首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various doped materials have been investigated to improve the structural stability of layered transition metal oxides for lithium‐ion batteries. Most doped materials are obtained through solid state methods, in which the doping of cations is not strictly site selective. This paper demonstrates, for the first time, an in situ electrochemical site‐selective doping process that selectively substitutes Li+ at Li sites in Mn‐rich layered oxides with Mg2+. Mg2+ cations are electrochemically intercalated into Li sites in delithiated Mn‐rich layered oxides, resulting in the formation of [Li1?xMgy][Mn1?zMz]O2 (M = Co and Ni). This Mg2+ intercalation is irreversible, leading to the favorable doping of Mg2+ at the Li sites. More interestingly, the amount of intercalated Mg2+ dopants increases with the increasing amount of Mn in Li1?x[Mn1?zMz]O2, which is attributed to the fact that the Mn‐to‐O electron transfer enhances the attractive interaction between Mg2+ dopants and electronegative Oδ? atoms. Moreover, Mg2+ at the Li sites in layered oxides suppresses cation mixing during cycling, resulting in markedly improved capacity retention over 200 cycles. The first‐principle calculations further clarify the role of Mg2+ in reduced cation mixing during cycling. The new concept of in situ electrochemical doping provides a new avenue for the development of various selectively doped materials.  相似文献   

2.
The quest for high energy density and high power density electrode materials for lithium‐ion batteries has been intensified to meet strongly growing demand for powering electric vehicles. Conventional layered oxides such as Co‐rich LiCoO2 and Ni‐rich Li(NixMnyCoz)O2 that rely on only transition metal redox reaction have been faced with growing constraints due to soaring price on cobalt. Therefore, Mn‐rich electrode materials excluding cobalt would be desirable with respect to available resources and low cost. Here, the strategy of achieving both high energy density and high power density in Mn‐rich electrode materials by controlling the solubility of atoms between phases in a composite is reported. The resulting Mn‐rich material that is composed of defective spinel phase and partially cation‐disordered layered phase can achieve the highest energy density, ≈1100 W h kg?1 with superior power capability up to 10C rate (3 A g?1) among other reported Mn‐rich materials. This approach provides new opportunities to design Mn‐rich electrode materials that can achieve high energy density and high power density for Li‐ion batteries.  相似文献   

3.
The silicate compounds Li2MSiO4 (where M = Mn, Fe, Co) have received significant attention recently as Li intercalation electrodes. Overwhelmingly they exhibit relatively poor kinetics of ion intercalation. By synthesizing Li‐rich solid solutions of the form Li2+2x Fe1?x SiO4 (with 0 ≤ x ≤ 0.3), the structural requirements for fast ion transport and hence relatively fast intercalation have been identified. Specifically the presence of additional Li+ in interstitial sites, not normally occupied in the stoichiometric Li2FeSiO4 compound, enhances ion transport by more than two orders of magnitude. The results, obtained by combining electrochemical measurements, with powder X‐ray and neutron diffraction and atomistic modeling of the ion dynamics, provide valuable guidance in designing future intercalation electrodes with high Li‐ion transport and, hence, fast electrode kinetics.  相似文献   

4.
Ni‐rich Li[NixCoyMn1?x?y]O2 (x ≥ 0.8) layered oxides are the most promising cathode materials for lithium‐ion batteries due to their high reversible capacity of over 200 mAh g?1. Unfortunately, the anisotropic properties associated with the α‐NaFeO2 structured crystal grains result in poor rate capability and insufficient cycle life. To address these issues, a micrometer‐sized Ni‐rich LiNi0.8Co0.1Mn0.1O2 secondary cathode material consisting of radially aligned single‐crystal primary particles is proposed and synthesized. Concomitant with this unique crystallographic texture, all the exposed surfaces are active {010} facets, and 3D Li+ ion diffusion channels penetrate straightforwardly from surface to center, remarkably improving the Li+ diffusion coefficient. Moreover, coordinated charge–discharge volume change upon cycling is achieved by the consistent crystal orientation, significantly alleviating the volume‐change‐induced intergrain stress. Accordingly, this material delivers superior reversible capacity (203.4 mAh g?1 at 3.0–4.3 V) and rate capability (152.7 mAh g?1 at a current density of 1000 mA g?1). Further, this structure demonstrates excellent cycling stability without any degradation after 300 cycles. The anisotropic morphology modulation provides a simple, efficient, and scalable way to boost the performance and applicability of Ni‐rich layered oxide cathode materials.  相似文献   

5.
The γ phase Li3VO4 which possesses higher ionic conductivity is more preferable for lithium ion batteries, but it is only stable at high temperature and would convert to low temperature β phase spontaneously when cooling down. Here, the phase control of Li3VO4 to stabilize its γ phase in room temperature is successfully mediated by introducing proper Si‐doping, and for the first time the electrochemical performances of γ‐Li3VO4 is investigated. It is found that pure γ‐Li3VO4 can be obtained in a doping ratio of x = 0.05–0.15 in Li3+xV1?xSixO4 with addition of excess Li source in synthesis design. The doping mechanism and the energy changes are investigated in detail by using the first principle calculations, it reveals that an interstitial Li+ is formed with doping of Si4+ in Li3VO4 to balance the system charge. When served as an anode, the Si‐doped γ‐Li3VO4 shows much smoothed Li+ insertion/extraction and enhanced cycle stability with only a single pair of redox peaks, which behaves much different with the complex multicouples of redox peaks in typical β‐Li3VO4. These changes in electrochemical performances implies that γ‐Li3VO4 can effectively accommodate Li+ in an easier and more facile way and relieved structure stress during the charge/discharge process.  相似文献   

6.
2D vanadium carbide MXene containing surface functional groups (denoted as V2CTx , where Tx are surface functional groups) is synthesized and studied as anode material for Na‐ion batteries. V2CTx anode exhibits reversible charge storage with good cycling stability and high rate capability through electrochemical test. The charge storage mechanism of V2CTx material during Na+ intercalation/deintercalation and the redox reaction of vanadium are studied using a combination of synchrotron based X‐ray diffraction, hard X‐ray absorption near edge spectroscopy (XANES), and soft X‐ray absorption spectroscopy (sXAS). Experimental evidence of a major contribution of redox reaction of vanadium to the charge storage and the reversible capacity of V2CTx during sodiation/desodiation process are provided through V K ‐edge XANES and V L 2,3‐edge sXAS results. A correlation between the CO32? content and the Na+ intercalation/deintercalation states in the V2CTx electrode observed from C and O K ‐edge in sXAS results implies that some additional charge storage reactions may take place between the Na+‐intercalated V2CTx and the carbonate‐based nonaqueous electrolyte. The results of this study provide valuable information for the further studies on V2CTx as anode material for Na‐ion batteries and capacitors.  相似文献   

7.
A series of Sr2ZnWO6 phosphors co‐doped with Eu3+, Bi3+ and Li+ were prepared using the Pechini method. The samples were tested using X‐ray diffraction and luminescence spectroscopy. The results show that the samples can be effectively excited by near‐ultraviolet (UV) and UV light. The introduction of Bi3+ and Li+ significantly enhances the fluorescence emission of Sr2ZnWO6:Eu3+ and changes the light emitted by the phosphors from bluish‐green to white. When excited at 371 nm, Sr2–x–zZn1–yWO6:xEu3+,yBi3+,zLi+ (x = 0.05, y = 0.05, z = 0.05, 0.1 and 0.15) samples emit high‐performance white light. Intense red–orange emission is also observed when excited by UV light. The obtained phosphor is a potential white‐emitting phosphor that could meet the needs of excitation sources with near‐UV chips. In addition, this phosphor might have promising application as a red–orange emitting phosphor for white light‐emitting diodes based on UV light‐emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
To pursue a higher energy density (>300 Wh kg?1 at the cell level) and a lower cost (<$125 kWh?1 expected at 2022) of Li‐ion batteries for making electric vehicles (EVs) long range and cost‐competitive with internal combustion engine vehicles, developing Ni‐rich/Co‐poor layered cathode (LiNi1?x?yCoxMnyO2, x+y ≤ 0.2) is currently one of the most promising strategies because high Ni content is beneficial to high capacity (>200 mAh g?1) while low Co content is favorable to minimize battery cost. Unfortunately, Ni‐rich cathodes suffer from limited structure stability and electrode/electrolyte interface stability in the charged state, leading to electrode degradation and poor cycling performance. To address these problems, various strategies have been employed such as doping, structural optimization design (e.g., core–shell structure, concentration‐gradient structure, etc.), and surface coating. In this review, five key aspects of Ni‐rich/Co‐poor layered cathode materials are explored: energy density, fast charge capability, service life including cycling life and calendar life, cost and element resources, and safety. This enables a comprehensive analysis of current research advances and challenges from the perspective of both academy and industry to help facilitate practical applications for EVs in the future.  相似文献   

9.
Li and Mn‐rich layered oxides, xLi2MnO3·(1–x)LiMO2 (M=Ni, Mn, Co), are promising cathode materials for Li‐ion batteries because of their high specific capacity that can exceed 250 mA h g?1. However, these materials suffer from high 1st cycle irreversible capacity, gradual capacity fading, low rate capability, a substantial charge‐discharge voltage hysteresis, and a large average discharge voltage decay during cycling. The latter detrimental phenomenon is ascribed to irreversible structural transformations upon cycling of these cathodes related to potentials ≥4.5 V required for their charging. Transition metal inactivation along with impedance increase and partial layered‐to‐spinel transformation during cycling are possible reasons for the detrimental voltage fade. Doping of Li, Mn‐rich materials by Na, Mg, Al, Fe, Co, Ru, etc. is useful for stabilizing capacity and mitigating the discharge‐voltage decay of xLi2MnO3·(1–x)LiMO2 electrodes. Surface modifications by thin coatings of Al2O3, V2O5, AlF3, AlPO4, etc. or by gas treatment (for instance, by NH3) can also enhance voltage and capacity stability during cycling. This paper describes the recent literature results and ongoing efforts from our groups to improve the performance of Li, Mn‐rich materials. Focus is also on preparation of cobalt‐free cathodes, which are integrated layered‐spinel materials with high reversible capacity and stable performance.  相似文献   

10.
Layered lithium‐ and manganese‐rich oxides (LMROs), described as xLi2MnO3·(1–x)LiMO2 or Li1+yM1–yO2 (M = Mn, Ni, Co, etc., 0 < x <1, 0 < y ≤ 0.33), have attracted much attention as cathode materials for lithium ion batteries in recent years. They exhibit very promising capacities, up to above 300 mA h g?1, due to transition metal redox reactions and unconventional oxygen anion redox reaction. However, they suffer from structural degradation and severe voltage fade (i.e., decreasing energy storage) upon cycling, which are plaguing their practical application. Thus, this review will aim to describe the pristine structure, high‐capacity mechanisms and structure evolutions of LMROs. Also, recent progress associated with understanding and mitigating the voltage decay of LMROs will be discussed. Several approaches to solve this problem, such as adjusting cycling voltage window and chemical composition, optimizing synthesis strategy, controlling morphology, doping, surface modification, constructing core‐shell and layered‐spinel hetero structures, are described in detail.  相似文献   

11.
Developing low‐cost, high‐capacity, high‐rate, and robust earth‐abundant electrode materials for energy storage is critical for the practical and scalable application of advanced battery technologies. Herein, the first example of synthesizing 1D peapod‐like bimetallic Fe2VO4 nanorods confined in N‐doped carbon porous nanowires with internal void space (Fe2VO4?NC nanopeapods) as a high‐capacity and stable anode material for potassium‐ion batteries (KIBs) is reported. The peapod‐like Fe2VO4?NC nanopeapod heterostructures with interior void space and external carbon shell efficiently prevent the aggregation of the active materials, facilitate fast transportation of electrons and ions, and accommodate volume variation during the cycling process, which substantially boosts the rate and cycling performance of Fe2VO4. The Fe2VO4?NC electrode exhibits high reversible specific depotassiation capacity of 380 mAh g?1 at 100 mA g?1 after 60 cycles and remarkable rate capability as well as long cycling stability with a high capacity of 196 mAh g?1 at 4 A g?1 after 2300 cycles. The first‐principles calculations reveal that Fe2VO4?NC nanopeapods have high ionic/electronic conductivity characteristics and low diffusion barriers for K+‐intercalation. This study opens up new way for investigating high‐capacity metal oxide as high‐rate and robust electrode materials for KIBs.  相似文献   

12.
Finding suitable electrode materials for alkali‐metal‐ion storage is vital to the next‐generation energy‐storage technologies. Polyantimonic acid (PAA, H2Sb2O6 · nH2O), having pentavalent antimony species and an interconnected tunnel‐like pyrochlore crystal framework, is a promising high‐capacity energy‐storage material. Fabricating electrochemically reversible PAA electrode materials for alkali‐metal‐ion storage is a challenge and has never been reported due to the extremely poor intrinsic electronic conductivity of PAA associated with the highest oxidation state Sb(V). Combining nanostructure engineering with a conductive‐network construction strategy, here is reported a facile one‐pot synthesis protocol for crafting uniform internal‐void‐containing PAA nano‐octahedra in a composite with nitrogen‐doped reduced graphene oxide nanosheets (PAA?N‐RGO), and for the first time, realizing the reversible storage of both Li+ and K+ ions in PAA?N‐RGO. Such an architecture, as validated by theoretical calculations and ex/in situ experiments, not only fully takes advantage of the large‐sized tunnel transport pathways (0.37 nm2) of PAA for fast solid‐phase ionic diffusion but also leads to exponentially increased electrical conductivity (3.3 S cm?1 in PAA?N‐RGO vs 4.8 × 10?10 S cm?1 in bare‐PAA) and yields an inside‐out buffer function for accommodating volume expansion. Compared to electrochemically irreversible bare‐PAA, PAA?N‐RGO manifests reversible conversion‐alloying of Sb(V) toward fast and durable Li+‐ and K+‐ion storage.  相似文献   

13.
Understanding and optimizing the temperature effects of Li‐ion diffusion by analyzing crystal structures of layered Li(NixMnyCoz)O2 (NMC) (x + y + z = 1) materials is important to develop advanced rechargeable Li‐ion batteries (LIBs) for multi‐temperature applications with high power density. Combined with experiments and ab initio calculations, the layer distances and kinetics of Li‐ion diffusion of LiNixMnyCozO2 (NMC) materials in different states of Li‐ion de‐intercalation and temperatures are investigated systematically. An improved model is also developed to reduce the system error of the “Galvanostatic Intermittent Titration Technique” with a correction of NMC particle size distribution. The Li‐ion diffusion coefficients of all the NMC materials are measured from ?25 to 50 °C. It is found that the Li‐ion diffusion coefficient of LiNi0.6Mn0.2Co0.2O2 is the largest with the minimum temperature effect. Ab initio calculations and XRD measurements indicate that the larger Li slab space benefits to Li‐ion diffusion with minimum temperature effect in layered NMC materials.  相似文献   

14.
A multi‐component catalyst Ni‐VOx/AC (VOx is comprised of V2O5 and VO2, x = 2.18) was synthesized by a wet impregnation method. The synthesized Ni‐VOx/AC shows a superior catalytic effect on de/hydrogenation of Mg. The MgH2+Ni‐VOx/AC composites can absorb 6.2 wt.‐% hydrogen within only 1 min at 150 °C under a hydrogen pressure of 2 MPa and desorb 6.5 wt.‐% hydrogen within 10 min at 300 °C under an initial hydrogen pressure of 1 KPa, which overcomes a critical barrier for practical use of Mg as a hydrogen storage material. A significant decrease of activation energy (Ea) indicates that Ni‐VOx/AC catalyst is highly efficient for Mg de/hydrogenation, which may be ascribed to the synergistic effect of bimetals (metal oxides) and nanocarbon.  相似文献   

15.
Subzero‐temperature Li‐ion batteries (LIBs) are highly important for specific energy storage applications. Although the nickel‐rich layered lithium transition metal oxides(LiNixCoyMnzO2) (LNCM) (x > 0.5, x + y +z = 1) are promising cathode materials for LIBs, their very slow Li‐ion diffusion is a main hurdle on the way to achieve high‐performance subzero‐temperature LIBs. Here, a class of low‐temperature organic/inorganic hybrid cathode materials for LIBs, prepared by grafting a conducting polymer coating on the surface of 3 µm sized LiNi0.6Co0.2Mn0.2O2 (LNCM‐3) material particles via a greener diazonium soft‐chemistry method is reported. Specifically, LNCM‐3 particles are uniformly coated with a thin polyphenylene film via the spontaneous reaction between LNCM‐3 and C6H5N2+BF4?. Compared with the uncoated one, the polyphenylene‐coated LNCM‐3 (polyphenylene/LNCM‐3) has shown much improved low‐temperature discharge capacity (≈148 mAh g?1 at 0.1 C, ?20 °C), outstanding rate capability (≈105 mAh g?1 at 1 C, ?20 °C), and superior low‐temperature long‐term cycling stability (capacity retention is up to 90% at 0.5 C over 1150 cycles). The low‐temperature performance of polyphenylene/LNCM‐3 is the best among the reported state‐of‐the art cathode materials for LIBs. The present strategy opens up a new avenue to construct advanced cathode materials for wider range applications.  相似文献   

16.
Herein, the synthesis of new quaternary layered Na‐based oxides of the type NaxMnyNizFe0.1Mg0.1O2 (0.67≤ x ≤ 1.0; 0.5≤ y ≤ 0.7; 0.1≤ z ≤ 0.3) is described. The synthesis can be tuned to obtain P2‐ and O3‐type as well as mixed P‐/O‐type phases as demonstrated by structural, morphological, and electrochemical properties characterization. Although all materials show good electrochemical performance, the simultaneous presence of the P‐ and O‐type phases is found to have a synergetic effect resulting in outstanding performance of the mixed phase material as a sodium‐ion cathode. The mixed P3/P2/O3‐type material, having an average elemental composition of Na0.76Mn0.5Ni0.3Fe0.1Mg0.1O2, overcomes the specific drawbacks associated with the P2‐ and O3‐type materials, allowing the outstanding electrochemical performance. In detail, the mixed phase material is able to deliver specific discharge capacities of up to 155 mAh g?1 (18 mA g?1) in the potential range of 2.0–4.3 V. In the narrower potential range of 2.5–4.3 V the material exhibits high average discharge potential (3.4 V versus Na/Na+), exceptional average coulombic efficiencies (>99.9%), and extraordinary capacity retention (90.2% after 601 cycles). The unexplored class of P‐/O‐type mixed phases introduces new perspectives for the development of layered positive electrode materials and powerful Na‐ion batteries.  相似文献   

17.
Current battery technologies are known to suffer from kinetic problems associated with the solid‐state diffusion of Li+ in intercalation electrodes materials. Not only the use of nanostructure materials but also the design of electrode architectures can lead to more advanced properties. Here, advanced electrode architectures consisting of carbon textiles conformally covered by Li4Ti5O12 nanocrystal are rationally designed and synthesized for lithium ion batteries. The efficient two‐step synthesis involves the growth of ultrathin TiO2 nanosheets on carbon textiles, and subsequent conversion into spinel Li4Ti5O12 through chemical lithiation. Importantly, this novel approach is simple and general, and it is used to successfully produce LiMn2O4/carbon composites textiles, one of the leading cathode materials for lithium ion batteries. The resulting 3D textile electrode, with various advantages including the direct electronic pathway to current collector, the easy access of electrolyte ions, the reduced Li+/e? diffusion length, delivers excellent rate capability and good cyclic stability over the Li‐ion batteries of conventional configurations.  相似文献   

18.
Anatase TiO2 is an extensively studied anode material for lithium‐ion batteries because of its superior capability of storing Li+ electrochemically. Here reversible lithium storage of TiO2 is achieved chemically using redox targeting reactions. In the presence of a pair of redox mediators, bis(pentamethylcyclopentadienyl)cobalt (CoCp* 2) and cobaltocene (CoCp2) in an electrolyte, TiO2 and its lithiated form Li x TiO2 can be reduced and oxidized by CoCp* 2 and CoCp2 +, respectively, which accompany Li+ insertion and extraction, albeit without attaching the TiO2 onto the electrode. The reversible chemical lithiation/delithiation and the involved phase transitions are unambiguously confirmed using density functional theory (DFT) calculations, UV‐vis spectroscopy, X‐ray photoelectron spectoscopy (XPS), and Raman spectroscopy. A redox flow lithium‐ion battery (RFLB) half‐cell is assembled and evaluated, which is a critical step towards the development of RFLB full cells.  相似文献   

19.
Given the merits of low cost, fast ionic transport in electrolyte, and high operating voltage, potassium ion batteries (PIBs) are promising alternatives to lithium‐ion batteries. However, developing suitable electrode materials that can reversibly accommodate large potassium ions is a great challenge. Here, guided by density functional theory (DFT) calculations, it is demonstrated that the strategy of interfacial engineering via surface amorphization of VO2 (B) nanorods (SA‐VO2), which results in the formation of a crystalline core/amorphous shell heterostructure, enables superior K+ storage performance in terms of large capacity, outstanding rate capability, and long cycle stability working as an anode for PIBs. DFT calculations reveal that the created crystalline/amorphous heterointerface in SA‐VO2 can substantially lower the surface energy, narrow the band gap, and reduce the K+ diffusion barrier of VO2 (B). These conditions enable enhanced K+ storage capacity and rapid K+/electron transfer, which result in large capacity and outstanding rate capability. Using in situ X‐ray diffraction and in situ transmission electron microscopy complemented by ex situ microscopic and spectroscopic techniques, it is unveiled that the superior cycling stability originates from the excellent phase reversibility with negligible strain response and robust mechanical behavior of SA‐VO2 upon (de)potassiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号