). The number of retrieved oocytes, MII oocytes, cleavage, blastocysts, and blastulation rates was comparable between two groups. We found no significant difference in clinical pregnancy, implantation, live birth, miscarriage, or multiple pregnancy rates between the two groups among patients who transferred high-quality embryos. Stratification analysis showed that patients with stage III-IV endometriosis had fewer retrieved oocytes than those with stage I-II endometriosis (p = 0.012) and marginally fewer retrieved oocytes than the control group (p = 0.051). The stage I-II group had the lowest percentage of good cleavage-stage embryos, which was significantly lower than that of the control group (p = 0.043). In FET cycles, patients with stage III-IV endometriosis had a higher miscarriage rate than those in the control group (p = 0.023). Our results suggest that endometriosis does not alter endometrial receptivity but affects embryo quality, oocyte fertilization ability, and ovarian response.  相似文献   

10.
A total of 3427 goat oocytes were used in this study to identify possible differences during in vitro embryo production from slaughterhouse or laparoscopic ovum pick up (LOPU) oocytes. In experiment 1, one complex, one semi-defined, and one simplified IVM media were compared using slaughterhouse oocytes. In experiment 2, we checked the effect of oocyte origin (slaughterhouse or LOPU) on the kinetics of maturation (18 vs. 22 vs. 26 hours) when submitted to semi-defined or simplified media. In experiment 3, we determined the differences in embryo development between slaughterhouse and LOPU oocytes when submitted to both media and then to IVF or parthenogenetic activation (PA). Embryos from all groups were vitrified, and their viability evaluated in vitro after thawing. In experiment 1, no difference (P > 0.05) was detected among treatments for maturation rate (metaphase II [MII]; 88% on average), cleavage (72%), blastocyst from the initial number of cumulus oocyte complexes (46%) or from the cleaved ones (63%), hatching rate (69%), and the total number of blastomeres (187). In experiment 2, there was no difference of MII rate between slaughterhouse oocytes cultured for 18 or 22 hours, whereas the MII rate increased significantly (P < 0.05) between 18 and 22 hours for LOPU oocytes in the simplified medium. Moreover, slaughterhouse oocytes cultured in simplified medium matured significantly faster than LOPU oocytes at 18 and 22 hours (P < 0.05). In experiment 3, cleavage rate was significantly greater (P < 0.001) in all four groups of embryos produced by PA than IVF. Interestingly, PA reached similar rates for slaughterhouse oocytes cultured in both media, but improved (P < 0.05) the cleavage rate of LOPU oocytes. Slaughterhouse oocytes had acceptable cleavage rate after IVF (∼67%), whereas LOPU oocytes displayed a lower one (∼38%), in contrast to cleavage after PA. The percentage of blastocysts in relation to cleaved embryos was not affected by the origin of the oocytes (P > 0.05). Therefore, slaughterhouse oocytes developed a greater proportion of blastocysts than LOPU ones, expressed as the percentage of total cumulus oocyte complexes entering to IVM. Vitrified-thawed blastocysts presented similar survival and hatching rates between the oocyte origin, media, or method of activation. In conclusion, slaughterhouse and LOPU derived oocytes may have different IVM kinetics and require different IVM and IVF conditions. Although the IVM and IVF systems still need improvements to enhance embryo yield, the in vitro development step is able to generate good quality embryos from LOPU-derived oocytes.  相似文献   

11.
12.
The objective was to evaluate the developmental competence of immature and matured ovine oocytes after removing, maintaining or adding cumulus cells (CC) associated to vitrification by Cryotop method. Three experiments were performed involving 3,144 oocytes. In Experiment 1, CC were removed from immature, matured or fertilized oocytes subjected to in vitro embryo production. In Experiment 2, oocytes were vitrified either in MI or MII stage with or without CC, while a control group with CC remained unvitrified. In Experiment 3, oocytes partially denuded from CC were vitrified either in MI or MII stage, and a co-culture of fresh CC was added or not soon after warming to complete in vitro maturation (IVM) and in vitro fertilization (IVF), or IVF, respectively, while a control group remained unvitrified. In Experiment 1, the cleavage rate, development rate on Day 6 and blastocyst rate on Day 8 were improved when CC were maintained until the end of IVF (P < 0.05). In Experiment 2, vitrification of oocytes with enclosed CC showed a tendency to increase cleavage (P = 0.06) and improved blastocyst rate (P < 0.05). In Experiment 3, adding CC as co-culture after vitrification-warming tended to improve cleavage rate (P = 0.06) and increased hatching rate (P < 0.05). Regarding oocyte stage, vitrification of in vitro matured oocytes resulted in greater developmental competence than immature stages (P < 0.05). In conclusion, CC seems to have a relevant role for in vitro embryo development in either fresh or vitrified oocytes.  相似文献   

13.
目的研究骨髓间充质干细胞(mesenchymal stem cell,MSC)条件培养液对小鼠MII卵母细胞的孤雌激活作用及胚胎发育能力。方法分离、培养小鼠MSC,获取MSC条件培养液(conditioned medium of MSC,CM)。通过促排技术获取小鼠MII卵母细胞,分别采用CM、7%乙醇、IVF方法激活,体视显微镜下观察原核形成及囊胚形成率。在CM激活后不同时间点,利用α/β-tubulin抗体标记纺锤体,激光共聚焦显微镜下观察有/无细胞松弛素B(CB)存在时纺锤体的运动变化。结果 CM可以激活小鼠MII卵母细胞,最佳刺激时间为40min,激活率达到95.4%,囊胚形成率为62%,与7%乙醇组比较无显著差异,但明显低于IVF组(95.4%vs.100%;62%vs.88%,P0.01)。CB可以抑制纺锤体的旋转,阻止第二极体的排出,促进二倍体孤雌胚形成,提高囊胚形成率(62%vs.9%,P0.01)。结论 CM能有效激活小鼠MII卵母细胞并促进孤雌发育。  相似文献   

14.
Several contemporary micromanipulation techniques, such as sperm microinjection, nuclear transfer, and gene transfer by pronuclear injection, require removal of cumulus cells from oocytes or zygotes at various stages. In humans, the cumulus cells are often removed after 15–18 hr of sperm-oocyte coincubation to assist the identification of the fertilization status. This study was designed to evaluate the function of cumulus cells during oocyte maturation, fertilization, and in vitro development in cattle. Cumulus cells were removed before and after maturation and after fertilization for 0,7,20, and 48 hr. The cumulus-free oocytes or embryos were cultured either alone or on cumulus cell monolayers prepared on the day of maturation culture. Percentages of oocyte maturation, fertilization, and development to cleavage, morula, and blastocyst stages and to expanding or hatched blastocysts were recorded for statistical analysis by categorical data modeling (CATMOD) procedures. Cumulus cells removed before maturation significantly reduced the rate of oocyte maturation (4–26% vs. 93–96%), fertilization (0–9% vs. 91–92%), and in vitro development at all stages evaluated. Cumulus cells removed immediately prior to in vitro fertilization (IVF) or 7 hr after IVF reduced the rates of fertilization (58–60% and 71%, respectively, vs. 91–92% for controls), cleavage development (40–47% and 53–54% vs. 74–78% for controls), and morula plus blastocyst development (15% and 24% vs. 45%, P < 0.05). Cumulus cell co-culture started at various stages had no effect on fertilization and cleavage development but significantly improved rates of embryo development to morula or blastocyst stages (P < 0.05). Cumulus cell removal at 20 hr after IVF resulted in similar development to controls (P > 0.05) at all stages tested in this study. The intact state of surrounding cumulus cells of oocytes or embryos appears to be beneficial before or shortly after insemination (at or before 7 hr of IVF) but not essential at 20 hr after IVF. © 1995 Wiley-Liss, Inc.  相似文献   

15.
This study was designed to investigate the effect of follicle-stimulating hormone (FSH) on nuclear maturation, fertilization, and early embryonic development of in-vitro-matured bovine oocytes and to find out whether this effect is exerted through a cyclic adenosine monophosphate (cAMP) signal transduction pathway. In addition the effect of the combination of FSH and growth hormone (GH) on subsequent cleavage and embryo development was studied. Therefore cumulus oocyte complexes were cultured in the presence of FSH (0.05 IU/ml) and the nuclear stage of the oocytes was assessed using 4,6-diamino-2-phenyl-indole (DAPI) staining either after 16, 20, or 24 hr of in vitro maturation or 18 hr after the onset of fertilization. To assess the effect of FSH and the combination of FSH and GH added during in vitro maturation on the developmental capacity of the oocytes, cumulus oocyte complexes were incubated in the presence of either FSH (0.05 IU/ml) or FSH (0.05 IU/ml) plus GH (100 ng/ml) for 22 hr, followed by in vitro fertilization and in vitro embryo culture. To investigate whether FSH-induced oocyte maturation is exerted through the cAMP pathway, cumulus oocyte complexes were cultured in M199 supplemented with FSH (0.05 IU/ml) and H-89 (10 μM), a specific inhibitor of cAMP-dependent protein kinase A. After 16 hr of culture, the proportion of oocytes in metaphase II (MII) stage was determined. Cultures with GH and without FSH and H-89 served as controls. The percentage of MII oocytes at 16 hr of incubation was significantly lower (P < 0.001) in the presence of FSH than in the control group, while the number of MII oocytes beyond 20 hr did not differ from the control group. That points to a transient inhibition of nuclear maturation by FSH. Opposite to FSH, addition of GH during in vitro maturation significantly enhanced the number of MII oocytes after 16 hr of culture (P < 0.001), which points to the acceleration of nuclear maturation by GH. Addition of FSH during in vitro maturation significantly enhanced the proportion of normal fertilized oocytes, cleaved embryos and blastocysts (P < 0.001). Similarly, addition of GH during in vitro maturation significantly enhanced the number of cleaved embryos and blastocysts (P < 0.001); however, in vitro maturation in the presence of GH and FSH did not result in an extra enhancement of the embryo development. Both the inhibition of nuclear maturation by FSH and its acceleration by GH was completely abolished by H-89. In conclusion, in vitro maturation of bovine oocytes in the presence of FSH retards nuclear maturation via a cAMP-mediated pathway, while it enhances fertilizability and developmental ability of the oocytes. Supplementation of GH and FSH during in vitro maturation did not result in an extra increase in the number of blastocysts following in vitro fertilization and in vitro embryo culture. Mol. Reprod. Dev. 51:339–345, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
As an assisted reproduction technology, vitrification has been widely used for oocyte and embryo cryopreservation. Many studies have indicated that vitrification affects ultrastructure, gene expression, and epigenetic status. However, it is still controversial whether oocyte vitrification could induce DNA damage in metaphase II (MII) oocytes and the resulting early embryos. This study determined whether mouse oocytes vitrification induce DNA damage in MII oocytes and the resulting preimplantation embryos, and causes for vitrification‐induced DNA damage. The effects of oocyte vitrification on reactive oxygen species (ROS) levels, γ‐H2AX accumulation, apoptosis, early embryonic development, and the expression of DNA damage‐related genes in early embryos derived by in vitro fertilization were examined. The results indicated that vitrification significantly increased the number of γ‐H2AX foci in zygotes and two‐cell embryos. Trp53bp1 was upregulated in zygotes, two‐cell embryos and four‐cell embryos in the vitrified group, and Brca1 was increased in two‐cell embryos after vitrification. Vitrification also increased the ROS levels in MII oocytes, zygotes, and two‐cell embryos and the apoptotic rate in blastocysts. Resveratrol (3,5,4′‐trihydroxystilbene) treatment decreased the ROS levels and the accumulation of γ‐H2AX foci in zygotes and two‐cell embryos and the apoptotic rate in blastocysts after vitrification. Overall, vitrification‐induced abnormal ROS generation, γ‐H2AX accumulation, an increase in the apoptotic rate and the disruption of early embryonic development. Resveratrol treatment could decrease ROS levels, γ‐H2AX accumulation, and the apoptotic rate and improve early embryonic development. Vitrification‐associated γ‐H2AX accumulation is at least partially due to abnormal ROS generation.  相似文献   

17.
Intracellular free calcium ([Ca2+]i) is essential for oocyte maturation and early embryonic development. Here, we investigated the role of [Ca2+]i in oocytes from cumulus‐oocyte complexes (COCs) with respect to maturation and early embryonic development, using the calcium‐buffering agent BAPTA‐AM (1,2‐bis[2‐aminophenoxy]ethane‐N,N,N′,N′‐tetraacetic acid tetrakis [acetoxymethyl ester]). COCs were graded based on compactness of the cumulus mass and appearance of the cytoplasm, with Grade 1 indicating higher quality and developmental potential than Grade 3. Results showed that: (i) [Ca2+]i in metaphase‐II (MII) oocytes from Grade‐3 COCs was significantly higher than those from Grade‐1 COCs, and was significantly reduced by BAPTA‐AM; (ii) nuclear maturation of oocytes from Grade‐3 COCs treated with BAPTA‐AM was enhanced compared to untreated COCs; (iii) protein abundance of Cyclin B and oocyte‐specific Histone 1 (H1FOO) was improved in MII oocytes from Grade‐3 COCs treated with BAPTA‐AM; (iv) Ca2+ transients were triggered in each group upon fertilization, and the amplitude of [Ca2+]i oscillations increased in the Grade‐3 group upon treatment with BAPTA‐AM, with the magnitude approaching that of the Grade‐1 group; and (v) cleavage rates and blastocyst‐formation rates were improved in the Grade‐3 group treated with BAPTA‐AM compared to untreated controls following in vitro fertilization and parthenogenetic activation. Therefore, BAPTA‐AM dramatically improved oocyte maturation, oocyte quality, and embryonic development of oocytes from Grade‐3 COCs.  相似文献   

18.
Various procedures have been reported for successful in vitro maturation and in vitro fertilization (IVM/IVF) of bovine follicular oocytes. Direct comparisons of these different recommended procedures have been rare. In this research, involving a total of 5,128 oocytes, a series of experiments were conducted to compare oocyte maturation, fertilization, and development in vitro with 2 maturation systems (with or without added hormones) and 3 types of sperm treatment procedures. Oocytes were collected from ovarian antral follicles (2–7 mm in diameter) within 3 hr after slaughter of cows or heifers. Those with intact or at least 4 layers of cumulus cells were selected for IVM/IVF. Oocytes were incubated for 22 hr in either Medium 199 with 7.5% fetal calf serum (M199 + FCS) alone or M199 + FCS with added hormones (M199 + FCS + H; oFSH 0.5 μg/ml, oLH 5.0 μg/ml, and E2 1.0 μg/ml) at 39°C in 5% CO2 and 95% air. For IVF, frozen-thawed sperm were treated with either 0.1 μM calcium ionophore A23187 (A23187) for 1 min, or 10 or 100 μg/ml heparin (H10 or H100) for 15 min. Our results demonstrated the following: (1) both M199 + FCS and M199 + FCS + H supported maturation development to the metaphase II stage (90–95%, P > 0.05); (2) when oocytes were matured in M199 + FCS without added hormones, A23187 sperm treatment was superior to H10 or H100 treatment for fertilization and blastocyst development of the inseminated oocytes (P < 0.05); (3) when oocytes were matured in M199 + FCS + H, A23187 treated sperm again produced a higher fertilization rate than the H10 group (P < 0.05), but the development to the blastocyst stage was similar among all 3 sperm treatment groups (P > 0.05); (4) direct comparison of the 2 maturation systems with A23187 treated sperm resulted in no difference in all criteria measured; however, (5) when compared retrospectively, beneficial effects of added hormones are evident for blastocyst development (but not for fertilization) when sperm were treated with heparin procedures. © 1993 Wiley-Liss, Inc.  相似文献   

19.
It is well known that IVM oocytes show a decreased potential for fertility and development compared with in vivo–matured oocytes. In this study, we added reduced glutathione (GSH) to the fertilization medium during IVF to investigate its effect on the fertility and early embryo development of IVM oocytes. The fertilization rate for IVM oocytes and fresh sperm increased with the addition of GSH (0, 1.0, and 2.0 mM: 51%, 76%, and 70%). Moreover, the addition of GSH to the fertilization medium also improved the developmental potential compared with the control sample (0 mM). In addition, we performed IVF using IVM oocytes and frozen/thawed sperm that had been cryopreserved in a mouse bank. Results indicated a marked increase in the fertilization rate when 1.0 mM GSH was added to the fertilization medium compared with when no GSM was used (0.0 mM GSH: 2% (3/195); 1.0 mM GSH: 33% (156/468)). Furthermore, the fertilization rate improved dramatically via zona drilling using laser equipment (52%: 267/516), whereas normal offspring were obtainsed after transferring embryos created via IVF using IVM oocytes and frozen/thawed sperm. This is the first report in which offspring have been obtained via IVF using IVM oocytes and frozen/thawed sperm.  相似文献   

20.

Background  

While mammalian cortical granules are important in fertilization, their biochemical composition and functions are not fully understood. We previously showed that the ABL2 antibody, made against zona free mouse blastocysts, binds to a 75-kDa cortical granule protein (p75) present in a subpopulation of mouse cortical granules. The purpose of this study was to identify and characterize p75, examine its distribution in unfertilized oocytes and preimplantation embryos, and investigate its biological role in fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号