首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li metal is a promising anode material for all‐solid‐state batteries, owing to its high specific capacity and low electrochemical potential. However, direct contact of Li metal with most solid‐state electrolytes induces severe side reactions that can lead to dendrite formation and short circuits. Moreover, Li metal is unstable when exposed to air, leading to stringent processing requirements. Herein, it is reported that the Li3PS4/Li interface in all‐solid‐state batteries can be stabilized by an air‐stable LixSiSy protection layer that is formed in situ on the surface of Li metal through a solution‐based method. Highly stable Li cycling for over 2000 h in symmetrical cells and a lifetime of over 100 cycles can be achieved for an all‐solid‐state LiCoO2/Li3PS4/Li cell. Synchrotron‐based high energy X‐ray photoelectron spectroscopy in‐depth analysis demonstrates the distribution of different components within the protection layer. The in situ formation of an electronically insulating LixSiSy protection layer with highly ionic conductivity provides an effective way to prevent Li dendrite formation in high‐energy all‐solid‐state Li metal batteries.  相似文献   

2.
Secondary batteries based on metal anodes (e.g., Li, Na, Mg, Zn, and Al) are among the most sought‐after candidates for next‐generation mobile and stationary storage systems because they are able to store a larger amount of energy per unit mass or volume. However, unstable electrodeposition and uncontrolled interfacial reactions occuring in liquid electrolytes cause unsatisfying cell performance and potential safety concerns for the commercial application of these metal anodes. Solid‐state electrolytes (SSEs) having a higher modulus are considered capable of inhibiting difficulties associated with the anodes and may enable building of safe all‐solid‐state metal batteries, yet several challenges, such as insufficient room‐temperature ionic conductivity and poor interfacial stability between the electrode and the electrolyte, hinder the large‐scale development of such batteries. Here, research and development of SSEs including inorganic ceramics, organic solid polymers, and organic–inorganic hybrid/composite materials for metal‐based batteries are reviewed. The comparison of different types of electrolytes is discussed in detail, in the context of electrochemical energy storage applications. Then, the focus of this study is on recent advances in a range of attractive and innovative battery chemistries and technologies that are enabled by SSEs. Finally, the challenges and future perspectives are outlined to foresee the development of SSEs.  相似文献   

3.
All‐solid‐state batteries are expected to enable batteries with high energy density with the use of lithium metal anodes. Although solid electrolytes are believed to be mechanically strong enough to prevent lithium dendrites from propagating, various reports today still show cell failure due to lithium dendrit growth at room temperature. While cell parameters such as current density, electrolyte porosity, and interfacial properties have been investigated, mechanical properties of lithium metal and the role of applied stack pressure on the shorting behavior are still poorly understood. Here, failure mechanisms of lithium metal are investigated in all‐solid‐state batteries as a function of stack pressure, and in situ characterization of the interfacial and morphological properties of the buried lithium is conducted in solid electrolytes. It is found that a low stack pressure of 5 MPa allows reliable plating and stripping in a lithium symmetric cell for more than 1000 h, and a Li | Li6PS5Cl | LiNi0.80Co0.15Al0.05O2 full cell, plating more than 4 µm of lithium per charge, is able to cycle over 200 cycles at room temperature. These results suggest the possibility of enabling the lithium metal anode in all‐solid‐state batteries at reasonable stack pressures.  相似文献   

4.
Due to the limited oxidation stability (<4 V) of ether oxygen in its polymer structure, polyethylene oxide (PEO)‐based polymer electrolytes are not compatible with high‐voltage (>4 V) cathodes, thus hinder further increases in the energy density of lithium (Li) metal batteries (LMBs). Here, a new type of polymer‐in‐“quasi‐ionic liquid” electrolyte is designed, which reduces the electron density on ethereal oxygens in PEO and ether solvent molecules, induces the formation of stable interfacial layers on both surfaces of the LiNi1/3Mn1/3Co1/3O2 (NMC) cathode and the Li metal anode in Li||NMC batteries, and results in a capacity retention of 88.4%, 86.7%, and 79.2% after 300 cycles with a charge cutoff voltage of 4.2, 4.3, and 4.4 V for the LMBs, respectively. Therefore, the use of “quasi‐ionic liquids” is a promising approach to design new polymer electrolytes for high‐voltage and high‐specific‐energy LMBs.  相似文献   

5.
The development of all‐solid‐state lithium–sulfur batteries is hindered by the poor interfacial properties at solid electrolyte (SE)/electrode interfaces. The interface is modified by employing the highly concentrated solvate electrolyte, (MeCN)2?LiTFSI:TTE, as an interlayer material at the electrolyte/electrode interfaces. The incorporation of an interlayer significantly improves the cycling performance of solid‐state Li2S batteries compared to the bare counterpart, exhibiting a specific capacity of 760 mAh g?1 at cycle 100 (330 mAh g?1 for the bare cell). Electrochemical impedance spectroscopy shows that the interfacial resistance of the interlayer‐modified cell gradually decreases as a function of cycle number, while the impedance of the bare cell remains almost constant. Cross‐section scanning electron microscopy (SEM)/ energy dispersive X‐ray spectroscopy (EDS) measurements on the interlayer‐modified cell confirm the permeation of solvate into the cathode and the SE with electrochemical cycling, which is related to the decrease in cell impedance. In order to mimic the full permeation of the solvate across the entire cell, the solvate is directly mixed with the SE to form a “solvSEM” electrolyte. The hybrid Li2S cell using a solvSEM electrolyte exhibits superior cycling performance compared to the solid‐state cells, in terms of Li2S loading, Li2S utilization, and cycling stability. The improved performance is due to the favorable ionic contact at the battery interfaces.  相似文献   

6.
Sulfide Na‐ion solid electrolytes (SEs) are key to enable room‐temperature operable all‐solid‐state Na‐ion batteries that are attractive for large‐scale energy storage applications. To date, few sulfide Na‐ion SEs have been developed and most of the SEs developed contain P and suffer from poor chemical stability. Herein, discovery of a new structural class of tetragonal Na4?xSn1?xSbxS4 (0.02 ≤ x ≤ 0.33) with space group I41/acd is described. The evolution of a new phase, distinctly different from Na4SnS4 or Na3SbS4, allows fast ionic conduction in 3D pathways (0.2–0.5 mS cm?1 at 30 °C). Moreover, their excellent air stability and reversible dissolution in water and precipitation are highlighted. Specifically, TiS2/Na–Sn all‐solid‐state Na‐ion batteries using Na3.75Sn0.75Sb0.25S4 demonstrates high capacity (201 mA h (g of TiS2)?1) with excellent reversibility.  相似文献   

7.
Lithium alanates exhibit high theoretical specific capacities and appropriate lithiation/delithiation potentials, but suffer from poor reversibility, cycling stability, and rate capability due to their sluggish kinetics and extensive side reactions. Herein, a novel and facile solid‐state prelithiation approach is proposed to in situ prepare a Li3AlH6‐Al nanocomposite from a short‐circuited electrochemical reaction between LiAlH4 and Li with the help of fast electron and Li‐ion conductors (C and P63mc LiBH4). This nanocomposite consists of dispersive Al nanograins and an amorphous Li3AlH6 matrix, which enables superior electrochemical performance in solid‐state cells, as much higher specific capacity (2266 mAh g?1), Coulombic efficiency (88%), cycling stability (71% retention in the 100th cycle), and rate capability (1429 mAh g?1 at 1 A g?1) are achieved. In addition, this nanocomposite works well in the solid‐state full cell with LiCoO2 cathode, demonstrating its promising application prospects. Mechanism analysis reveals that the dispersive Al nanograins and amorphous Li3AlH6 matrix can dramatically enhance the lithiation and delithiation kinetics without side reactions, which is mainly responsible for the excellent overall performance. Moreover, this solid‐state prelithiation approach is general and can also be applied to other Li‐poor electrode materials for further modification of their electrochemical behavior.  相似文献   

8.
Owing to the ever‐increasing safety concerns about conventional lithium‐ion batteries, whose applications have expanded to include electric vehicles and grid‐scale energy storage, batteries with solidified electrolytes that utilize nonflammable inorganic materials are attracting considerable attention. In particular, owing to their superionic conductivities (as high as ≈10?2 S cm?1) and deformability, sulfide materials as the solid electrolytes (SEs) are considered the enabling material for high‐energy bulk‐type all‐solid‐state batteries. Herein the authors provide a brief review on recent progress in sulfide Li‐ and Na‐ion SEs for all‐solid‐state batteries. After the basic principles in designing SEs are considered, the experimental exploration of multicomponent systems and ab initio calculations that accelerate the search for stronger candidates are discussed. Next, other issues and challenges that are critical for practical applications, such as instability in air, electrochemical stability, and compatibility with active materials, are discussed. Then, an emerging progress in liquid‐phase synthesis and solution process of SEs and its relevant prospects in ensuring intimate ionic contacts and fabricating sheet‐type electrodes is highlighted. Finally, an outlook on the future research directions for all‐solid‐state batteries employing sulfide superionic conductors is provided.  相似文献   

9.
For mass production of all‐solid‐state lithium‐ion batteries (ASLBs) employing highly Li+ conductive and mechanically sinterable sulfide solid electrolytes (SEs), the wet‐slurry process is imperative. Unfortunately, the poor chemical stability of sulfide SEs severely restrict available candidates for solvents and in turn polymeric binders. Moreover, the binders interrupt Li+‐ionic contacts at interfaces, resulting in the below par electrochemical performance. In this work, a new scalable slurry fabrication protocol for sheet‐type ASLB electrodes made of Li+‐conductive polymeric binders is reported. The use of intermediate‐polarity solvent (e.g., dibromomethane) for the slurry allows for accommodating Li6PS5Cl and solvate‐ionic‐liquid‐based polymeric binders (NBR‐Li(G3)TFSI, NBR: nitrile?butadiene rubber, G3: triethylene glycol dimethyl ether, LiTFSI: lithium bis(trifluoromethanesulfonyl)imide) together without suffering from undesirable side reactions or phase separation. The LiNi0.6Co0.2Mn0.2O2 and Li4Ti5O12 electrodes employing NBR‐Li(G3)TFSI show high capacities of 174 and 160 mA h g?1 at 30 °C, respectively, which are far superior to those using conventional NBR (144 and 76 mA h g?1). Moreover, high areal capacity of 7.4 mA h cm?2 is highlighted for the LiNi0.7Co0.15Mn0.15O2 electrodes with ultrahigh mass loading of 45 mg cm?2. The facilitated Li+‐ionic contacts at interfaces paved by NBR‐Li(G3)TFSI are evidenced by the complementary analysis from electrochemical and 7Li nuclear magnetic resonance measurements.  相似文献   

10.
Ionogels composed of ionic liquids and gelling solid matrices offer several advantages as solid‐state electrolytes for rechargeable batteries, including safety under diverse operating conditions, favorable electrochemical and thermal properties, and wide processing compatibility. Among gelling solid matrices, nanoscale materials have shown particular promise due to their ability to concurrently enhance ionogel mechanical properties, thermal stability, ionic conductivity, and electrochemical stability. These beneficial attributes suggest that ionogel electrolytes are not only of interest for incumbent lithium‐ion batteries but also for next‐generation rechargeable battery technologies. Herein, recent advances in nanocomposite ionogel electrolytes are discussed to highlight their advantages as solid‐state electrolytes for rechargeable batteries. By exploring a range of different nanoscale gelling solid matrices, relationships between nanoscale material structure and ionogel properties are developed. Furthermore, key research challenges are delineated to help guide and accelerate the incorporation of nanocomposite ionogel electrolytes in high‐performance solid‐state rechargeable batteries.  相似文献   

11.
Herein, a composite polymer electrolyte with a viscoelastic and nonflammable interface is designed to handle the contact issue and preclude Li dendrite formation. The composite polymer electrolyte (cellulose acetate/polyethylene glycol/Li1.4Al0.4Ti1.6P3O12) exhibits a wide electrochemical window of 5 V (vs Li+/Li), a high Li+ transference number of 0.61, and an excellent ionic conductivity of above 10?4 S cm?1 at 60 °C. In particular, the intimate contact, low interfacial impedance, and fast ion‐transport process between the electrodes and solid electrolytes can be simultaneously achieved by the viscoelastic and nonflammable layer. Benefiting from this novel design, solid lithium metal batteries with either LiFePO4 or LiCoO2 as cathode exhibit superior cyclability and rate capability, such as a discharge capacity of 157 mA h g?1 after 100 cycles at C/2 and 97 mA h g?1 at 5C for LiFePO4 cathode. Moreover, the smooth and uniform Li surface after long‐term cycling confirms the successful suppression of dendrite formation. The viscoelastic and nonflammable interface modification of solid electrolytes provides a promising and general strategy to handle the interfacial issues and improves the operative safety of solid lithium metal batteries.  相似文献   

12.
The instability of lithium (Li) metal anodes due to dendritic growth and low Coulombic efficiency (CE) hinders the practical application of high‐energy‐density Li metal batteries. Here, the systematic studies of improving the stability of Li metal anodes and the electrochemical performance of Li metal batteries through the addition of combinational additives and the optimization of solvent compositions in dual‐salt/carbonate electrolytes are reported. A dendrite‐free and high CE of 98.1% for Li metal anode is achieved. The well‐protected Li metal anode and the excellent cyclability and rate capability of the 4‐V Li metal batteries are obtained. This is attributed to the formation of a robust, denser, more polymeric, and higher ionic conductive surface film on the Li metal anode via the electrochemical reductive decompositions of the electrolyte components and the ring‐opening polymerization of additives and cyclic carbonate solvents. The key findings of this work indicate that the optimization of solvent compositions and the manipulation of additives are facile and effective ways to enhance the performances of Li metal batteries.  相似文献   

13.
All‐solid‐state batteries are promising candidates for the next‐generation safer batteries. However, a number of obstacles have limited the practical application of all‐solid‐state Li batteries (ASSLBs), such as moderate ionic conductivity at room temperature. Here, unlike most of the previous approaches, superior performances of ASSLBs are achieved by greatly reducing the thickness of the solid‐state electrolyte (SSE), where ionic conductivity is no longer a limiting factor. The ultrathin SSE (7.5 µm) is developed by integrating the low‐cost polyethylene separator with polyethylene oxide (PEO)/Li‐salt (PPL). The ultrathin PPL shortens Li+ diffusion time and distance within the electrolyte, and provides sufficient Li+ conductance for batteries to operate at room temperature. The robust yet flexible polyethylene offers mechanical support for the soft PEO/Li‐salt, effectively preventing short‐circuits even under mechanical deformation. Various ASSLBs with PPL electrolyte show superior electrochemical performance. An initial capacity of 135 mAh g?1 at room temperature and the high‐rate capacity up to 10 C at 60 °C can be achieved in LiFePO4/PPL/Li batteries. The high‐energy‐density sulfur cathode and MoS2 anode employing PPL electrolyte also realize remarkable performance. Moreover, the ASSLB can be assembled by a facile process, which can be easily scaled up to mass production.  相似文献   

14.
A flexible composite solid electrolyte membrane consisting of inorganic solid particles (Li1.3Al0.3Ti1.7(PO4)3), polyethylene oxide (PEO), and boronized polyethylene glycol (BPEG) is prepared and investigated. This membrane exhibits good stability against lithium dendrite, which can be attributed to its well‐designed combination components: the compact inorganic lithium ion conducting layer provides the membrane with good mechanical strength and physically barricades the free growth of lithium dendrite; while the addition of planar BPEG oligomers not only disorganizes the crystallinity of the PEO domain, leading to good ionic conductivity, but also facilitates a “soft contact” between interfaces, which not only chemically enables homogeneous lithium plating/stripping on the lithium metal anode, but also reduces the polarization effects. In addition, by employing this membrane to a LiFePO4/Li cell and testing its galvanostatic cycling performances at 60 °C, capacities of 158.2 and 94.2 mA h g?1 are delivered at 0.1 C and 2 C, respectively.  相似文献   

15.
All‐solid‐state sodium metal batteries (SSMBs) are of great interest for their high theoretical capacity, nonflammability, and relatively low cost owing partially to the abundance of sodium recourses. However, it is challenging to fabricate SSMBs because compared with their counterparts, which contain lithium metal, sodium metal is mechanically softer and more reactive toward the electrolyte. Herein, the synthesis and electrochemical properties of newly designed sodium‐containing hybrid network solid polymer electrolytes (SPEs) and their application in SSMBs are reported. The hybrid network is synthesized by controlled crosslinking of octakis(3‐glycidyloxypropyldimethylsiloxy)octasilsesquioxane and amine‐terminated polyethylene glycol in existence with sodium perchlorate (NaClO4). Plating and stripping experiments using symmetric cells show prolonged cycle life of the SPEs, >5150 and 3550 h at current density of 0.1 and 0.5 mA cm?2, respectively. The results for the first time show that the SPE|sodium metal interface migrates into the SPE phase upon cycling. SSMBs fabricated with the hybrid SPE sandwiched between sodium metal anode and bilayered δ‐NaxV2O5 cathode exhibit record‐high specific capacity for solid sodium‐ion batteries of 305 mAh g?1 and excellent Coulombic efficiency. This work demonstrates that the hybrid network SPEs are promising for SSMB applications.  相似文献   

16.
Rechargeable Li‐ion batteries (LIBs) are electrochemical storage device widely applied in electric vehicles, mobile electronic devices, etc. However, traditional LIBs containing liquid electrolytes suffer from flammability, poor electrochemical stability, and limited operational temperature range. Replacement of the liquid electrolytes with inorganic solid‐state electrolytes (SSEs) would solve this problem. However, several critical issues, such as poor interfacial compatibility, low ionic conductivity at ambient temperatures, etc., need to be surmounted before the commercialization of all‐solid‐state Li‐ion batteries (ASSLIBs). In this review, a brief historical context for the inorganic SSEs is described first. Then, two critical issues in the ASSLIBs are highlighted: interfacial incompatibility of the electrodes and SSEs and internal stresses. For the interfacial incompatibility, the discussion is focused on the dynamic characterization of the electrode/SSE interfaces, the origin and evolution of the interfacial resistance, and interface engineering to minimize the interfacial resistance. The internal stresses in the ASSLIBs are another major concern because rigid contacts are introduced. Stress generation, stress evolution during battery cycling, stress measurement/simulation, and ways to alleviate the stresses are outlined in detail. Finally, current challenges and perspectives for future development of the inorganic SSEs and ASSLIBs are outlined.  相似文献   

17.
18.
Thin solid‐state electrolytes with nonflammability, high ionic conductivity, low interfacial resistance, and good processability are urgently required for next‐generation safe, high energy density lithium metal batteries. Here, a 3D Li6.75La3Zr1.75Ta0.25O12 (LLZTO) self‐supporting framework interconnected by polytetrafluoroethylene (PTFE) binder is prepared through a simple grinding method without any solvent. Subsequently, a garnet‐based composite electrolyte is achieved through filling the flexible 3D LLZTO framework with a succinonitrile solid electrolyte. Due to the high content of garnet ceramic (80.4 wt%) and high heat‐resistance of the PTFE binder, such a composite electrolyte film with nonflammability and high processability exhibits a wide electrochemical window of 4.8 V versus Li/Li+ and high ionic transference number of 0.53. The continuous Li+ transfer channels between interconnected LLZTO particles and succinonitrile, and the soft electrolyte/electrode interface jointly contribute to a high ambient‐temperature ionic conductivity of 1.2 × 10?4 S cm?1 and excellent long‐term stability of the Li symmetric battery (stable at a current density of 0.1 mA cm?2 for over 500 h). Furthermore, as‐prepared LiFePO4|Li and LiNi0.5Mn0.3Co0.2O2|Li batteries based on the thin composite electrolyte exhibit high discharge specific capacities of 153 and 158 mAh g?1 respectively, and desirable cyclic stabilities at room temperature.  相似文献   

19.
Solid‐state lithium metal batteries (SSLMBs) may become one of the high‐energy density storage devices for the next generation of electric vehicles. High safety and energy density can be achieved by utilizing solid electrolytes and Li metal anodes. Therefore, developing cathode materials which can match with Li metal anode efficiently is indispensable. In SSLMBs, Li metal anodes can afford the majority of active lithium ions, then lithium‐depleted cathode materials can be a competitive candidate to achieve high gravimetric energy density as well as save lithium resources. Li0.33MnO2 lithium‐depleted material is chosen, which also has the advantages of low synthesis temperature and low cost (cobalt‐free). Notably, solid‐state electrolyte can greatly alleviate the problem of manganese dissolution in the electrolyte, which is beneficial to improve the cycling stability of the battery. Thus, SSLMBs enable practical applications of lithium‐depleted cathode materials.  相似文献   

20.
While Ni‐rich cathode materials combined with highly conductive and mechanically sinterable sulfide solid electrolytes are imperative for practical all‐solid‐state Li batteries (ASLBs), they suffer from poor performance. Moreover, the prevailing wisdom regarding the use of Li[Ni,Co,Mn]O2 in conventional liquid electrolyte cells, that is, increased capacity upon increased Ni content, at the expense of degraded cycling stability, has not been applied in ASLBs. In this work, the effect of overlooked but dominant electrochemo‐mechanical on the performance of Ni‐rich cathodes in ASLBs are elucidated by complementary analysis. While conventional Li[Ni0.80Co0.16Al0.04]O2 (NCA80) with randomly oriented grains is prone to severe particle disintegration even at the initial cycle, the radially oriented rod‐shaped grains in full‐concentration gradient Li[Ni0.75Co0.10Mn0.15]O2 (FCG75) accommodate volume changes, maintaining mechanical integrity. This accounts for their different performance in terms of reversible capacity (156 vs 196 mA h g?1), initial Coulombic efficiency (71.2 vs 84.9%), and capacity retention (46.9 vs 79.1% after 200 cycles) at 30 °C. The superior interfacial stability for FCG75/Li6PS5Cl to for NCA80/Li6PS5Cl is also probed. Finally, the reversible operation of FCG75/Li ASLBs is demonstrated. The excellent performance of FCG75 ranks at the highest level in the ASLB field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号