首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water splitting is a promising technology for sustainable conversion of hydrogen energy. The rational design of oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) bifunctional electrocatalysts with superior activity and stability in the same electrolyte is the key to promoting their large‐scale applications. Herein, an ultralow Ru (1.08 wt%) transition metal phosphide on nickel foam (Ru–MnFeP/NF) derived from Prussian blue analogue, that effectively drivies both the OER and the HER in 1 m KOH, is reported. To reach 20 mA cm?2 for OER and 10 mA cm?2 for HER, the Ru–MnFeP/NF electrode only requires overpotentials of 191 and 35 mV, respectively. Such high electrocatalytic activity exceeds most transition metal phosphides for the OER and the HER, and even reaches Pt‐like HER electrocatalytic levels. Accordingly, it significantly accelerates full water splitting at 10 mA cm?2 with 1.470 V, which outperforms that of the integrated RuO2 and Pt/C couple electrode (1.560 V). In addition, the extremely long operational stability (50 h) and the successful demonstration of a solar‐to‐hydrogen generation system through full water splitting provide more flexibility for large‐scale applications of Ru–MnFeP/NF catalysts.  相似文献   

2.
The overriding obstacle to mass production of hydrogen from water as the premium fuel for powering our planet is the frustratingly slow kinetics of the oxygen evolution reaction (OER). Additionally, inadequate understanding of the key barriers of the OER is a hindrance to insightful design of advanced OER catalysts. This study presents ultrathin amorphous high‐surface area nickel boride (Nix B) nanosheets as a low‐cost, very efficient and stable catalyst for the OER for electrochemical water splitting. The catalyst affords 10 mA cm?2 at 0.38 V overpotential during OER in 1.0 m KOH, reducing to only 0.28 V at 20 mA cm?2 when supported on nickel foam, which ranks it among the best reported nonprecious catalysts for oxygen evolution. Operando X‐ray absorption fine‐structure spectroscopy measurements reveal prevalence of NiOOH, as well as Ni‐B under OER conditions, owing to a Ni‐B core@nickel oxyhydroxide shell (Ni‐B@NiOx H) structure, and increase in disorder of the NiOx H layer, thus revealing important insight into the transient states of the catalyst during oxygen evolution.  相似文献   

3.
A newly designed water‐stable NH2‐MIL‐88B(Fe2Ni)‐metal–organic framework (MOF), in situ grown on the surface of a highly conducting 3D macroporous nickel foam (NF), termed NFN‐MOF/NF, is demonstrated to be a highly efficient bifunctional electrocatalyst for overall water splitting with ultrastability at high current densities. The NFN‐MOF/NF achieves ultralow overpotentials of 240 and 87 mV at current density of 10 mA cm?2 for the oxygen evolution reaction and hydrogen evolution reaction, respectively, in 1 m KOH. For the overall water splitting, it requires only an ultralow cell voltage of 1.56 V to reach the current density of 10 mA cm?2, outperforming the pairing of Pt/C on NF as the cathode and IrO2 on NF as the anode at the same catalyst loading. The stability of the NFN‐MOF/NF catalyst is also outstanding, exhibiting only a minor chronopotentiometric decay of 7.8% at 500 mA cm?2 after 30 h. The success of the present NFN‐MOF/NF catalyst is attributed to the abundant active centers, the bimetallic clusters {Fe2Ni(µ3‐O)(COO)6(H2O)3}, in the MOF, the positive coupling effect between Ni and Fe metal ions in the MOF, and synergistic effect between the MOF and NF.  相似文献   

4.
Rational design and exploration of robust and low‐cost bifunctional oxygen reduction/evolution electrocatalysts are greatly desired for metal–air batteries. Herein, a novel high‐performance oxygen electrode catalyst is developed based on bimetal FeCo nanoparticles encapsulated in in situ grown nitrogen‐doped graphitic carbon nanotubes with bamboo‐like structure. The obtained catalyst exhibits a positive half‐wave potential of 0.92 V (vs the reversible hydrogen electrode, RHE) for oxygen reduction reaction, and a low operating potential of 1.73 V to achieve a 10 mA cm?2 current density for oxygen evolution reaction. The reversible oxygen electrode index is 0.81 V, surpassing that of most highly active bifunctional catalysts reported to date. By combining experimental and simulation studies, a strong synergetic coupling between FeCo alloy and N‐doped carbon nanotubes is proposed in producing a favorable local coordination environment and electronic structure, which affords the pyridinic N‐rich catalyst surface promoting the reversible oxygen reactions. Impressively, the assembled zinc–air batteries using liquid electrolytes and the all‐solid‐state batteries with the synthesized bifunctional catalyst as the air electrode demonstrate superior charging–discharging performance, long lifetime, and high flexibility, holding great potential in practical implementation of new‐generation powerful rechargeable batteries with portable or even wearable characteristic.  相似文献   

5.
Rational construction of atomic‐scale interfaces in multiphase nanocomposites is an intriguing and challenging approach to developing advanced catalysts for both oxygen reduction (ORR) and evolution reactions (OER). Herein, a hybrid of interpenetrating metallic Co and spinel Co3O4 “Janus” nanoparticles stitched in porous graphitized shells (Co/Co3O4@PGS) is synthesized via ionic exchange and redox between Co2+ and 2D metal–organic‐framework nanosheets. This strategy is proven to effectively establish highways for the transfer of electrons and reactants within the hybrid through interfacial engineering. Specifically, the phase interpenetration of mixed Co species and encapsulating porous graphitized shells provides an optimal charge/mass transport environment. Furthermore, the defect‐rich interfaces act as atomic‐traps to achieve exceptional adsorption capability for oxygen reactants. Finally, robust coupling between Co and N through intimate covalent bonds prohibits the detachment of nanoparticles. As a result, Co/Co3O4@PGS outperforms state‐of‐the‐art noble‐metal catalysts with a positive half‐wave potential of 0.89 V for ORR and a low potential of 1.58 V at 10 mA cm?2 for OER. In a practical demonstration, ultrastable cyclability with a record lifetime of over 800 h at 10 mA cm?2 is achieved by Zn–air batteries with Co/Co3O4@PGS within the rechargeable air electrode.  相似文献   

6.
Efficient and cost‐effective bifunctional electrocatalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are of vital importance in energy conversion and storage devices. Despite the recent progress in bifunctional oxygen electrocatalysts, their unbalanced and insufficient OER and ORR activities has continued to pose challenges for the practical application of such energy devices. The design of highly integrated, high‐performance, bifunctional oxygen electrocatalysts composed of highly graphitic nanoshells embedded in mesoporous carbon (GNS/MC) is reported. The GNS/MC exhibits very high oxygen electrode activity, which is one of the best performances among nonprecious metal bifunctional oxygen electrocatalysts, and substantially outperforms Ir‐ and Pt‐based catalysts. Moreover, the GNS/MC shows excellent durability for both OER and ORR. In situ X‐ray absorption spectroscopy and square wave voltammetry reveal the roles of residual Ni and Fe entities in enhancing OER and ORR activities. Raman spectra indicate highly graphitic, defect‐rich nature of the GNS/MC, which can contribute to the enhanced OER activity and to high stability for the OER and ORR. In aqueous Na–air battery tests, the GNS/MC air cathode‐based cell exhibits superior performance to Ir/C‐ and Pt/C‐based batteries. Significantly, the GNS/MC‐based cell demonstrates the first example of rechargeable aqueous Na–air battery.  相似文献   

7.
Efficient bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysts are of great importance for rechargeable metal–air batteries. Herein, FeNx/C catalysts are synthesized by pyrolysis of thiourea and agarose containing α‐Fe2O3 nanoplate as Fe precursor, where α‐Fe2O3 nanoplate can prevent the aggregation of carbon sheets to effectively improve the specific surface area during the carbonization process. The FeNx/C‐700‐20 catalyst displays excellent catalytic performance for both ORR and OER activity in alkaline conditions with more positive onset potential (1.1 V vs the reversible hydrogen electrode) and half‐wave potential, higher stability, and stronger methanol tolerance in alkaline solution, which are all superior to that of the commercial Pt/C catalyst. In this study, the detailed analyses demonstrate that the coexistence of Fe‐based species and high content of Fe‐Nx both play an important role for the catalytic activity. Furthermore, FeNx/C‐700‐20 as cathode catalyst in Zn–air battery possesses higher charge–discharge stability and power density compared with that of commercial Pt/C catalyst, displaying great potential in practical implementation of for the rechargeable energy devices.  相似文献   

8.
9.
Highly efficient hydrogen evolution reactions (HERs) will determine the mass distributions of hydrogen‐powered clean technologies in the future. Metal–organic frameworks (MOFs) are emerging as a class of crystalline porous materials. Along with their derivatives, MOFs have recently been under intense study for their applications in various hydrogen production techniques. MOF‐based materials possess unique advantages, such as high specific surface area, crystalline porous structure, diverse and tunable chemical components, which offer attractive functionalities in catalyzing hydrogen evolution processes, by lowering reaction potentials, and speeding up reaction rates. Considering the rapid increase in research interest in hydrogen evolution in the last several years, this review aims to summarize recent advances in MOF‐associated hydrogen evolution research, including electrocatalytic, photocatalytic, and chemocatalytic HER. Particular attention is paid to the design and utilization of postsynthetic modification of MOFs, MOF‐supported catalysts, and MOF derivatives for highly efficient HER. The opportunities and challenges for MOF‐based materials in a hydrogen‐powered clean future are also discussed.  相似文献   

10.
11.
12.
Metallic binary compounds have emerged in recent years as highly active and stable electrocatalysts toward the hydrogen evolution reaction. In this work, the origin of their high activity from a theoretical and experimental point of view is elucidated. Here, different metallic ceramics as Ni3S2, Ni3N, or Ni5P4 are grown directly on Ni support in order to avoid any contaminations. The correlation of theoretical calculations with detailed material characterization and electrochemical testing paves the way to a deeper understanding of possible active adsorption sites for each material and the observed catalytic activity. It is shown that heteroatoms as P, S, and N actively take part in the reaction and do not act as simple spectator. Due to the anisotropic nature of the materials, a variety of adsorption sites with highly coverage‐dependent properties exists, leading to a general shift in hydrogen adsorption free energies ΔG H close to zero. Extending the knowledge gained about the here described materials, a new catalyst is prepared by modifying a high surface Ni foam, for which current densities up to 100 mA cm?2 at around 0.15 V (for Ni3N) are obtained.  相似文献   

13.
One promising approach to hydrogen energy utilization from full water splitting relies on the successful development of earth‐abundant, efficient, and stable electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Here, homologous Co–Ni‐based nanotube/nanosheet structures with tunable Co/Ni ratios, including hydroxides and nitrides, are grown on conductive substrates by a cation‐exchanging method to grow hydroxides, followed by anion exchanging to obtain corresponding nitrides. These hydroxide OER catalysts and nitride HER catalysts exhibit low overpotentials, small Tafel slopes, and high current densities, which are attributed to their large electrochemically reactive surface, 1D morphologies for charge conduction, and octahedral coordination states of metal ions for efficient catalytic activities. The homologous Co–Ni‐based nanotube hydroxides and nitrides suggest promising electrocatalysts for full water splitting with high efficiency, good stability, convenient fabrication, and low cost.  相似文献   

14.
Searching for highly efficient and durable electrocatalysts for the hydrogen evolution reaction (HER) that function effectively at all pHs is of great interest to the scientific community, however it is still a grand challenge, because the HER kinetics of Pt in alkaline solutions are approximately two to three orders of magnitude lower than that in acidic solution. Herein, a new class of wrinkled, ultrathin Rh2P nanosheets for enhancing HER catalysis at all pHs is reported. They exhibit a small overpotential of 18.3 mV at 10 mA cm?2, low Tafel slope of 61.5 mV dec?1, and good durability in alkaline media, much better than the commercial Pt/C catalyst. Density functional theory calculations reveal that the active open‐shell effect from the P‐3p band not only promotes Rh‐4d for increased proton–electron charge exchange but also provides excellent p–p overlapping to locate the O‐related species as distributary center, which can benefit the HER process in alkaline media. It is also demonstrated that the present wrinkled, ultrathin Rh2P nanosheets are highly efficient and durable electrocatalysts toward HER in both acid and neutral electrolytes. The present work opens a new material design for ultrathin 2D metal phosphide nanostructures for the purpose of boosting HER performance at all pHs.  相似文献   

15.
16.
As a non‐toxic species, Zn fulfills a multitude of biological roles, but its promoting effect on electrocatalysis has been rarely explored. Herein, the theoretic predications and experimental investigations that nonelectroactive Zn behaves as an effective promoter for CoP‐catalyzed hydrogen evolution reaction (HER) in both acidic and alkaline media is reported. Density function theory calculations reveal that Zn doing leads to more thermal‐neutral hydrogen adsorption free energy and thus enhanced HER activity for CoP catalyst. Electrochemical tests show that a Zn0.08Co0.92P nanowall array on titanium mesh (Zn0.08Co0.92P/TM) needs overpotentials of only 39 and 67 mV to drive a geometrical catalytic current of 10 mA cm‐2 in 0.5 m H2SO4 and 1.0 m KOH, respectively. This Zn0.08Co0.92P/TM is also superior in activity over CoP/TM for urea oxidation reaction (UOR), driving 115 mA cm‐2 at 0.6 V in 1.0 m KOH with 0.5 m urea. The high HER and UOR activity of this bifunctional electrode enables a Zn0.08Co0.92P/TM‐based two‐electrode electrolyzer for energy‐saving hydrogen production, offering 10 mA cm‐2 at a low voltage of 1.38 V with strong long‐term electrochemical stability.  相似文献   

17.
The production of hydrogen fuels by using sunlight is an attractive and sustainable solution to the global energy and environmental problems. Platinum (Pt) is known as the most efficient co‐catalyst in hydrogen evolution reaction (HER). However, due to its high‐cost and limited‐reserves, it is highly demanded to explore alternative non‐precious metal co‐catalysts with low‐cost and high efficiency. Transition metal disulfides (TMDs) including molybdenum disulfide and tungsten disulfide have been regarded as promising candidates to replace Pt for HER in recent years. Their unique structural and electronic properties allow them to have many opportunities to be designed as highly efficient co‐catalysts over various photo harvesting semiconductors. Recent progress in TMDs as photo‐cocatalysts in solar hydrogen production field is summarized, focusing on the effect of structural matchability with photoharvesters, band edges tunability, and phase transformation on the improvement of hydrogen production activities. Moreover, recent research efforts toward the TMDs as more energy‐efficient and economical co‐catalysts for HER are highlighted. Finally, this review concludes by critically summarizing both findings and current perspectives, and highlighting crucial issues that should be addressed in future research activities.  相似文献   

18.
The development of high‐efficiency bifunctional electrocatalyst for oxygen reduction and evolution reactions (ORR/OER) is critical for rechargeable metal–air batteries, a typical electrochemical energy storage and conversion technology. This work reports a general approach for the synthesis of Pd@PdO–Co3O4 nanocubes using the zeolite‐type metal–organic framework (MOF) as a template. The as‐synthesized materials exhibit a high electrocatalytic activity toward OER and ORR, which is comparable to those of commercial RuO2 and Pt/C electrocatalysts, while its cycle performance and stability are much higher than those of commercial RuO2 and Pt/C electrocatalysts. Various physicochemical characterizations and density functional theory calculations indicate that the favorable electrochemical performance of the Pd@PdO–Co3O4 nanocubes is mainly attributed to the synergistic effect between PdO and the robust hollow structure composed of interconnected crystalline Co3O4 nanocubes. This work establishes an efficient approach for the controlled design and synthesis of MOF‐templated hybrid nanomaterials, and provides a great potential for developing high‐performance electrocatalysts in energy storage and conversion.  相似文献   

19.
The future large‐scale deployment of rechargeable zinc–air batteries requires the development of cheap, stable, and efficient bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). In this work, a highly efficient bifunctional electrocatalyst is prepared by depositing 3–5 nm NiFe layered double hydroxide (NiFe‐LDH) nanoparticles on Co,N‐codoped carbon nanoframes (Co,N‐CNF). The NiFe‐LDH/Co,N‐CNF electrocatalyst displayed an OER overpotential of 0.312 V at 10 mA cm?2 and an ORR half‐wave potential of 0.790 V. The outstanding performance of the electrocatalyst is attributable to the high electrical conductivity and excellent ORR activity of Co,N‐CNF, together with the strong anchoring of 3–5 nm NiFe‐LDH nanoparticles, which preserves active sites. Inspired by the excellent OER and ORR performance of NiFe‐LDH/Co,N‐CNF, a prototype rechargeable zinc–air battery is developed. The battery exhibited a low discharge–charge voltage gap (1.0 V at 25 mA cm?2) and long‐term cycling durability (over 80 h), and superior overall performance to a counterpart battery constructed using a mixture of IrO2 and Pt/C as the cathode. The strategy developed here can easily be adapted to synthesize other bifunctional CNF‐based hybrid electrodes for ORR and OER, providing a practical route to more efficient rechargeable zinc–air batteries.  相似文献   

20.
The controllable synthesis of single‐crystallized iron‐cobalt carbonate hydroxide nanosheets array on 3D conductive Ni foam (FCCH/NF) as a monolithic oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) bifunctional electrocatalyst for full water splitting is described. The results demonstrate that the incorporation of Fe can effectively tune the morphology, composition, electronic structure, and electrochemical active surface area of the electrocatalysts, thus greatly enhancing the intrinsic electrocatalytic activity. The optimal electrocatalyst (F0.25C1CH/NF) can deliver 10 and 1000 mA cm?2 at very small overpotentials of 77 and 256 mV for HER and 228 and 308 mV for OER in 1.0 m KOH without significant interference from gas evolution. The F0.25C1CH‐based two‐electrode alkaline water electrolyzer only requires cell voltages of 1.45 and 1.52 V to achieve current densities of 10 and 500 mA cm?2. The results demonstrate that such fascinating electrocatalytic activity can be ascribed to the increase in the catalytic active surface area, facilitated electron and mass transport properties, and the synergistic interactions because of the incorporation of Fe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号