首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Over the last decade, Na‐ion batteries have been extensively studied as low‐cost alternatives to Li‐ion batteries for large‐scale grid storage applications; however, the development of high‐energy positive electrodes remains a major challenge. Materials with a polyanionic framework, such as Na superionic conductor (NASICON)‐structured cathodes with formula NaxM2(PO4)3, have attracted considerable attention because of their stable 3D crystal structure and high operating potential. Herein, a novel NASICON‐type compound, Na4MnCr(PO4)3, is reported as a promising cathode material for Na‐ion batteries that deliver a high specific capacity of 130 mAh g?1 during discharge utilizing high‐voltage Mn2+/3+ (3.5 V), Mn3+/4+ (4.0 V), and Cr3+/4+ (4.35 V) transition metal redox. In addition, Na4MnCr(PO4)3 exhibits a high rate capability (97 mAh g?1 at 5 C) and excellent all‐temperature performance. In situ X‐ray diffraction and synchrotron X‐ray diffraction analyses reveal reversible structural evolution for both charge and discharge.  相似文献   

2.
Sodium superionic conductor (NASICON) cathodes are attractive for Na‐ion battery applications as they exhibit both high structural stability and high sodium ion mobility. Herein, a comprehensive study is presented on the structural and electrochemical properties of the NASICON‐Na3+yV2?yMny(PO4)3 (0 ≤ y ≤ 1) series. A phase miscibility gap is observed at y = 0.5, defining two solid solution domains with low and high Mn contents. Although, members of each of these domains Na3.25V1.75Mn0.25(PO4)3 and Na3.75V1.25Mn0.75(PO4)3 reversibly exchange sodium ions with high structural integrity, the activity of the Mn3+/Mn2+ redox couple is found to be absent and present in the former and latter candidate, respectively. Galvanostatic cycling and rate studies reveal higher capacity and rate capability for the Na3.75V1.25Mn0.75(PO4)3 cathode (100 and 89 mA h g?1 at 1C and 5C rate, respectively) in the Na3+yV2?yMny(PO4)3 series. Such a remarkable performance is attributed to optimum bottleneck size (≈5 Å2) and modulated V‐ and Mn‐redox centers as deduced from Rietveld analysis and DFT calculations, respectively. This study shows how important it is to manipulate electronic and crystal structures to achieve high‐performance NASICON cathodes.  相似文献   

3.
Recently, anionic‐redox‐based materials have shown promising electrochemical performance as cathode materials for sodium‐ion batteries. However, one of the limiting factors in the development of oxygen‐redox‐based electrodes is their low operating voltage. In this study, the operating voltage of oxygen‐redox‐based electrodes is raised by incorporating nickel into P2‐type Na2/3[Zn0.3Mn0.7]O2 in such a way that the zinc is partially substituted by nickel. As designed, the resulting P2‐type Na2/3[(Ni0.5Zn0.5)0.3Mn0.7]O2 electrode exhibits an average operating voltage of 3.5 V and retains 95% of its initial capacity after 200 cycles in the voltage range of 2.3–4.6 V at 0.1C (26 mA g?1). Operando X‐ray diffraction analysis reveals the reversible phase transition: P2 to OP4 phase on charge and recovery to the P2 phase on discharge. Moreover, ex situ X‐ray absorption near edge structure and X‐ray photoelectron spectroscopy studies reveal that the capacity is generated by the combination of Ni2+/Ni4+ and O2?/O1? redox pairs, which is supported by first‐principles calculations. It is thought that this kind of high voltage redox species combined with oxygen redox could be an interesting approach to further increase energy density of cathode materials for not only sodium‐based rechargeable batteries, but other alkali‐ion battery systems.  相似文献   

4.
Hard carbon (HC) is the state‐of‐the‐art anode material for sodium‐ion batteries (SIBs). However, its performance has been plagued by the limited initial Coulombic efficiency (ICE) and mediocre rate performance. Here, experimental and theoretical studies are combined to demonstrate the application of lithium‐pretreated HC (LPHC) as high‐performance anode materials for SIBs by manipulating the solid electrolyte interphase in tetraglyme (TEGDME)‐based electrolyte. The LPHC in TEGDME can 1) deliver > 92% ICE and ≈220 mAh g?1 specific capacity, twice of the capacity (≈100 mAh g?1) in carbonate electrolyte; 2) achieve > 85% capacity retention over 1000 cycles at 1000 mA g?1 current density (4 C rate, 1 C = 250 mA g?1) with a specific capacity of ≈150 mAh g?1, ≈15 times of the capacity (10 mAh g?1) in carbonate. The full cell of Na3V2(PO4)3‐LPHC in TEGDME demonstrated close to theoretical specific capacity of ≈98 mAh g?1 based on Na3V2(PO4)3 cathode, ≈2.5 times of the value (≈40 mAh g?1) with nontreated HC. This work provides new perception on the anode development for SIBs.  相似文献   

5.
To accommodate the decreasing lithium resource and ensure continuous development of energy storage industry, sodium‐based batteries are widely studied to inherit the next generation of energy storage devices. In this work, a novel Na super ionic conductor type KTi2(PO4)3/carbon nanocomposite is designed and fabricated as sodium storage electrode materials, which exhibits considerable reversible capacity (104 mAh g?1 under the rate of 1 C with flat voltage plateaus at ≈2.1 V), high‐rate cycling stability (74.2% capacity retention after 5000 cycles at 20 C), and ultrahigh rate capability (76 mAh g?1 at 100 C) in sodium ion batteries. Besides, the maximum ability for sodium storage is deeply excavated by further investigations about different voltage windows in half and full sodium ion cells. Meanwhile, as cathode material in sodium‐magnesium hybrid batteries, the KTi2(PO4)3/carbon nanocomposite also displays good electrochemical performances (63 mAh g?1 at the 230th cycle under the voltage window of 1.0–1.9 V). The results demonstrate that the KTi2(PO4)3/carbon nanocomposite is a promising electrode material for sodium ion storage, and lay theoretical foundations for the development of new type of batteries.  相似文献   

6.
Herein, P′2‐type Na0.67[Ni0.1Fe0.1Mn0.8]O2 is introduced as a promising new cathode material for sodium‐ion batteries (SIBs) that exhibits remarkable structural stability during repetitive Na+ de/intercalation. The O? Ni? O? Mn? O? Fe? O bond in the octahedra of transition‐metal layers is used to suppress the elongation of the Mn? O bond and to improve the electrochemical activity, leading to the highly reversible Na storage mechanism. A high discharge capacity of ≈220 mAh g?1 (≈605 Wh kg?1) is delivered at 0.05 C (13 mAg?1) with a high reversible capacity of ≈140 mAh g?1 at 3 C and excellent capacity retention of 80% over 200 cycles. This performance is associated with the reversible P′2–OP4 phase transition and small volume change upon charge and discharge (≈3%). The nature of the sodium storage mechanism in a full cell paired with a hard carbon anode reveals an unexpectedly high energy density of ≈542 Wh kg?1 at 0.2 C and good capacity retention of ≈81% for 500 cycles at 1 C (260 mAg?1).  相似文献   

7.
Sodium (Na) super ion conductor structured Na3V2(PO4)3 (NVP) is extensively explored as cathode material for sodium‐ion batteries (SIBs) due to its large interstitial channels for Na+ migration. The synthesis of 3D graphene‐like structure coated on NVP nanoflakes arrays via a one‐pot, solid‐state reaction in molten hydrocarbon is reported. The NVP nanoflakes are uniformly coated by the in situ generated 3D graphene‐like layers with the thickness of 3 nm. As a cathode material, graphene covered NVP nanoflakes exhibit excellent electrochemical performances, including close to theoretical reversible capacity (115.2 mA h g?1 at 1 C), superior rate capability (75.9 mA h g?1 at 200 C), and excellent cyclic stability (62.5% of capacity retention over 30000 cycles at 50 C). Furthermore, the 3D graphene‐like cages after removing NVP also serve as a good anode material and deliver a specific capacity of 242.5 mA h g?1 at 0.1 A g?1. The full SIB using these two cathode and anode materials delivers a high specific capacity (109.2 mA h g?1 at 0.1 A g?1) and good cycling stability (77.1% capacity retention over 200 cycles at 0.1 A g?1).  相似文献   

8.
Solid‐state sodium batteries (SSSBs) are promising electrochemical energy storage devices due to their high energy density, high safety, and abundant resource of sodium. However, low conductivity of solid electrolyte as well as high interfacial resistance between electrolyte and electrodes are two main challenges for practical application. To address these issues, pure phase Na3Zr2Si2PO12 (NZSP) materials with Ca2+ substitution for Zr4+ are synthesized by a sol‐gel method. It shows a high ionic conductivity of more than 10?3 S cm?1 at 25 °C. Moreover, a robust SSSB is developed by integrating sodium metal anodes into NZSP‐type monolithic architecture, forming a 3D electronic and ionic conducting network. The interfacial resistance is remarkably reduced and the monolithic symmetric cell displays stable sodium platting/striping cycles with low polarization for over 600 h. Furthermore, by combining sodium metal anode with Na3V2(PO4)3 cathode, an SSSB is demonstrated with high rate capability and excellent cyclability. After 450 cycles, the capacity of the cell is still kept at 94.9 mAh g?1 at 1 C. This unique design of monolithic electrolyte architecture provides a promising strategy toward realizing high‐performance SSSBs.  相似文献   

9.
Na3V2(PO4)3 (NVP) is regarded as a promising cathode for advanced sodium‐ion batteries (SIBs) due to its high theoretical capacity and stable sodium (Na) super ion conductor (NASICON) structure. However, strongly impeded by its low electronic conductivity, the general NVP delivers undesirable rate capacity and fails to meet the demands for quick charge. Herein, a novel and facile synthesis of layer‐by‐layer NVP@reduced graphene oxide (rGO) nanocomposite is presented through modifying the surface charge of NVP gel precursor. The well‐designed layered NVP@rGO with confined NVP nanocrystal in between rGO layers offers high electronic and ionic conductivity as well as stable structure. The NVP@rGO nanocomposite with merely ≈3.0 wt% rGO and 0.5 wt% amorphous carbon, yet exhibits extraordinary electrochemical performance: a high capacity (118 mA h g?1 at 0.5 C attaining the theoretical value), a superior rate capability (73 mA h g?1 at 100 C and even up to 41 mA h g?1 at 200 C), ultralong cyclability (70.0% capacity retention after 15 000 cycles at 50 C), and stable cycling performance and excellent rate capability at both low and high operating temperatures. The proposed method and designed layer‐by‐layer active nanocrystal@rGO strategy provide a new avenue to create nanostructures for advanced energy storage applications.  相似文献   

10.
Narrow electrochemical stability window (1.23 V) of aqueous electrolytes is always considered the key obstacle preventing aqueous sodium‐ion chemistry of practical energy density and cycle life. The sodium‐ion water‐in‐salt electrolyte (NaWiSE) eliminates this barrier by offering a 2.5 V window through suppressing hydrogen evolution on anode with the formation of a Na+‐conducting solid‐electrolyte interphase (SEI) and reducing the overall electrochemical activity of water on cathode. A full aqueous Na‐ion battery constructed on Na0.66[Mn0.66Ti0.34]O2 as cathode and NaTi2(PO4)3 as anode exhibits superior performance at both low and high rates, as exemplified by extraordinarily high Coulombic efficiency (>99.2%) at a low rate (0.2 C) for >350 cycles, and excellent cycling stability with negligible capacity losses (0.006% per cycle) at a high rate (1 C) for >1200 cycles. Molecular modeling reveals some key differences between Li‐ion and Na‐ion WiSE, and identifies a more pronounced ion aggregation with frequent contacts between the sodium cation and fluorine of anion in the latter as one main factor responsible for the formation of a dense SEI at lower salt concentration than its Li cousin.  相似文献   

11.
Aqueous sodium‐ion batteries have shown desired properties of high safety characteristics and low‐cost for large‐scale energy storage applications such as smart grid, because of the abundant sodium resources as well as the inherently safer aqueous electrolytes. Among various Na insertion electrode materials, tunnel‐type Na0.44MnO2 has been widely investigated as a positive electrode for aqueous sodium‐ion batteries. However, the low achievable capacity hinders its practical applications. Here, a novel sodium rich tunnel‐type positive material with a nominal composition of Na0.66[Mn0.66Ti0.34]O2 is reported. The tunnel‐type structure of Na0.44MnO2 obtained for this compound is confirmed by X‐ray diffraction and atomic‐scale spherical aberration‐corrected scanning transmission electron microscopy/electron energy‐loss spectrum. When cycled as positive electrode in full cells using NaTi2(PO4)3/C as negative electrode in 1 m Na2SO4 aqueous electrolyte, this material shows the highest capacity of 76 mAh g?1 among the Na insertion oxides with an average operating voltage of 1.2 V at a current rate of 2 C. These results demonstrate that Na0.66[Mn0.66Ti0.34]O2 is a promising positive electrode material for rechargeable aqueous sodium‐ion batteries.  相似文献   

12.
All solid‐state sodium batteries (ASSBs) have attracted considerable attention due to their enhanced safety, long lifespan, and high energy density. However, several challenges have plagued the development of ASSBs, especially the relatively low ionic conductivity of solid‐state electrolytes (SSEs), large interfacial resistance, and low stability/compatibility between SSEs and electrodes. Here, a high‐performance all solid‐state sodium battery (NVP@C|PEGDMA‐NaFSI‐SPE|Na) is designed by employing carbon coated Na3V2(PO4)3 composite nanosheets (NVP@C) as the cathode, solvent‐free solid polymer electrolyte (PEGDMA‐NaFSI‐SPE) as the electrolyte and metallic sodium as the anode. The integrated electrolyte and cathode system prepared by the in situ polymerization process exhibits high ionic conductivity (≈10?4 S cm?1 at room temperature) and an outstanding electrolyte/electrode interface. Benefiting from these merits, the soft‐pack ASSB (NVP@C|PEGDMA‐NaFSI‐SPE|Na) delivers excellent cycling life over 740 cycles (capacity decay of only 0.007% per cycle) and maintains 95% of the initial reversible capacity with almost no self‐discharge even after resting for 3 months. Moreover, the bendable ASSB exhibits a high capacity of 106 mAh g?1 (corresponds to energy density of ≈355 Wh kg?1) at 0.5 C despite undergoing repeated bending for 535 cycles. This work offers a new strategy to fabricate high‐performance flexible ASSBs with a long lifespan and excellent flexibility.  相似文献   

13.
Na3V2(PO4)3 has attracted great attention due to its high energy density and stable structure. However, in order to boost its application, the discharge potential of 3.3–3.4 V (vs Na+/Na) still needs to be improved and substitution of vanadium with other lower cost and earth‐abundant active redox elements is imperative. Therefore, the Na superionic conductor (NASICON)‐structured Na4MnV(PO4)3 seems to be more attractive due to its lower toxicity and higher voltage platform resulting from the partial substitution of V with Mn. However, Na4MnV(PO4)3 still suffers from poor electronic conductivity, leading to unsatisfactory capacity delivering and poor high‐rate capability. In this work, a graphene aerogel–supported in situ carbon–coated Na4MnV(PO4)3 material is synthesized through a feasible solution‐route method. The elaborately designed Na4MnV(PO4)3 can reach ≈380 Wh kg?1 at 0.5 C (1 C = 110 mAh g?1) and realize superior high‐rate capability evenat 50 C (60.1 mAh g?1) with a long cycle‐life of 4000 cycles at 20 C. This impressive progress should be ascribed to the multifunctional 3D carbon framework and the distinctive structure of trigonal Na4MnV(PO4)3, which are deeply investigated by both experiments and calculations.  相似文献   

14.
A high‐rate of oxygen redox assisted by cobalt in layered sodium‐based compounds is achieved. The rationally designed Na0.6[Mg0.2Mn0.6Co0.2]O2 exhibits outstanding electrode performance, delivering a discharge capacity of 214 mAh g?1 (26 mA g?1) with capacity retention of 87% after 100 cycles. High rate performance is also achieved at 7C (1.82 A g?1) with a capacity of 107 mAh g?1. Surprisingly, the Na0.6[Mg0.2Mn0.6Co0.2]O2 compound is able to deliver capacity for 1000 cycles at 5C (at 1.3 A g?1), retaining 72% of its initial capacity of 108 mAh g?1. X‐ray absorption spectroscopy analysis of the O K‐edge indicates the oxygen‐redox species (O2?/1?) is active during cycling. First‐principles calculations show that the addition of Co reduces the bandgap energy from ≈2.65 to ≈0.61 eV and that overlapping of the Co 3d and O 2p orbitals facilitates facile electron transfer, enabling the long‐term reversibility of the oxygen redox, even at high rates. To the best of the authors' knowledge, this is the first report on high‐rate oxygen redox in sodium‐based cathode materials, and it is believed that the findings will open a new pathway for the use of oxygen‐redox‐based materials for sodium‐ion batteries.  相似文献   

15.
Sodium‐ion batteries (SIBs) that operate in a wide temperature range are in high demand for practical large‐scale electric energy storage. Herein, a novel full SIB is composed of a bulk Bi anode, a Na3V2(PO4)3/carbon nanotubes composite (NVP‐CNTs) cathode and a NaPF6‐diglyme electrolyte. The Bi anode gradually evolves into a porous network in the ether‐based electrolyte during initial cycles, and in the NVP‐CNTs cathode the NVP is cross linked by CNTs to show large exchange current density. These unique features merit the full SIB of Bi//NVP‐CNTs with high Na+ diffusion coefficient and low reaction activation energy, and hence fast Na+ transport and facile redox reaction kinetics. The resultant full SIB presents high power density of 2354.6 W kg?1 and energy density of 150 Wh kg?1 and superior cycling stability in a wide temperature range from ?15 to 45 °C. This will shed light on battery design, and promote their development for practical applications in various weather conditions.  相似文献   

16.
The search for earth‐abundant and high‐performance electrode materials for sodium‐ion batteries represents an important challenge to current battery research. 2D transition metal dichalcogenides, particularly MoS2, have attracted increasing attention recently, but few of them so far have been able to meet expectations. In this study, it is demonstrated that another phase of molybdenum sulfide—amorphous chain‐like MoS3—can be a better choice as the anode material of sodium‐ion batteries. Highly compact MoS3 particles infiltrated with carbon nanotubes are prepared via the facile acid precipitation method in ethylene glycol. Compared to crystalline MoS2, the resultant amorphous MoS3 not only exhibits impressive gravimetric performance—featuring excellent specific capacity (≈615 mA h g?1), rate capability (235 mA h g?1 at 20 A g?1), and cycling stability but also shows exceptional volumetric capacity of ≈1000 mA h cm?3 and an areal capacity of >6.0 mA h cm?2 at very high areal loadings of active materials (up to 12 mg cm?2). The experimental results are supported by density functional theory simulations showing that the 1D chains of MoS3 can facilitate the adsorption and diffusion of Na+ ions. At last, it is demonstrated that the MoS3 anode can be paired with an Na3V2(PO4)3 cathode to afford full cells with great capacity and cycling performance.  相似文献   

17.
Rationally designed P2‐K0.75[Ni1/3Mn2/3]O2 is introduced as a novel cathode material for potassium‐ion batteries (KIBs). P2‐K0.75[Ni1/3Mn2/3]O2 cathode material designed through electrochemical ion‐exchange from P2‐Na2/3[Ni1/3Mn2/3]O2 exhibits satisfactory electrode performances; 110 mAh g?1 (20 mA g?1) retaining 86% of capacity for 300 cycles and unexpectedly high reversible capacity of about 91 mAh g?1 (1400 mA g?1) with excellent capacity retention of 83% over 500 cycles. According to theoretical and experimental investigations, the overall potassium storage mechanism of P2‐K0.75[Ni1/3Mn2/3]O2 is revealed to be a single‐phase reaction with small lattice change upon charge and discharge, presenting the Ni4+/2+ redox couple reaction. Such high power capability is possible through the facile K+ migration in the K0.75[Ni1/3Mn2/3]O2 structure with a low activation barrier energy of ≈210 meV. These findings indicate that P2‐K0.75[Ni1/3Mn2/3]O2 is a promising candidate cathode material for high‐rate and long‐life KIBs.  相似文献   

18.
Subzero‐temperature Li‐ion batteries (LIBs) are highly important for specific energy storage applications. Although the nickel‐rich layered lithium transition metal oxides(LiNixCoyMnzO2) (LNCM) (x > 0.5, x + y +z = 1) are promising cathode materials for LIBs, their very slow Li‐ion diffusion is a main hurdle on the way to achieve high‐performance subzero‐temperature LIBs. Here, a class of low‐temperature organic/inorganic hybrid cathode materials for LIBs, prepared by grafting a conducting polymer coating on the surface of 3 µm sized LiNi0.6Co0.2Mn0.2O2 (LNCM‐3) material particles via a greener diazonium soft‐chemistry method is reported. Specifically, LNCM‐3 particles are uniformly coated with a thin polyphenylene film via the spontaneous reaction between LNCM‐3 and C6H5N2+BF4?. Compared with the uncoated one, the polyphenylene‐coated LNCM‐3 (polyphenylene/LNCM‐3) has shown much improved low‐temperature discharge capacity (≈148 mAh g?1 at 0.1 C, ?20 °C), outstanding rate capability (≈105 mAh g?1 at 1 C, ?20 °C), and superior low‐temperature long‐term cycling stability (capacity retention is up to 90% at 0.5 C over 1150 cycles). The low‐temperature performance of polyphenylene/LNCM‐3 is the best among the reported state‐of‐the art cathode materials for LIBs. The present strategy opens up a new avenue to construct advanced cathode materials for wider range applications.  相似文献   

19.
Potassium‐ion batteries are attracting great interest for emerging large‐scale energy storage owing to their advantages such as low cost and high operational voltage. However, they are still suffering from poor cycling stability and sluggish thermodynamic kinetics, which inhibits their practical applications. Herein, the synthesis of hierarchical K1.39Mn3O6 microspheres as cathode materials for potassium‐ion batteries is reported. Additionally, an effective AlF3 surface coating strategy is applied to further improve the electrochemical performance of K1.39Mn3O6 microspheres. The as‐synthesized AlF3 coated K1.39Mn3O6 microspheres show a high reversible capacity (about 110 mA h g?1 at 10 mA g?1), excellent rate capability, and cycling stability. Galvanostatic intermittent titration technique results demonstrate that the increased diffusion kinetics of potassium‐ion insertion and extraction during discharge and charge processes benefit from both the hierarchical sphere structure and surface modification. Furthermore, ex situ X‐ray diffraction measurements reveal that the irreversible structure evolution can be significantly mitigated via surface modification. This work sheds light on rational design of high‐performance cathode materials for potassium‐ion batteries.  相似文献   

20.
Despite great progress in aluminum ion batteries (AIBs), the commercialization and performance improvement of AIBs‐based carbon cathodes is greatly impeded by sluggish intercalation/extraction and redox kinetics due to large‐sized AlCl4? anions. Phosphates with tunnel channels and much larger d‐spacing than the radius of Al3+ could be an alternative candidate as a cathode for potential high‐performance AIBs. Herein, elaborately designed porous tunnel structured Co3(PO4)2@C composites derived from ZIF‐67 as AIBs cathodes are demonstrated, showing increased active sites, high ionic mobility, and high Al3+ ion diffusion coefficient, leading to remarkably enhanced discharge–charge redox reaction kinetics. Furthermore, the carbon shell and porous structure performs as armor to alleviate volume change and maintain the structure integrity of the cathodes. As expected, the rationally constructed Co3(PO4)2@C composite exhibits a superior capacity of 111 mA h g?1 at a high current density of 6 A g?1 and 151 mA h g?1 at 2 A g?1 after 500 cycles with capacity decay of 0.02% per cycle. This innovative strategy could be a big step forward for long‐term cycle stable AIBs and reveals significant insights into the redox reaction mechanism for high‐performance AIBs based on Al3+ rather than large‐sized AlCl4?.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号