首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
While the use of silicon‐based electrodes can increase the capacity of Li‐ion batteries considerably, their application is associated with significant capacity losses. In this work, the influences of solid electrolyte interphase (SEI) formation, volume expansion, and lithium trapping are evaluated for two different electrochemical cycling schemes using lithium‐metal half‐cells containing silicon nanoparticle–based composite electrodes. Lithium trapping, caused by incomplete delithiation, is demonstrated to be the main reason for the capacity loss while SEI formation and dissolution affect the accumulated capacity loss due to a decreased coulombic efficiency. The capacity losses can be explained by the increasing lithium concentration in the electrode causing a decreasing lithiation potential and the lithiation cut‐off limit being reached faster. A lithium‐to‐silicon atomic ratio of 3.28 is found for a silicon electrode after 650 cycles using 1200 mAhg?1 capacity limited cycling. The results further show that the lithiation step is the capacity‐limiting step and that the capacity losses can be minimized by increasing the efficiency of the delithiation step via the inclusion of constant voltage delithiation steps. Lithium trapping due to incomplete delithiation consequently constitutes a very important capacity loss phenomenon for silicon composite electrodes.  相似文献   

2.
Silicon‐based anodes are an appealing alternative to graphite for lithium‐ion batteries because of their extremely high capacity. However, poor cycling stability and slow kinetics continue to limit the widespread use of silicon in commercial batteries. Performance improvement has been often demonstrated in nanostructured silicon electrodes, but the reaction mechanisms involved in the electrochemical lithiation of nanoscale silicon are not well understood. Here, in‐situ synchrotron X‐ray diffraction is used to monitor the subtle structural changes occurring in Si nanoparticles in a Si‐C composite electrode during lithiation. Local analysis by electron energy‐loss spectroscopy and transmission electron microscopy is performed to interrogate the nanoscale morphological changes and phase evolution of Si particles at different depths of discharge. It is shown that upon lithiation, Si nanoparticles behave quite differently than their micrometer‐sized counterparts. Although both undergo an electrochemical amorphization, the micrometer‐sized silicon exhibits a linear transformation during lithiation, while a two‐step process occurs in the nanoscale Si. In the first half of the discharge, lithium reacts with surfaces, grain boundaries and planar defects. As the reaction proceeds and the cell voltage drops, lithium consumes the crystalline core transforming it into amorphous LixSi with a primary particle size of just a few nanometers. Unlike the bulk silicon electrode, no Li15Si4 or other crystalline LixSi phases were formed in nanoscale Si at the fully‐lithiated state.  相似文献   

3.
It is well known that the mechanical properties of lithium‐ion battery electrodes impact their electrochemical performance. This is especially critical for Si‐based negative electrodes, which suffer from large volume changes of the active mass upon cycling. Here, this study presents a postprocessing treatment (called maturation) that improves the mechanical and electrochemical stabilities of silicon‐based anodes made with an acidic aqueous binder. It consists of storing the electrode in a humid atmosphere for a few days before drying and cell assembly. This results in a beneficial in situ reactive modification of the interfaces within the electrode. First, the binder tends to concentrate at the silicon interparticle contacts. As a result, the cohesion of the composite film is strengthened. Second, the corrosion of the copper current collector, inducing the formation of copper carboxylate bonds, improves the adhesion of the composite film. The great improvement of the mechanical stability of the matured electrode is confirmed by in‐operando optical microscopy showing the absence of film delamination. The result is a significant electrochemical performance gain, up to a factor 10, compared to a not‐matured electrode. This maturation procedure can be applied to other types of electrodes for improving their electrochemical performance and also their handling during cell manufacturing.  相似文献   

4.
Multiple‐internal‐reflection infrared spectroscopy allows for the study of thin‐film amorphous silicon electrodes in situ and in operando, in conditions typical of those used in Li‐ion batteries. It brings an enhanced sensitivity, and the attenuated‐total‐reflection geometry allows for the extraction of quantitative information. When electrodes are cycled in representative electrolytes, the simultaneously recorded infrared spectra give an insight into the solid/electrolyte interphase (SEI) composition. They also unravel the dynamic behavior of this SEI layer by quantitatively assessing its thickness, which increases during silicon lithiation and partially decreases during delithiation. Li‐ion solvation effects in the vicinity of the electrode indicate that lithium incorporation in the solid phase is the rate‐determining step of the electrochemical processes during lithiation. The lithiation of the active material also results in the irreversible consumption of a large quantity of hydrogen in the pristine material. Finally, the evolution of the electronic absorption of the electrode material suggests that lithium diffusion is much easier after the first lithiation than in the pristine material. Therefore, in situ Fourier‐transform infrared spectroscopy performed in a well‐suited configuration efficiently extracts original and quantitative pieces of information on the surface and bulk phenomena affecting Li‐ion electrodes during their operation in realistic conditions.  相似文献   

5.
Organic redox compounds are emerging electrode materials for rechargeable lithium batteries. However, their electrically insulating nature plagues efficient charge transport within the electroactive bulk. Alternative to the popular solution of elaborating nanocomposite materials, herein we report on a molecular‐level engineering strategy towards high‐power organic electrode materials with multi‐electron reactions. Systematic comparisons of anthraquinone analogues incorporating fused heteroaromatic structures as cathode materials in rechargeable lithium batteries reveal that the judicious incorporation of heteroaromatics improves the cell performance in terms of specific gravimetric capacity, working potential, rate capability, and cyclability. Combination studies with morphological observation, electrochemical impedance characterization, and theoretical modeling provide insight into the advantage of heteroaromatic building blocks. In particular, benzofuro[5,6‐b]furan‐4,8‐dione ( BFFD ) bearing furan moeities shows a reversible capacity of 181 mAh g?1 when charged/discharged at 100C, corresponding to a power density of 29.8 kW kg?1. These results have pointed to a general design route of high‐rate organic electrode materials by rational functionalization of redox compounds with appropriate heteroaromatic units as versatile structural tools.  相似文献   

6.
The development of the next‐generation lithium ion battery requires environmental‐friendly electrode materials with long cycle life and high energy density. Organic compounds are a promising potential source of electrode materials for lithium ion batteries due to their advantages of chemical richness at the molecular level, cost benefit, and environmental friendliness, but they suffer from low capacity and dissatisfactory cycle life mainly due to hydrophobic dissolution in organic electrolytes and poor electronic conductivity. In this work, two types of triazine‐based covalent organic nanosheets (CONs) are exfoliated and composited with carbon nanotubes. The thin‐layered 2D structure for the exfoliated CONs can activate more functional groups for lithium storage and boost the utilization efficiency of redox sites compared to its bulk counterpart. Large reversible capacities of above 1000 mAh g?1 can be achieved after 250 cycles, which is comparable to high‐capacity inorganic electrodes. Moreover, the lithium‐storage mechanism is determined to be an intriguing 11 and 16 electron redox reaction, associated with the organic groups (unusual triazine ring, piperazine ring, and benzene ring, and common C?N, ? NH? groups).  相似文献   

7.
Advanced electrode materials with bendability and stretchability are critical for the rapid development of fully flexible/stretchable lithium‐ion batteries. However, the sufficiently stretchable lithium‐ion battery is still underdeveloped that is one of the biggest challenges preventing from realizing fully deformable power sources. Here, a low‐temperature hydrothermal synthesis of a cathode material for stretchable lithium‐ion battery is reported by the in situ growth of LiMn2O4 (LMO) nanocrystals inside 3D carbon nanotube (CNT) film networks. The LMO/CNT film composite has demonstrated the chemical bonding between the LMO active materials and CNT scaffolds, which is the most important characteristic of the stretchable electrodes. When coupled with a wrinkled MnOx /CNT film anode, a binder‐free, all‐manganese‐based stretchable full battery cell is assembled which delivers a high average specific capacity of ≈97 mA h g?1 and stabilizes after over 300 cycles with an enormous strain of 100%. Furthermore, combining with other merits such as low cost, natural abundance, and environmentally friendly, the all‐manganese design is expected to accelerate the practical applications of stretchable lithium‐ion batteries for fully flexible and biomedical electronics.  相似文献   

8.
Graphene‐containing nanomaterials have emerged as important candidates for electrode materials in lithium‐ion batteries (LIBs) due to their unique physical properties. In this review, a brief introduction to recent developments in graphene‐containing nanocomposite electrodes and their derivatives is provided. Subsequently, synthetic routes to nanoparticle/graphene composites and their electrochemical performance in LIBs are highlighted, and the current state‐of‐the‐art and most recent advances in the area of graphene‐containing nanocomposite electrode materials are summarized. The limitations of graphene‐containing materials for energy storage applications are also discussed, with an emphasis on anode and cathode materials. Potential research directions for the future development of graphene‐containing nanocomposites are also presented, with an emphasis placed on practicality and scale‐up considerations for taking such materials from benchtop curiosities to commercial products.  相似文献   

9.
Next generation lithium battery materials will require a fundamental shift from those based on intercalation to elements or compounds that alloy directly with lithium. Intermetallics, for instance, can electrochemically alloy to Li4.4M (M = Si, Ge, Sn, etc.), providing order‐of‐magnitude increases in energy density. Unlike the stable crystal structure of intercalation materials, intermetallic‐based electrodes undergo dramatic volume changes that rapidly degrade the performance of the battery. Here, the energy density of silicon is combined with the structural reversibility of an intercalation material using a silicon/metal‐silicide multilayer. In operando X‐ray reflectivity confirms the multilayer's structural reversibility during lithium insertion and extraction, despite an overall 3.3‐fold vertical expansion. The multilayer electrodes also show enhanced long‐term cyclability and rate capabilities relative to a comparable silicon thin film electrode. This intercalation behavior found by dimensionally constraining silicon's lithiation promises applicability to a wide range of conversion reactions.  相似文献   

10.
The multiscale chemomechanical interplay in lithium‐ion batteries builds up mechanical stress, provokes morphological breakdown, and leads to state of charge heterogeneity. Quantifying the interplay in complex composite electrodes with multiscale resolution constitutes a frontier challenge in precisely diagnosing the fading mechanism of batteries. In this study, hard X‐ray phase contrast tomography, capable of nanoprobing thousands of active particles at once, enables an unprecedented statistical analysis of the chemomechanical transformation of composite electrodes under fast charging conditions. The damage heterogeneity is demonstrated to prevail at all length scales, which stems from the unbalanced electron conduction and ionic diffusion, and collectively leads to the nonuniform utilization of active particles spatially and temporally. This study highlights that the statistical mapping of the chemomechanical transformation offers a diagnostic method for the particles utilization and fading, hence could improve electrode formulation for fast‐charging batteries.  相似文献   

11.
Pseudocapacitive materials have been highlighted as promising electrode materials to overcome slow diffusion‐limited redox mechanism in active materials, which impedes fast charging/discharging in energy storage devices. However, previously reported pseudocapacitive properties have been rarely used in lithium‐ion batteries (LIBs) and evaluation methods have been limited to those focused on thin‐film‐type electrodes. Hence, a nanocage‐shaped silicon–carbon composite anode is proposed with excellent pseudocapacitive qualities for LIB applications. This composite anode exhibits a superior rate capability compared to other Si‐based anodes, including commercial silicon nanoparticles, because of the higher pseudocapacitive contribution coming from ultrathin Si layer. Furthermore, unprecedent 3D pore design in cage shape, which prevents the particle scale expansion even after full lithiation demonstrates the high cycling stability. This concept can potentially be used to realize high‐power and high‐energy LIB anode materials.  相似文献   

12.
The intercalation of lithium ions into graphite electrode is the key underlying mechanism of modern lithium‐ion batteries. However, co‐intercalation of lithium‐ions and solvent into graphite is considered undesirable because it can trigger the exfoliation of graphene layers and destroy the graphite crystal, resulting in poor cycle life. Here, it is demonstrated that the [lithium–solvent]+ intercalation does not necessarily cause exfoliation of the graphite electrode and can be remarkably reversible with appropriate solvent selection. First‐principles calculations suggest that the chemical compatibility of the graphite host and [lithium–solvent]+ complex ion strongly affects the reversibility of the co‐intercalation, and comparative experiments confirm this phenomenon. Moreover, it is revealed that [lithium–ether]+ co‐intercalation of natural graphite electrode enables much higher power capability than normal lithium intercalation, without the risk of lithium metal plating, with retention of ≈87% of the theoretical capacity at current density of 1 A g?1. This unusual high rate capability of the co‐intercalation is attributed to the (i) absence of the desolvation step, (ii) negligible formation of the solid–electrolyte interphase on graphite surface, and (iii) fast charge‐transfer kinetics. This work constitutes the first step toward the utilization of fast and reversible [lithium–solvent]+ complex ion intercalation chemistry in graphite for rechargeable battery technology.  相似文献   

13.
Due to the high lithium capacity of silicon, the composite (blended) electrodes containing silicon (Si) and graphite (Gr) particles are attractive alternatives to the all‐Gr electrodes used in conventional lithium‐ion batteries. In this Communication, the lithiation and delithiation in the Si and Gr particles in a 15 wt% Si composite electrode is quantified for each component using energy dispersive X‐ray diffraction. This quantification is important as the components cycle in different potential regimes, and interpretation of cycling behavior is complicated by the potential hysteresis displayed by Si. The lithiation begins with Li alloying with Si; lithiation of Gr occurs at later stages when the potential dips below 0.2 V (all potentials are given vs Li/Li+). In the 0.2–0.01 V range, the relative lithiation of Si and Gr is ≈58% and 42%, respectively. During delithiation, Li+ ion extraction occurs preferentially from Gr in the 0.01–0.23 V range and from Si in the 0.23–1.0 V range; that is, the delithiation current is carried sequentially, first by Gr and then by Si. These trends can be used for rational selection of electrochemical cycling windows that limits volumetric expansion in Si particles, thereby extending cell life.  相似文献   

14.
To be a thinner and more lightweight lithium‐ion battery with high energy density, the next‐generation anode with high gravimetric and volumetric capacity is a prerequisite. In this regard, utilizing high silicon (3579 mAh g?1) content in the electrode for the anode has been highlighted as a practically relevant approach. However, there still remains a crucial issue related to intrinsic volume expansion (>300%) of silicon upon lithiation, which can directly affect severe electrode swelling as well as accelerate its capacity fading by triggering structural degradation and electrical contact loss between particles. Herein, macropore‐exploited design, which can accommodate the volume change of high silicon content within the extended pore of graphite upon repeated cycling, is introduced. Such unique macropore‐exploited design leads to much less electrode swelling, by preserving its morphological integrity and contact between particles, than that of the comparative group with different sized pore and silicon distribution. As a result, this anode (914 mAh g?1) demonstrates notable gravimetric (220 Wh kg?1 at 6000 W kg?1) and volumetric energy density (623 Wh L?1 upon full lithiation after 100 cycles), exceeding that of a nano‐silicon blended graphite anode (127 Wh kg?1 and 229 Wh L?1) in the full‐cell system.  相似文献   

15.
One of the key challenges of Li‐ion electrodes is enhancement of (dis)charge rates. This is severely hindered by the absence of a technique that allows direct and nondestructive observation of lithium ions in operating batteries. Direct observation of the Li‐ion concentration profiles using operando neutron depth profiling reveals that the rate‐limiting step is depended not only on the electrode morphology but also on the cycling rate itself. In the LiFePO4 electrodes phase nucleation limits the charge transport at the lowest cycling rates, whereas electronic conductivity is rate limiting at intermediate rates, and only at the highest rates ionic transport through the electrode is rate limiting. These novel insights into electrode kinetics are imperative for the improvement of Li‐ion batteries and show the large value of in situ NDP in Li‐ion battery research and development.  相似文献   

16.
Electrochemical metal‐ion intercalation systems are acknowledged to be a critical energy storage technology. The kinetics of the intercalation processes in transition‐metal based oxides determine the practical characteristics of metal‐ion batteries, such as the energy density, power, and cyclability. With the emergence of post lithium‐ion batteries, such as sodium‐ion and potassium‐ion batteries, which function predominately in nonaqueous electrolytes of special formulation and exhibit quite varied material stability with regard to their surface chemistries and reactivity with electrolytes, the practical routes for the optimization of metal‐ion battery performance become essential. Electrochemical methods offer a variety of means to quantitatively study the diffusional, charge transfer, and phase transformation rates in complex systems, which are, however, rather rarely fully adopted by the metal‐ion battery community, which slows down the progress in rationalizing the rate‐controlling factors in complex intercalation systems. Herein, several practical approaches for diagnosing the origin of the rate limitations in intercalation materials based on phenomenological models are summarized, focusing on the specifics of charge transfer, diffusion, and nucleation phenomena in redox‐active solid electrodes. It is demonstrated that information regarding rate‐determining factors can be deduced from relatively simple analysis of experimental methods including cyclic voltammetry, chronoamperometry, and impedance spectroscopy.  相似文献   

17.
A simple ball‐milling method is used to synthesize a tin oxide‐silicon carbide/few‐layer graphene core‐shell structure in which nanometer‐sized SnO2 particles are uniformly dispersed on a supporting SiC core and encapsulated with few‐layer graphene coatings by in situ mechanical peeling. The SnO2‐SiC/G nanocomposite material delivers a high reversible capacity of 810 mA h g?1 and 83% capacity retention over 150 charge/discharge cycles between 1.5 and 0.01 V at a rate of 0.1 A g?1. A high reversible capacity of 425 mA h g?1 also can be obtained at a rate of 2 A g?1. When discharged (Li extraction) to a higher potential at 3.0 V (vs. Li/Li+), the SnO2‐SiC/G nanocomposite material delivers a reversible capacity of 1451 mA h g?1 (based on the SnO2 mass), which corresponds to 97% of the expected theoretical capacity (1494 mA h g?1, 8.4 equivalent of lithium per SnO2), and exhibits good cyclability. This result suggests that the core‐shell nanostructure can achieve a completely reversible transformation from Li4.4Sn to SnO2 during discharging (i.e., Li extraction by dealloying and a reversible conversion reaction, generating 8.4 electrons). This suggests that simple mechanical milling can be a powerful approach to improve the stability of high‐performance electrode materials involving structural conversion and transformation.  相似文献   

18.
The ongoing surge in demand for high‐energy/flexible rechargeable batteries relentlessly drives technological innovations in cell architecture as well as electrochemically active materials. Here, a new class of all‐nanomat lithium‐ion batteries (LIBs) based on 1D building element‐interweaved heteronanomat skeletons is demonstrated. Among various electrode materials, silicon (Si, for anode) and overlithiated layered oxide (OLO, for cathode) materials are chosen as model systems to explore feasibility of this new cell architecture and achieve unprecedented cell capacity. Nanomat electrodes, which are completely different from conventional slurry‐cast electrodes, are fabricated through concurrent electrospinning (for polymeric nanofibers) and electrospraying (for electrode materials/carbon nanotubes (CNTs)). Si (or rambutan‐shaped OLO/CNT composite) powders are compactly embedded in the spatially interweaved polymeric nanofiber/CNT heteromat skeletons that play a crucial role in constructing 3D‐bicontinuous ion/electron transport pathways and allow for removal of metallic foil current collectors. The nanomat Si anodes and nanomat OLO cathodes are assembled with nanomat Al2O3 separators, leading to the fabrication of all‐nanomat LIB full cells. Driven by the aforementioned structural/chemical uniqueness, the all‐nanomat full cell shows exceptional improvement in electrochemical performance (notably, cell‐based gravimetric energy density = 479 W h kgCell?1) and also mechanical deformability, which lie far beyond those achievable with conventional LIB technologies.  相似文献   

19.
A flexible and free‐standing porous carbon nanofibers/selenium composite electrode (Se@PCNFs) is prepared by infiltrating Se into mesoporous carbon nanofibers (PCNFs). The porous carbon with optimized mesopores for accommodating Se can synergistically suppress the active material dissolution and provide mechanical stability needed for the film. The Se@PCNFs electrode exhibits exceptional electrochemical performance for both Li‐ion and Na‐ion storage. In the case of Li‐ion storage, it delivers a reversible capacity of 516 mAh g?1 after 900 cycles without any capacity loss at 0.5 A g?1. Se@PCNFs still delivers a reversible capacity of 306 mAh g?1 at 4 A g?1. While being used in Na‐Se batteries, the composite electrode maintains a reversible capacity of 520 mAh g?1 after 80 cycles at 0.05 A g?1 and a rate capability of 230 mAh g?1 at 1 A g?1. The high capacity, good cyclability, and rate capability are attributed to synergistic effects of the uniform distribution of Se in PCNFs and the 3D interconnected PCNFs framework, which could alleviate the shuttle reaction of polyselenides intermediates during cycling and maintain the perfect electrical conductivity throughout the electrode. By rational and delicate design, this type of self‐supported electrodes may hold great promise for the development of Li‐Se and Na‐Se batteries with high power and energy densities.  相似文献   

20.
Lithium–sulfur (Li–S) batteries continue to be considered promising post‐lithium‐ion batteries owing to their high theoretical energy density. In pursuit of a Li–S cell with long‐term cyclability, most studies thus far have relied on using ether‐based electrolytes. However, their limited ability to dissolve polysulfides requires a high electrolyte‐to‐sulfur ratio, which impairs the achievable specific energy. Recently, the battery community found high donor electrolytes to be a potential solution to this shortcoming because their high solubility toward polysulfides enables a cell to operate under lean electrolyte conditions. Despite the increasing number of promising outcomes with high donor electrolytes, a critical hurdle related to stability of the lithium‐metal counter electrode needs to be overcome. This review provides an overview of recent efforts pertaining to high donor electrolytes in Li–S batteries and is intended to raise interest from within the community. Furthermore, based on analogous efforts in the lithium‐air battery field, strategies for protecting the lithium metal electrode are proposed. It is predicted that high donor electrolytes will be elevated to a higher status in the field of Li–S batteries, with the hope that either existing or upcoming strategies will, to a fair extent, mitigate the degradation of the lithium–metal interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号