首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The citrus flavonoid hesperetin has a variety of pharmacological actions, including antioxidant, antiinflammatory, and anticancer activities. This study investigated whether hesperetin prevents aging of oocytes in vitro in which it determined the maturation of nuclear and cytoplasm and the developmental capacity of embryo by modulating the reactive oxygen species (ROS) level. Porcine oocytes were matured in vitro for 44 hr (control) and for an additional 24 hr in the presence of 0, 1, 10, 100, and 250 μM hesperetin (aging, H‐1, H‐10, H‐100, and H‐250, respectively). Although there was no difference in the rate of maturation among all the groups, both the control and H‐100 groups significantly increased in the rate of cleavage and blastocyst formation compared to the aging group. The H‐100 group significantly decreased ROS activity and increases the level of glutathione (GSH) and expression of the antioxidant genes (PRDX5, NFE2L, SOD1, and SOD2) compared with the aging group. The H‐100 groups prevented aberrant spindle organization and chromosomal misalignment, blocked the decrease in the level of phosphorylated‐p44/42 mitogen‐activated protein kinase and increased the messenger RNA expression of cytoplasmic maturation factor genes (GDF9, CCNB1, BMP15, and MOS). Subsequently, both the control and H‐100 groups significantly increased the total cell number and decreased the apoptosis cells at the blastocyst stage compared with aging group. The results indicate that hesperetin improves the quality of porcine oocytes by protecting them against oxidative stress during aging in vitro.  相似文献   

2.
Histone H1 kinase (H1K) activity was assayed during meiotic maturation in porcine oocytes matured in a modified Krebs-Ringer bicarbonate solution (KRB) or in porcine follicular fluid (pFF) in vitro. Oocytes matured in KRB displayed lower male pronucleus formation ability, delayed first polar body emission, and a higher spontaneous activation rate than oocytes matured in pFF. In oocytes matured in pFF, H1K activity was low at the germinal vesicle stage and increased about 8-fold at first and second metaphases, with a transient depression at first anaphase and telophase. The H1K activity at second metaphase in oocytes matured in KRB was significantly lower than that in oocytes matured in pFF. These results suggest that the maturation medium used influences the fluctuation pattern of H1K activity and the biological characteristics of porcine oocytes cultured in vitro.  相似文献   

3.
Cui MS  Wang XL  Tang DW  Zhang J  Liu Y  Zeng SM 《Theriogenology》2011,75(4):638-646
Deterioration in the quality of mammalian mature oocytes during metaphase-II (M-II) arrest is called “oocyte aging”. Although histone acetylation may affect the progression of aging in murine oocytes, the mechanism is unknown. The objective was to determine the role of ooplasmic reactive oxygen species (ROS) in acetylation of histone H4 at lysine 12 (acH4K12) in porcine aged oocytes in vitro. Based on immunostaining with a specific antibody, acetylation of H4K12 in porcine oocytes increased during in vitro aging, which coincided with changing patterns of ooplasmic ROS content. Furthermore, both hydrogen peroxide (H2O2), and the mitochondrial membrane potential disrupter, carbonyl cyanide 3-chlorophenylhydrazone (CCCP), which can moderately elevate oocyte ROS content, significantly increased acetylation levels of H4K12 in porcine oocytes. It was noteworthy that acetylation in the CCCP group was decreased when ROS was counteracted by cysteine, a common antioxidant. In addition, the intracellular mRNA abundance of acetyltransferase gene HAT1 in aged and H2O2 treated oocytes was higher than in M-II phase oocytes, suggesting that HAT1 was involved in this reaction. After parthenogenetic activation, a lower proportion of oocytes developed to the blastocyst stage after CCCP or H2O2 treatment when compared with M-II phase oocytes (20 and 0% for CCCP and H2O2 groups, respectively, versus 42% for the M-II group, P < 0.05). In conclusion, elevated levels of H4K12 acetylation were attributed to increased ooplasmic ROS content during porcine oocyte aging in vitro.  相似文献   

4.
The objective of this study was to investigate the effects of oocyte selection using brilliant cresyl blue (BCB) and culture density during individual in vitro maturation (IVM) on porcine oocyte maturity and subsequent embryo development using a chemically defined medium. Cumulus-oocyte complexes (COCs) were classified as BCB-positive or BCB-negative after exposure to a BCB solution for 90 min. The classified COCs were matured in a group (15 COCs per 100-μL droplet) or individually (1 COC per 1-, 2.5-, 5-, or 10-μL droplet). Meiotic competence, intraoocyte glutathione concentration, and developmental competence after intracytoplasmic sperm injection were monitored. The BCB selected oocytes competent for nuclear and cytoplasmic maturation. Furthermore, meiotic competence for oocytes matured individually in a 5-μL droplet was superior (P < 0.05) to that of oocytes matured in a 1-μL droplet. Also, the culture density in a 5-μL droplet during IVM resulted in a higher (P < 0.05) rate of cleaved embryos than that in a 1-μL droplet and produced a similar rate of blastocysts compared with that of a group culture system. Conversely, BCB selection did not improve cleavage and blastocyst formation. In conclusion, it was possible to predict porcine oocytes competent for maturation using oocyte selection with BCB. Moreover, a 5-μL droplet during the individual IVM culture was most suitable for oocyte maturation and subsequent embryo development, although every culture density used in this study supported development up to the blastocyst stage.  相似文献   

5.
大蒜素体外抗白念珠菌生物膜作用的初步研究   总被引:2,自引:0,他引:2  
目的研究大蒜素对体外白念珠菌生物膜的影响。方法 MTT法评价大蒜素对白念珠菌生物膜形成及细胞黏附的影响;血清芽管计数法评价大蒜素对白念珠菌芽管形成的影响。结果低浓度(4μg/mL)和高浓度(64μg/mL)大蒜素对白念珠菌生物膜形成的抑制率分别为(23.0±1.1)%和(95.6±0.3)%;32μg/mL大蒜素对早期(0h)、中期(12h)及成熟期(48h)生物膜的抑制率分别为(88.5±0.5)%、(63.3±0.8)%和(52.3±1.1)%;与空白对照组相比,不同浓度大蒜素(4~32μg/mL)对培养30min、60min、90min、120min的白念珠菌细胞黏附均有显著抑制作用(P0.05);空白对照组芽管形成率为(91.2±1.6)%,64μg/mL大蒜素组为(2.2±1.2)%。结论大蒜素对体外白念珠菌生物膜有较明显的抑制作用。  相似文献   

6.
Deterioration in the quality of mammalian oocytes during the metaphase-II arrest period is well known as "oocyte aging." Oocytes in which aging has occurred are called aged oocytes, and these oocytes show enhanced activation and higher fragmentation rates after parthenogenetic activation. Previously we showed that porcine aged oocytes had low maturation/M-phase promoting factor (MPF) activity, and we suggested that this low MPF activity contributed at least in part to the aging phenomena. In the present study, we examined the relationship between MPF activity and these aging phenomena by artificially regulating MPF activity in porcine metaphase-II-arrested oocytes. Since we have shown recently that aged porcine oocytes contain abundant phosphorylated inactive MPF, so-called pre-MPF, we used vanadate and caffeine, which affect the phosphorylation status of MPF, to regulate MPF activity. Incubation of 48-h-matured oocytes with vanadate for 1 h increased the phosphorylation of MPF and decreased MPF activity. The parthenogenetic activation and fragmentation rates were significantly increased compared with those of control oocytes. Conversely, treatment of 72-h-cultured aged oocytes with caffeine (last 10 h of culture) decreased the level of pre-MPF and elevated MPF activity. These oocytes revealed significantly lower parthenogenetic activation rates and a lower percentage of fragmentation than did untreated aged oocytes. These results indicate that not only the increased ability for parthenogenetic activation but also the increased fragmentation rate observed in porcine aged oocytes may be attributable in part to the gradual decrease in MPF activity during prolonged culture. Control of MPF phosphorylation with these agents may allow for some degree of manipulation of oocyte aging.  相似文献   

7.
Optimization of culture conditions is important to improve oocyte maturation and subsequent embryo development. In particular, this study analyzed the effects of increasing concentrations of PIO in the maturation medium on spindle formation and chromosome alignment, glutathione, and intracellular ROS levels and expression of selected genes related to maternal markers, apoptosis, and lipid metabolism. The percentage of oocytes displaying normal spindle formation and chromosome alignment was higher in the 1 µM PIO (1 PIO)‐treated group than in the control group. The glutathione level was significantly higher in the 1 PIO‐treated group than in the control group, while the reactive oxygen species level did not differ. Expression of maternal marker (MOS and GDF9), antiapoptotic (BIRC5), and lipid metabolism‐related (ACADS, CPT2, SREBF1, and PPARG) genes was higher in the 1 PIO‐treated group than in the control group, while expression of a proapoptotic gene (CASP3) was lower. The blastocyst formation rate and the percentage of blastocysts that reached at least the hatching stage on Days 6 and 7, and the percentage of blastocysts containing more than 128 cells were significantly higher in the 1 PIO‐treated group than in the control group. These results indicate that PIO treatment during in vitro maturation improves porcine oocyte maturation and subsequent parthenogenetic embryo development mainly by enhancing lipid metabolism and antioxidant defense in oocytes.  相似文献   

8.
The objective of the experiments was to evaluate the effects of porcine ovarian cortex cells (pOCCs) during in vitro maturation (IVM) of porcine oocytes on IVM of porcine oocytes, in vitro fertilization (IVF) parameters and subsequent embryo development. The pOCCs was cultured in the 500 microl TCM199 without hormone until the confluence, and then cultured in 500 microl TCM199 supplemented with hormone for 12 h before the oocytes added. Porcine oocytes were co-cultured with the pOCCs monolayers in the co-culture system for 44 h, following fertilized in the mTBM for 6 h. Finally, the presumptive zygotes were cultured for 144 h in the NCSU-23 supplemented with 0.4% BSA. The results showed that matured M II oocytes in the co-culture group were higher than that in the control group (P<0.05). Although penetration did not differ between the co-culture and control groups (P=0.481), polyspermy declined in the co-culture group (P<0.05), whereas male pronucleus (MPN) formation was improved in the co-culture group compared with the control group (P<0.05). More blastocysts developed in the co-culture group than that in the control group (P<0.05); however, the cleavage rates and the mean number cells per blastocyst showed no significant difference between the treated group and the control group (P=0.560 and 0.873, respectively). In conclusion, the presence of the pOCCs monolayers during IVM enhanced the maturation quality of the porcine oocytes, reduced the polyspermy, increased the percentages of MPN formation and blastocyst, but the blastocyst quality was not improved.  相似文献   

9.
We examined the effects of transforming growth factor-α (TGF-α) to develop a defined medium for in vitro maturation (IVM) of porcine (Sus scrofa domesticus) oocytes. Cumulus-oocyte complexes (COCs) were matured in porcine oocyte medium containing 3 mg/mL polyvinyl alcohol (POM) and TGF-α (0, 1, 10, or 100 ng/mL) in the presence or absence of the gonadotropins equine chorionic gonadotropin (eCG) and human chorionic gonadotropin (hCG). In the absence of gonadotropins, adding 10 ng/mL TGF-α increased (P < 0.05) the percentage of oocytes that reached metaphase II (24.2%) compared with that of the control (no TGF-α addition; 5.6%). In the presence of gonadotropins, although maturation rate did not differ among TGF-α treatments (75.4% to 84.8%), the rate of blastocyst formation (28.1%) was higher (P < 0.05) in the TGF-α group (28.1%) than that in the control group (15.9%) after in vitro fertilization and embryo culture. An electron microscope study revealed that TGF-α–treated oocytes contained more homogenous lipid droplets than did control oocytes. Moreover, mitochondria surrounded by the endoplasmic reticulum were observed only in the TGF-α–treated oocytes. In blastocysts derived from the latter oocytes, mitochondria with numerous cristae were frequently observed compared with that in blastocysts from control oocytes. When the Day-5 blastocysts obtained from oocytes matured with TGF-α were surgically transferred into four recipients, a total of 29 piglets were farrowed. We concluded that the addition of TGF-α to the defined IVM medium of porcine oocytes improved the subsequent blastocyst formation and that the blastocysts produced by the defined in vitro production system have developmental competence to full term after embryo transfer.  相似文献   

10.
Fujihira T  Kishida R  Fukui Y 《Cryobiology》2004,49(3):286-290
In the present study, effects of concentration and pretreatment time of cytochalasin B (CB), and of two types of cryoprotectant solutions on the nuclear maturation of vitrified-warmed porcine oocytes were examined. Also, the developmental capacity of vitrified immature porcine oocytes following intracytoplasmic sperm injection (ICSI) was investigated. The nuclear maturation rate (46.8%) of the vitrified-warmed oocytes treated with 7.5 microg/mL CB for 30 min was significantly higher (P < 0.05) than those (13.9-39.2%) of the vitrified-warmed oocytes treated with 0, 2.5, or 5.0 microg/mL CB for 10 or 30 min. Additionally, the nuclear maturation rate of oocytes treated with CB and vitrified in ethylene glycol (EG) (37.1%) was significantly higher (P < 0.05) than that of EG + dimethyl sulfoxide (Me(2)SO) (23.9%). However, no significant differences were observed in the cleavage and blastocyst development rates among the control (45.2 and 20.0%, respectively), the EG group (37.8 and 13.5%, respectively) and the EG + Me(2)SO group (39.3 and 14.3%, respectively). These results demonstrated that: (1) pretreatment with 7.5 microg/mL CB was beneficial for the vitrification of immature porcine oocytes; (2) the combination of EG and Me(2)SO as a cryoprotectant was not advantageous for in vitro maturation (IVM) of vitrified immature porcine oocytes; and (3) vitrified-warmed porcine oocytes matured after IVM, developed to the blastocyst stage without distinct differences compared to fresh oocytes following ICSI.  相似文献   

11.
Fu XW  Wu GQ  Li JJ  Hou YP  Zhou GB  Lun-Suo  Wang YP  Zhu SE 《Theriogenology》2011,75(2):268-275
In order to examine its effect on oocyte lipid content and cryosurvival, Forskolin was added to the medium for in vitro maturation of porcine oocytes. Treatments were control (IVM without Forskolin during the 42 h incubation period), addition of 10 μM Forskolin for the entire 42 h (0-42) and addition of 10 μM Forskolin between 24 and 42 h only (24-42). In Experiment 1, treatments did not differ significantly in cleavage rate, but the blastocyst formation rate was lower in the 0-42 group than for control and 24-42 group oocytes (17, 32 and 40%, respectively; P < 0.05). It was shown in Experiment 2 that Forskolin treatment from 0-42 h and from 24-42 h significantly reduced lipid content of oocytes compared to that of control cells (65 and 99 vs. 140 μm2 intensity of fluorescence, respectively; P < 0.05). In Experiment 3, the percentage of oocyte survival after cryopreservation and thawing was significantly higher in both Forskolin treatment groups than in control oocytes (72% for 0-42, 65% for 24-42 and 52% for control; P < 0.05). However, Forskolin treatment did not increase cleavage rates of vitrified in vitro matured porcine oocytes (Control group 28%, 0-42 h group 0%, 24-42 h group 26.67%). Addition of Forskolin affected the nuclear maturation of porcine oocytes. The percentage of PBE (polar body extrusion) were significantly reduced in the 0-42 h group (0-42 h group 42.00 ± 2.08 vs. Control group 79.70 ± 2.82 and 24-42 h group 70.60 ± 2.83; P < 0.05). The 24-42 h group showed similar nuclear status to that of the Control group. We propose that delipation engendered by incubation with 10 μM Forskolin during 24-42 hours of maturation increased cryosurvival of in vitro-maturated porcine oocytes and that attendant chemical lipolysis did not impair their further development as it may have done in oocytes incubated with Forskolin for the full 42 h.  相似文献   

12.
The possibility of using aged porcine oocytes treated with caffeine, which inhibits the decrease in M-phase promoting factor activity, for pig cloning was evaluated. Cumulus-oocyte complexes (COCs) were cultured initially for 36 h and subsequently with or without 5 mM caffeine for 24 h (in total for 60 h: 60CA+ or 60CA- group, respectively). As a control group, COCs were cultured for 48 h without caffeine (48CA-). The pronuclear formation rates at 10 h after electrical stimulation in the 60CA+ and 60CA- groups decreased significantly (p < 0.05) compared with the 48CA- group. However, the fragmentation rate was significantly higher (p < 0.05) in the 60CA- group than in the 60CA+ and 48CA- groups. When the stimulated oocytes were cultured for 6 days, the 60CA+ group showed significantly lower blastocyst formation and higher fragmentation or degeneration rates (p < 0.05) than the 48CA- group. However, the number of total cells in blastocysts was not affected by maturation period or caffeine treatment. When somatic cell nuclei were injected into the non-enucleated oocytes and exposed to cytoplasm for a certain duration (1-11 h) before the completion of maturation (48 or 60 h), the rate of nuclear membrane breakdown after exposure to cytoplasm for 1-2 h in the 60CA- oocytes was significantly lower (p < 0.05) than in the other experimental groups. The rate of scattered chromosome formation in the same 60CA- group tended to be lower (p = 0.08) than in the other groups. After the enucleation and transfer of nuclei, blastocyst formation rates in the 60CA+ and 60CA- groups were significantly lower (p < 0.05) than in the 48CA- group. Blastocyst quality did not differ among all the groups. These results suggest that chromosome decondensation of the transplanted somatic nucleus is affected by both the duration of exposure to cytoplasm and the age of the recipient porcine oocytes, and that caffeine treatment promotes nuclear remodelling but does not prevent the decrease in the developmental ability of cloned embryos caused by oocyte aging.  相似文献   

13.
Interspecies somatic cell nucleus transfer (iSCNT) could be a useful bioassay system for assessing the ability of mammalian somatic cells to develop into embryos. To examine this possibility, we performed canine iSCNT using porcine oocytes, allowed to mature in vitro, as recipients. Canine fibroblasts from the tail tips and dewclaws of a female poodle (Fp) and a male poodle (Mp) were used as donors. We demonstrated that the use of porcine oocytes induced blastocyst formation in the iSCNT embryos cultured in porcine zygote medium-3. In Fp and Mp, the rate of blastocyst formation from cleaved embryos (Fp: 6.3% vs. 22.4%; and Mp: 26.1% vs. 52.4%) and the number of cells at the blastocyst stage (Fp: 30.7 vs. 60.0; and Mp: 27.2 vs. 40.1) were higher in the embryos derived from dewclaw cells than in those derived from tail-tip cells (P < 0.05). The use of donor cells of any type in later passages decreased the rate of blastocyst formation. Treatment with trichostatin-A did not improve the rate of blastocyst formation from cleaved dewclaw cell-derived embryos but did so in the embryos derived from the tail-tip cells of Fp. Only blastocysts derived from dewclaw cells of Mp developed outgrowths. However, outgrowth formation was retrieved in the embryos derived from dewclaw cells of Fp by aggregation at the 4-cell stage. We inferred that iSCNT performed using porcine oocytes as recipients could represent a novel bioassay system for evaluating the developmental competence of canine somatic cells.  相似文献   

14.
The susceptibility of in vitro matured (IVM) porcine oocytes to be fertilized in vitro after vitrification was investigated. IVM oocytes were cryopreserved by solid surface vitrification (SSV) or treated with cryoprotectants (toxicity control, TC). Control oocytes were not treated or vitrified. Live oocytes in the three groups were in vitro fertilized (IVF) and then cultured (IVC) for 6 days. In vitro maturation and IVC were performed under 5% or 20% O(2) tension. The percentage of live oocytes in the SSV group was lower than those in the control and TC groups. Fertilization rates after SSV were significantly lower than in the control group. Significantly fewer penetrated oocytes formed male pronuclei in the SSV group than in the control and TC groups. Cleavage rates were significantly lower in the SSV group than in the control and TC groups. Blastocyst formation rates in the control and TC groups were similar, whereas only a single embryo developed to the blastocyst stage from 113 oocytes after vitrification. Blastocyst formation rates in the control group and in the TC group were significantly higher under 5% O(2) IVC than under 20% O(2) IVC. Oxygen tension during IVM had no effect on embryo development. The glutathione (GSH) content of vitrified oocytes was significantly lower than in the controls. In contrast, the H(2)O(2) level was higher in vitrified oocytes than in control oocytes. Vitrification caused parthenogenetic activation in 44.9% of unfertilized oocytes. This significant increase in parthenogenetic activation along with significantly dropped GSH level in vitrified oocytes may explain the decreased ability of the SSV group to form male pronuclei. These factors might have contributed to the poor developmental competence of vitrified oocytes.  相似文献   

15.
以冷冻环为载体,探讨玻璃化冷冻对猪体外成熟卵母细胞染色体与纺锤体影响。单用40%乙二醇(ethyleneglycol,EG)或20%EG与20%二甲基亚砜(dimethylsulphoxide,DMSO)联合作冷冻保护剂,用直投液氮或使用玻璃化冷冻仪法制冷冷冻猪体外成熟卵母细胞;解冻2h后固定并免疫荧光法染色纺锤体及染色体;挑选各试验组形态正常卵母细胞进行体外受精实验。结果表明,与单用EG以及EG和DMSO联合直投液氮方案比较,EG和DMSO联合应用并采用玻璃化冷冻仪制冷方案卵母细胞染色体正常率为30.1%,纺锤体正常率为37.2%,可明显降低卵母细胞染色体及纺锤体结构损伤(P<0.05),并明显提高卵母细胞的激活效果(P<0.05)。采用联合冷冻保护剂及玻璃化冷冻仪高速冷冻可较好维持猪卵母细胞染色体与纺锤体形态,但玻璃化冷冻明显影响猪卵母细胞体外受精后的发育能力。  相似文献   

16.
Wu GQ  Jia BY  Li JJ  Fu XW  Zhou GB  Hou YP  Zhu SE 《Theriogenology》2011,76(5):785-793
The objective was to determine whether adding L-carnitine in IVM/IVC medium enhanced maturation and developmental competence of porcine oocytes in vitro. Oocyte maturation rates did not differ significantly among groups supplemented with 0, 0.25, 0.5, or 1 mg/mL of L-carnitine added during IVM (although 2 mg/mL of L-carnitine reduced maturation rate). Compared with control oocytes, those treated with 0.5 mg/mL of L-carnitine during IVM had greater (P < 0.05) rates of blastocyst formation after parthenogenetic activation, and these blastocysts had less (P < 0.05) apoptosis. Adding 0.5 mg/mL of L-carnitine during IVM also significantly reduced intracellular reactive oxygen species (ROS), and increased glutathione (GSH) concentrations. With or without glucose supplementation, 0.5 mg/mL of L-carnitine in the IVM medium significantly hastened nuclear maturation of oocytes. Moreover, supplementing the IVM medium with either glucose or L-carnitine increased (P < 0.05) percentages of oocytes that reached the metaphase II (MII) stage, relative to a control group. Final maturation rates in IVM medium containing either glucose or L-carnitine were not significantly different. Adding L-carnitine (0 to 2 mg/mL) to IVC medium for activated porcine oocytes did not significantly affect development. However, 0.5 mg/mL of L-carnitine in IVC medium significantly reduced reactive oxygen species levels and apoptosis in activated blastocysts, although glutathione concentrations were not significantly altered. In conclusion, adding L-carnitine during IVM/IVC improved developmental potential of porcine oocytes, and also the quality of parthenogenetic embryos, probably by accelerating nuclear maturation, and preventing oxidative damage and apoptosis.  相似文献   

17.
The developmental abilities of porcine oocytes matured and fertilized in vitro were examined in vivo and in vitro. Cumulus-oocyte complexes were cultured in mM199 supplemented with 10% porcine follicular fluid (PFF) and hormonal supplements (PMSG, hCG and estradiol-17beta) for 20 h and then without hormonal supplements for an additional 20 h. In Experiment 1, oocytes were then co-cultured for 6 h with spermatozoa which had been preincubated with 1% PFF (PFF-treated) or without (control). Oocytes were transferred to oviducts of gilts or cultured in modified Whitten's medium for 5 d. The percentages of oocytes with monospermic penetration (59%, 42 71 ) and with monospermic penetration and male and female pronuclei (32%, 23 71 ) were higher (P < 0.01) in the PFF-treated group than in controls (25%, 18 71 and 8%, 6 71 , respectively). After 5 d, the percentages of oocytes that developed to the morula or blastocyst stages in vitro and in vivo in the PFF-treated group (10%, 28 288 and 13%, 41 318 , respectively) were also higher (P < 0.05) than in controls (2%, 6 284 and 6%, 16 248 , respectively). Whereas some oocytes that were matured and fertilized in vitro developed to the blastocyst stage after 5 d in vivo culture (3%, 9 288 in PFF-treated group and 2%, 6 284 in control), no blastocysts were observed after 5 d when oocytes were cultured in vitro. When the progression of in vitro development of porcine oocytes that were matured and fertilized in vitro was examined in Experiment 2, morulae appeared after 72 h of culture, and 3% (3 100 ) of the oocytes developed to the blastocyst stage after 144 h (6 d) of culture. These results demonstrate that decreasing polyspermic penetration and increasing monospermic male pronuclear formation, as a result of PFF treatment of maturing spermatozoa, improved the developmental ability of porcine oocytes matured and fertilized in vitro. However, development in vitro was delayed by approximately 24 h compared with in vivo development, most of the embryos were blocked at the morula stage.  相似文献   

18.
Wang ZK  Wei PH  Wang JZ  Lei C  Kou MQ 《Theriogenology》1992,37(3):733-739
Four experiments were conducted to study 1) factors affecting porcine oocyte maturation in culture medium and 2) a new method for oocyte maturation outside the porcine body. In Experiment 1, five groups of oocytes were cultured in m-TCM199 or m-KRB medium for 24 to 28, 32 to 36 or 40 to 42 hours and then were fertilized in vitro. The cleavage rate (two to four-cell stage) of oocytes cultured for 32 to 36 hours was significantly higher than those of the other oocytes. The results indicate that a suitable culture period for the in vitro maturation of porcine oocytes is 32 to 36 hours. In Experiment 2, four groups of oocytes were cultured in m-KRB or m-KRB supplemented with PFF, PMSG or FSH for in vitro maturation, and the cleavage rates of oocytes were 7.94, 22.56, 30.23 and 23.26%, respectively, after in vitro fertilization. The results show that porcine follicular fluid (PFF) and gonadotrophins added to the culture medium promote porcine oocyte maturation in vitro. In Experiment 3, oocytes were cultured in m-KRB or m-TCM199, supplemented with both gonadotrophin and pocine folliclar fluid for maturation in vitro. After fertilization in vitro, the cleavage rates of oocytes were 26.32 and 27.93% for the two media. The results indicate that the difference between m-KRB and m-TCM199 was insignificant when the media were used to culture porcine oocytes. But there was a significant difference when PFF and gonadotrophins were added to the basic media. In Experiment 4, porcine oocytes were transferred into the reproductive tracts of other animals for maturation. After 34 to 36 hours, the oocytes were collected and fertilized in vitro. The cleavage rates of oocytes were 10.42, 28.45, 3.33 and 36.36%, respectively, for the oocytes matured in mouse uterine horns, rat uterine horns, rat oviducts or rabbit oviducts. The results show that porcine oocytes can be matured in the reproductive tracts of other animals.  相似文献   

19.
Choi YH  Saito S  Oguri N 《Theriogenology》1995,44(2):287-294
This study was conducted to clarify the effects of sperm concentration and media during preincubation on fertilization and development of porcine oocytes fertilized in vitro (IVF). The effect of porcine oviduct epithelial cell aggregates (POECA) on in vitro development of IVF embryos was also examined. Oocytes matured in vitro for 48 to 50 h were inseminated with epididymal spermatozoa preincubated at 2 sperm concentrations (1 - 2 x 10(8)/ ml vs 4 - 5 x 10(8)/ ml) for 3 h in either Dulbecco's phosphate buffered saline (PBS) or Brackett and Oliphant medium (BO). For capacitation, spermatozoa were treated with heparin (100microg / ml) for 15 min at 38.5 degrees C under 5% CO(2) in air. Cleavage and development to the blastocyst stage were evaluated on Day 3 and Day 8 after culture with or without POECA. The effect of sperm concentration on preincubation did not affect the fertilization rate, but preincubation in PBS medium did result in a higher fertilization rate (P < 0.05) than did the BO medium. The proportion of embryos undergoing cleavage and development to the blastocyst stage was significantly higher (P < 0.05) in the POECA co-culture group than in the group without POECA co-culture. The present results indicate that PBS medium can be utilized as a simple preincubation medium for porcine spermatozoa and that the presence of POECA during in vitro culture improved the development of IVF oocytes to the blastocyst stage.  相似文献   

20.
Control of oocyte aging during manipulation of matured oocytes should have advantages for recently developed reproductive technologies, such as cloning after nuclear transfer. We have shown that the enhanced activation ability and fragmentation of porcine in vitro matured and aged oocytes bore a close relationship to the gradual decrease in maturation/M-phase promoting factor (MPF) activity and that porcine aged oocytes contained plenty of MPF, but it was in an inactive form, pre-MPF, as a result of phosphorylation of its catalytic subunit p34(cdc2) and, therefore, had low MPF activity. We incubated porcine oocytes with vanadate and caffeine, which affected the phosphorylation status and MPF activity, and evaluated their activation abilities and fragmentation frequencies. Incubation of nonaged oocytes with vanadate increased p34(cdc2) phosphorylation and reduced MPF activity to levels similar to those of aged oocytes and increased their parthenogenetic activation and fragmentation rates compared with those of the control oocytes. Conversely, treating aged oocytes with caffeine reduced p34(cdc2) phosphorylation and increased MPF activity. These oocytes showed significantly lower parthenogenetic activation and fragmentation rates than aged mature oocytes. These results suggest that MPF activity is a key mechanism of oocyte aging and controlling MPF activity by altering p34(cdc2) phosphorylation with these chemicals may enable oocyte aging to be manipulated in vitro. We expect those ideas will be applied practically to pig cloning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号