首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hybrid organic/inorganic perovskite solar cells are invigorating the photovoltaic community due to their remarkable properties and efficiency. However, many perovskite solar cells show an undesirable current–voltage (IV) hysteresis in their forward and reverse voltage scans, working to the detriment of device characterization and performance. This hysteresis likely arises from slow ion migration in the bulk perovskite active layer to interfaces which may induce charge trapping. It is shown that interfacial chemistry between the perovskite and charge transport layer plays a critical role in ion transport and IV hysteresis in perovskite‐based devices. Specifically, phenylene vinylene polymers containing cationic, zwitterionic, or anionic pendent groups are utilized to fabricate charge transport layers with specific interfacial ionic functionalities. The interfacial‐adsorbing boundary induced by the zwitterionic polymer in contact with the perovskite increases the local ion concentration, which is responsible for the observed IV hysteresis. Moreover, the ion adsorbing properties of this interface are exploited for perovskite‐based memristors. This fundamental study of IV hysteresis in perovskite‐based devices introduces a new mechanism for inducing memristor behavior by interfacial ion adsorption.  相似文献   

2.
Perovskite solar cells (PSCs) exhibit a series of distinctive features in their optoelectronic response which have a crucial influence on the performance, particularly for long‐time response. Here, a survey of recent advances both in device simulation and optoelectronic and photovoltaic responses is provided, with the aim of comprehensively covering recent advances. Device simulations are included with clarifying discussions about the implications of classical drift–diffusion modeling and the inclusion of ionic charged layers near the outer carrier selective contacts. The outcomes of several transient techniques are summarized, along with the discussion of impedance and capacitive responses upon variation of bias voltage and irradiance level. In relation to the capacitive response, a discussion on the J–V curve hysteresis is also included. Although alternative models and explanations are included in the discussion, the review relies upon a key mechanism able to yield most of the rich experimental responses. Particularly for state‐of‐the‐art solar cells exhibiting efficiencies around or exceeding 20%, outer interfaces play a determining role on the PSC's performance. The ionic and electronic kinetics in the vicinity of the interfaces, coupled to surface recombination and carrier extraction mechanisms, should be carefully explored to progress further in performance enhancement.  相似文献   

3.
The influence of illumination on the long‐term performance of planar structured perovskite solar cells (PSCs) is investigated using fast and spatially resolved luminescence imaging. The authors analyze the effect of illuminated current density–voltage (JV) and light‐soaking measurements on pristine PSCs by providing visual evidence for the spatial inhomogeneous evolution of device performance. Regions that are exposed to light initially produce stronger electroluminescence signals than surrounding unilluminated regions, mainly due to a lower contact resistance and, possibly, higher charge collection efficiency. Over a period of several days, however, these initially illuminated regions appear to degrade more quickly despite the device being stored in a dark, moisture‐ and oxygen‐free environment. Using transmission electron microscopy, this accelerated degradation is attributed to delamination between the perovskite and the titanium dioxide (TiO2) layer. An ion migration mechanism is proposed for this delamination process, which is in accordance with previous current–voltage hysteresis observations. These results provide evidence for the intrinsic instability of CH3NH3PbI3‐based devices under illumination and have major implications for the design of PSCs from the standpoint of long‐term performance and stability.  相似文献   

4.
Formamidinium (FA)‐based 3D perovskite solar cells (PSCs) have been widely studied and they show reduced bandgap, enhanced stability, and improved efficiency compared to MAPbI3‐based devices. Nevertheless, the FA‐based spacers have rarely been studied for 2D Ruddlesden–Popper (RP) perovskites, which have drawn wide attention due to their enormous potential for fabricating efficient and stable photovoltaic devices. Here, for the first time, FA‐based derivative, 2‐thiopheneformamidinium (ThFA), is successfully synthesized and employed as an organic spacer for 2D RP PSCs. A precursor organic salts‐assisted crystal growth technique is further developed to prepare high quality 2D (ThFA)2(MA)n?1PbnI3n+1 (nominal n = 3) perovskite films, which shows preferential vertical growth orientations, high charge carrier mobilities, and reduced trap density. As a result, the 2D RP PSCs with an inverted planar p‐i‐n structure exhibit a dramatically improved power conversion efficiency (PCE) from 7.23% to 16.72% with negligible hysteresis, which is among the highest PCE in 2D RP PSCs with low nominal n‐value of 3. Importantly, the optimized 2D PSCs exhibit a dramatically improved stability with less than 1% degradation after storage in N2 for 3000 h without encapsulation. These findings provide an effective strategy for developing FA‐based organic spacers toward highly efficient and stable 2D PSCs.  相似文献   

5.
Side‐chain engineering is an important strategy for optimizing photovoltaic properties of organic photovoltaic materials. In this work, the effect of alkylsilyl side‐chain structure on the photovoltaic properties of medium bandgap conjugated polymer donors is studied by synthesizing four new polymers J70 , J72 , J73 , and J74 on the basis of highly efficient polymer donor J71 by changing alkyl substituents of the alkylsilyl side chains of the polymers. And the photovoltaic properties of the five polymers are studied by fabricating polymer solar cells (PSCs) with the polymers as donor and an n‐type organic semiconductor (n‐OS) m‐ITIC as acceptor. It is found that the shorter and linear alkylsilyl side chain could afford ordered molecular packing, stronger absorption coefficient, higher charge carrier mobility, thus results in higher Jsc and fill factor values in the corresponding PSCs. While the polymers with longer or branched alkyl substituents in the trialkylsilyl group show lower‐lying highest occupied molecular orbital energy levels which leads to higher Voc of the PSCs. The PSCs based on J70 :m‐ITIC and J71 :m‐ITIC achieve power conversion efficiency (PCE) of 11.62 and 12.05%, respectively, which are among the top values of the PSCs reported in the literatures so far.  相似文献   

6.
Perovskite solar cells (PSCs) are of great interest in current photovoltaic research due to their extraordinary power conversion efficiency of ≈20% and boundless potentialities. The high efficiency has been mostly obtained from TiO2‐based PSCs, where TiO2 is utilized as a hole‐blocking, mesoporous layer. However, trapped charges and the light‐induced photocatalytic effect of TiO2 seriously degrade the perovskite and preclude PSCs from being immediately commercialized. Herein, a simplified PSC is successfully fabricated by eliminating the problematic TiO2 layers, using instead a fluorine‐doped tin oxide (FTO)/perovskite/hole–conductor/Au design. Simultaneously, the sluggish charge extraction at the FTO/perovskite interface is overcome by modifying the surface of the FTO to a porous structure using electrochemical etching. This surface engineering enables a substantial increase in the photocurrent density and mitigation of the hysteretic behavior of the pristine FTO‐based PSC; a remarkable 19.22% efficiency with a low level of hysteresis is obtained. This performance is closely approaching that of conventional PSCs and may facilitate their commercialization due to improved convenience, lower cost, greater stability, and potentially more efficient mass production.  相似文献   

7.
In perovskite solar cells (PSCs), the interfaces are a weak link with respect to degradation. Electrochemical reactivity of the perovskite's halides has been reported for both molecular and polymeric hole selective layers (HSLs), and here it is shown that also NiO brings about this decomposition mechanism. Employing NiO as an HSL in p–i–n PSCs with power conversion efficiency (PCE) of 16.8%, noncapacitive hysteresis is found in the dark, which is attributable to the bias‐induced degradation of perovskite/NiO interface. The possibility of electrochemically decoupling NiO from the perovskite via the introduction of a buffer layer is explored. Employing a hybrid magnesium‐organic interlayer, the noncapacitive hysteresis is entirely suppressed and the device's electrical stability is improved. At the same time, the PCE is improved up to 18% thanks to reduced interfacial charge recombination, which enables more efficient hole collection resulting in higher Voc and FF.  相似文献   

8.
2D Ruddlesden–Popper perovskites (RPPs) have recently drawn significant attention because of their structural variability that can be used to tailor optoelectronic properties and improve the stability of derived photovoltaic devices. However, charge separation and transport in 2D perovskite solar cells (PSCs) suffer from quantum well barriers formed during the processing of perovskites. It is extremely difficult to manage phase distributions in 2D perovskites made from the stoichiometric mixtures of precursor solutions. Herein, a generally applicable guideline is demonstrated for precisely controlling phase purity and arrangement in RPP films. By visually presenting the critical colloidal formation of the single‐crystal precursor solution, coordination engineering is conducted with a rationally selected cosolvent to tune the colloidal properties. In nonpolar cosolvent media, the derived colloidal template enables RPP crystals to preferentially grow along the vertically ordered alignment with a narrow phase variation around a target value, resulting in efficient charge transport and extraction. As a result, a record‐high power conversion efficiency (PCE) of 14.68% is demonstrated for a (TEA)2(MA)2Pb3I10 (n = 3) photovoltaic device with negligible hysteresis. Remarkably, superior stability is achieved with 93% retainment of the initial efficiency after 500 h of unencapsulated operation in ambient air conditions.  相似文献   

9.
In the field of polymer solar cells, improving photovoltaic performance has been the main driver over the past decade. To achieve high power conversion efficiencies, a plethora of new photoactive donor polymers and fullerene derivatives have been developed and blended together in bulk heterojunction active layers. Simultaneously, further optimization of the device architecture is also of major importance. In this respect, we report on the use of specific types of electron transport layers to boost the inherent IV properties of polymer solar cell devices, resulting in a considerable gain in overall photovoltaic output. Imidazolium‐substituted polythiophenes are introduced as appealing electron transport materials, outperforming the currently available analogous conjugated polyelectrolytes, mainly by an increase in short‐circuit current. The molecular weight of the ionic polythiophenes has been identified as a crucial parameter influencing performance.  相似文献   

10.
Two n‐type organic semiconductor (n‐OS) small molecules m‐ITIC‐2F and m‐ITIC‐4F with fluorinated 2‐(2,3‐dihydro‐3‐oxo‐1H‐inden‐1‐ylidene)propanedinitrile (IC) terminal moieties are prepared, for the application as an acceptor in polymer solar cells (PSCs), to further improve the photovoltaic performance of the n‐OS acceptor 3,9‐bis(2‐methylene‐(3‐(1,1‐dicyanomethylene) indanone) ‐5,5,11,11‐tetrakis(3‐hexylphenyl)‐dithieno[2,3‐d:2′,3′‐d′]‐sindaceno[1,2‐b:5,6‐b′]‐dithiophene (m‐ITIC). Compared to m‐ITIC, these two new acceptors show redshifted absorption, higher molecular packing order, and improved electron mobilities. The power conversion efficiencies (PCE) of the as‐cast PSCs with m‐ITIC‐2F or m‐ITIC‐4F as an acceptor and a low‐cost donor–acceptor (D–A) copolymer PTQ10 as a donor reach 11.57% and 11.64%, respectively, which are among the highest efficiency for the as‐cast PSCs so far. Furthermore, after thermal annealing treatment, improved molecular packing and enhanced phase separation are observed, and the higher PCE of 12.53% is achieved for both PSCs based on the two acceptors. The respective and unique advantage with the intrinsic high degree of order, molecular packing, and electron mobilities of these two acceptors will be suitable to match with different p‐type organic semiconductor donors for higher PCE values, which provide a great potential for the PSCs commercialization in the near future. These results indicate that rational molecular structure optimization is of great importance to further improve photovoltaic properties of the photovoltaic materials.  相似文献   

11.
Ionic movement is considered awful in perovskite solar cells (PSCs) for relating with the hysteresis and long‐term instability. However, the positive role of ions to enhance the energy band bending for high performance PSC is always overlooked, let alone reducing the hysteresis. In this work, LiI is doped in CH3NH3PbI3. It is observed that the aggregation of Li+/I? tunes the energy level of the perovskite and induces n/p doping in CH3NH3PbI3, which makes charge extraction quite efficient from perovskite to both NiO and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) layer. Therefore, in NiO/LiI doped perovskite/PCBM solar cells, Li+ and I? modulate the interface energy band alignment to facilitate the electron/hole transport and reduce the interface energy loss. On the other hand, n/p doping enlarges Fermi energy level splitting of the PSCs to improve the photovoltage. The performance of LiI doped PSCs is much higher with reduced hysteresis compared to the undoped solar cells. This work highlights the positive effect of selective ionic doping, which is promisingly important to design the stable and efficient PSCs.  相似文献   

12.
2D Ruddlesden–Popper perovskites (RPPs) are emerging as potential challengers to their 3D counterpart due to superior stability and competitive efficiency. However, the fundamental questions on energetics of the 2D RPPs are not well understood. Here, the energetics at (PEA)2(MA)n?1PbnI3n+1/[6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) interfaces with varying n values of 1, 3, 5, 40, and ∞ are systematically investigated. It is found that n–n junctions form at the 2D RPP interfaces (n = 3, 5, and 40), instead of p–n junctions in the pure 2D and 3D scenarios (n = 1 and ∞). The potential gradient across phenethylammonium iodide ligands that significantly decreases surface work function, promotes separation of the photogenerated charge carriers with electron transferring from perovskite crystal to ligand at the interface, reducing charge recombination, which contributes to the smallest energy loss and the highest open‐circuit voltage (Voc) in the perovskite solar cells (PSCs) based on the 2D RPP (n = 5)/PCBM. The mechanism is further verified by inserting a thin 2D RPP capping layer between pure 3D perovskite and PCBM in PSCs, causing the Voc to evidently increase by 94 mV. Capacitance–voltage measurements with Mott–Schottky analysis demonstrate that such Voc improvement is attributed to the enhanced potential at the interface.  相似文献   

13.
With the rapid progress in developing hybrid perovskite solar cells, the allure of current density–voltage ( JV) hysteresis has attracted quite a lot of interest in the research community. It requires feasible approaches that further deepen the fundamental understanding of device physics in specific device architecture in order to solve this problem eventually. Here, perovskite solar cells configured with different counter electrodes are systematically investigated with the focus on charge accumulation within the devices responsible for JV hysteresis. The results indicate that JV hysteresis is affected by charge accumulation which can be modulated by carrier extraction efficiency of the electrodes. Through a rationally induced interfacial dipole, the devices have shown improvement in carrier extraction, which thus reduces JV hysteresis significantly. It provides solid evidence for the proposition that interface charge plays an important role in JV hysteresis, and demonstrates an applicable strategy that effectively alleviates JV hysteresis in perovskite solar cells.  相似文献   

14.
One advantage of nonfullerene polymer solar cells (PSCs) is that they can yield high open‐circuit voltage (VOC) despite their relatively low optical bandgaps. To maximize the VOC of PSCs, it is important to fine‐tune the energy level offset between the donor and acceptor materials, but in a way not negatively affecting the morphology of the donor:acceptor (D:A) blends. Here, an effective material design rationale based on a family of D–A1–D–A2 terthiophene (T3) donor polymers is reported, which allows for the effective tuning of energy levels but without any negative impacts on the morphology of the blend. Based on a T3 donor unit combined with difluorobenzothiadiazole (ffBT) and difluorobenzoxadiazole (ffBX) acceptor units, three donor polymers are developed with highly similar morphological properties. This is particularly surprising considering that the corresponding quaterthiophene polymers based on ffBT and ffBX exhibit dramatic differences in their solubility and morphological properties. With the fine‐tuning of energy levels, the T3 polymers yield nonfullerene PSCs with a high efficiency of 9.0% for one case and with a remarkably low energy loss (0.53 V) for another polymer. This work will facilitate the development of efficient nonfullerene PSCs with optimal energy levels and favorable morphology properties.  相似文献   

15.
The value and temperature dependence of the ideality factor provides essential information about the dominant recombination route in solar cells. This study presents experimental results of accurate ideality factor determination for representative organic photovoltaic cells (OPV) evaluated at different temperatures over a large current density regime. It is noted that standard dark IV curves strongly deviate from those obtained by evaluations based on short circuit current density (J SC)–open circuit voltage (V OC) pairs. This is attributed to the applied external voltage in a dark IV measurement not being representative of internal chemical potential, particularly at lower temperatures. Complementary electroluminescence measurements attest that the current density dependence of the ability of the solar cell to emit light is better correlated to the series resistance free ideality factor. For the studied set of OPV devices it is observed that the ideality factors are quite low, and with very weak temperature dependence. The J SCV OC method to determine ideality factors further allows good estimates of activation energies as well as recombination current prefactors J 00. The findings imply that the principal OPV non‐radiative recombination mechanism is not recombination of free carriers with trapped carriers in an exponential density of tail states as previously reported.  相似文献   

16.
Organic–inorganic halide perovskite solar cells (PSCs) have emerged as attractive alternatives to conventional solar cells. It is still a challenge to obtain PSCs with good thermal stability and high permanence, especially at extreme outdoor temperatures. This work systematically studies the effects of Bi3+ modification on structural, electrical, and optical properties of perovskite films (FA0.83MA0.17Pb(I0.83Br0.17)3) and the performance of corresponding PSCs. The results indicate that Bi3+ modified PSCs can achieve better thermal stability, photovoltaic response, and reproducibility compared with control cells due to the decreased grain boundaries, enhanced crystallization, and improved electron extraction from perovskite film. As a result, the modified PSC exhibits an optimized power conversion efficiency (PCE) of 19.4% compared with 18.3% for the optimized control device, accompanied by better thermoresistant ability under 100–180 °C and enhanced long‐term stability. The degradation rate of the modified device is reduced by an order of magnitude due to effective structural defect modification in perovskite photoactive layer. It could maintain more than two months at 60 °C. These results shed light on the origin of crystallization and thermal stability of perovskite films, and provide an approach to solve thermal stability issue of PSCs.  相似文献   

17.
Solution‐processed organic–inorganic lead halide perovskite solar cells (PSCs) are considered as one of the most promising photovoltaic technologies thanks to both high performance and low manufacturing cost. However, a key challenge of this technology is the lack of ambient stability over prolonged solar irradiation under continuous operating conditions. In fact, only a few studies (carried out in inert atmosphere) already approach the industrial standards. Here, it is shown how the introduction of MoS2 flakes as a hole transport interlayer in inverted planar PSCs results in a power conversion efficiency (PCE) of ≈17%, overcoming the one of the standard reference devices. Furthermore, this approach allows the realization of ultrastable PSCs, stressed in ambient conditions and working at continuous maximum power point. In particular, the photovoltaic performances of the proposed PSCs represent the current state‐of‐the‐art in terms of lifetime, retaining 80% of their initial performance after 568 h of continuous stress test, thus approaching the industrial stability standards. Moreover, it is further demonstrated the feasibility of this approach by fabricating large‐area PSCs (0.5 cm2 active area) with MoS2 as the interlayer. These large‐area PSCs show improved performance (i.e., PCE = 13.17%) when compared with the standard devices (PCE = 10.64%).  相似文献   

18.
For practical use of perovskite solar cells (PSCs) the instability issues of devices, attributed to degradation of perovskite molecules by moisture, ions migration, and thermal‐ and light‐instability, have to be solved. Herein, highly efficient and stable PSCs based on perovskite/Ag‐reduced graphene oxide (Ag‐rGO) and mesoporous Al2O3/graphene (mp‐AG) composites are reported. The mp‐AG composite is conductive with one‐order of magnitude higher mobility than mp‐TiO2 and used for electron transport layer (ETL). Compared to the mp‐TiO2 ETL based cells, the champion device based on perovskite/Ag‐rGO and SrTiO3/mp‐AG composites shows overall a best performance (i.e., VOC = 1.057 V, JSC = 25.75 mA cm?2, fill factor (FF) = 75.63%, and power conversion efficiency (PCE) = 20.58%). More importantly, the champion device without encapsulation exhibits not only remarkable thermal‐ and photostability but also long‐term stability, retaining 97–99% of the initial values of photovoltaic parameters and sustaining ≈93% of initial PCE over 300 d under ambient conditions.  相似文献   

19.
Lead halide perovskites often suffer from a strong hysteretic behavior on their jV response in photovoltaic devices that has been correlated with slow ion migration. The electron extraction layer has frequently been pointed to as the main culprit for the observed hysteretic behavior. In this work three hole transport layers are studied with well‐defined highest occupied molecular orbital (HOMO) levels and interestingly the hysteretic behavior is markedly different. Here it is shown that an adequate energy level alignment between the HOMO level of the extraction layer and the valence band of the perovskite, not only suppresses the hysteresis, avoiding charge accumulation at the interfaces, but also degradation of the hole transport layer is reduced. Numerical simulation suggests that formation of an injection barrier at the organic/perovskite heterointerface could be one mechanism causing hysteresis. The suppression of such barriers may require novel design rules for interface materials. Overall, this work highlights that both external contacts need to be carefully optimized in order to obtain hysteresis‐free perovskite devices.  相似文献   

20.
The emerging field of tandem polymer solar cells (TPSCs) enables a feasible approach to deal with the fundamental losses associated with single‐junction polymer solar cells (PSCs) and provides the opportunity to propel their overall performance. Additionally, the rational selection of appropriate subcell photoactive polymers with complementary absorption profiles and optimal thicknesses to achieve balanced photocurrent generation are very important issues which must be addressed in order to realize paramount device performance. Here, two side chain fluorinated wide‐bandgap π‐conjugated polymers P1 (2F) and P2 (4F) in TPSCs have been used. These π‐conjugated polymers have high absorption coefficients and deep highest occupied molecular orbitals which lead to high open‐circuit voltages (Voc) of 0.91 and 1.00 V, respectively. Using these π‐conjugated polymers, TPSCs have been successfully fabricated by combining P1 or P2 as front cells with PTB7‐Th as back cells. The optimized TPSCs deliver outstanding power conversion efficiencies of 11.42 and 10.05%, with high Voc's of 1.64 and 1.72 V, respectively. These results are analyzed by balance of charge mobilities, and optical and electrical modeling is combined to demonstrate simultaneous improvement in all photovoltaic parameters in TPSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号