首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work, an ether‐based electrolyte is adopted instead of conventional ester‐based electrolyte for an Sb2O3‐based anode and its enhancement mechanism is unveiled for K‐ion storage. The anode is fabricated by anchoring Sb2O3 onto reduced graphene oxide (Sb2O3‐RGO) and it exhibits better electrochemical performance using an ether‐based electrolyte than that using a conventional ester‐based electrolyte. By optimizing the concentration of the electrolyte, the Sb2O3‐RGO composite delivers a reversible specific capacity of 309 mAh g?1 after 100 cycles at 100 mA g?1. A high specific capacity of 201 mAh g?1 still remains after 3300 cycles (111 days) at 500 mA g?1 with almost no decay, exhibiting a longer cycle life compared with other metallic oxides. In order to further reveal the intrinsic mechanism, the energy changes for K atom migrating from surface into the sublayer of Sb2O3 are explored by density functional theory calculations. According to the result, the battery using the ether‐based electrolyte exhibits a lower energy change and migration barrier than those using other electrolytes for K‐ion, which is helpful to improve the K‐ion storage performance. It is believed that the work can provide deep understanding and new insight to enhance electrochemical performance using ether‐based electrolytes for KIBs.  相似文献   

2.
Na3V2(PO4)3 (NVP) is regarded as a promising cathode for advanced sodium‐ion batteries (SIBs) due to its high theoretical capacity and stable sodium (Na) super ion conductor (NASICON) structure. However, strongly impeded by its low electronic conductivity, the general NVP delivers undesirable rate capacity and fails to meet the demands for quick charge. Herein, a novel and facile synthesis of layer‐by‐layer NVP@reduced graphene oxide (rGO) nanocomposite is presented through modifying the surface charge of NVP gel precursor. The well‐designed layered NVP@rGO with confined NVP nanocrystal in between rGO layers offers high electronic and ionic conductivity as well as stable structure. The NVP@rGO nanocomposite with merely ≈3.0 wt% rGO and 0.5 wt% amorphous carbon, yet exhibits extraordinary electrochemical performance: a high capacity (118 mA h g?1 at 0.5 C attaining the theoretical value), a superior rate capability (73 mA h g?1 at 100 C and even up to 41 mA h g?1 at 200 C), ultralong cyclability (70.0% capacity retention after 15 000 cycles at 50 C), and stable cycling performance and excellent rate capability at both low and high operating temperatures. The proposed method and designed layer‐by‐layer active nanocrystal@rGO strategy provide a new avenue to create nanostructures for advanced energy storage applications.  相似文献   

3.
4.
Herein, the successful synthesis of MnPO4‐coated LiNi0.4Co0.2Mn0.4O2 (MP‐NCM) as a lithium battery cathode material is reported. The MnPO4 coating acts as an ideal protective layer, physically preventing the contact between the NCM active material and the electrolyte and, thus, stabilizing the electrode/electrolyte interface and preventing detrimental side reactions. Additionally, the coating enhances the lithium de‐/intercalation kinetics in terms of the apparent lithium‐ion diffusion coefficient. As a result, MP‐NCM‐based electrodes reveal greatly enhanced C‐rate capability and cycling stability—even under exertive conditions like extended operational potential windows, elevated temperature, and higher active material mass loadings. This superior electrochemical behavior of MP‐NCM compared to as‐synthesized NCM is attributed to the superior stability of the electrode/electrolyte interface and structural integrity when applying a MnPO4 coating. Employing an ionic liquid as an alternative, intrinsically safer electrolyte system allows for outstanding cycling stabilities in a lithium‐metal battery configuration with a capacity retention of well above 85% after 2000 cycles. Similarly, the implementation in a lithium‐ion cell including a graphite anode provides stable cycling for more than 2000 cycles and an energy and power density of, respectively, 376 Wh kg?1 and 1841 W kg?1 on the active material level.  相似文献   

5.
6.
Olivine‐type LiMnPO4 (LMP) cathodes have gained enormous attraction for Li‐ion batteries (LIBs), thanks to their large theoretical capacity, high discharge platform, and thermal stability. However, it is still hugely challenging to achieve encouraging Li‐storage behaviors owing to their low electronic conductivity and limited lithium diffusion. Herein, the core double‐shell Ti‐doped LMP@NaTi2(PO4)3@C/3D graphene (TLMP@NTP@C/3D‐G) architecture is designed and constructed via an in situ synthetic methodology. A continuous electronic conducting network is formed with the unfolded 3D‐G and conducting carbon nanoshell. The Nasicon‐type NTP nanoshell with exceptional ionic conductivity efficiently inhibits gradual enrichment in by‐products, and renders low surfacial/interfacial electron/ion‐diffusion resistance. Besides, a rapid Li+ diffusion in the bulk structure is guaranteed with the reduction of MnLi+˙ antisite defects originating from the synchronous Ti‐doping. Benefiting from synergetic contributions from these design rationales, the integrated TLMP@NTP@C/3D‐G cathode yields high initial discharge capacity of ≈164.8 mAh g?1 at 0.05 C, high‐rate reversible capacity of ≈116.2 mAh g?1 at 10 C, and long‐term capacity retention of ≈93.3% after 600 cycles at 2 C. More significantly, the electrode design developed here will exert significant impact upon constructing other advanced cathodes for high‐energy/power LIBs.  相似文献   

7.
Na3V2(PO4)3 has attracted great attention due to its high energy density and stable structure. However, in order to boost its application, the discharge potential of 3.3–3.4 V (vs Na+/Na) still needs to be improved and substitution of vanadium with other lower cost and earth‐abundant active redox elements is imperative. Therefore, the Na superionic conductor (NASICON)‐structured Na4MnV(PO4)3 seems to be more attractive due to its lower toxicity and higher voltage platform resulting from the partial substitution of V with Mn. However, Na4MnV(PO4)3 still suffers from poor electronic conductivity, leading to unsatisfactory capacity delivering and poor high‐rate capability. In this work, a graphene aerogel–supported in situ carbon–coated Na4MnV(PO4)3 material is synthesized through a feasible solution‐route method. The elaborately designed Na4MnV(PO4)3 can reach ≈380 Wh kg?1 at 0.5 C (1 C = 110 mAh g?1) and realize superior high‐rate capability evenat 50 C (60.1 mAh g?1) with a long cycle‐life of 4000 cycles at 20 C. This impressive progress should be ascribed to the multifunctional 3D carbon framework and the distinctive structure of trigonal Na4MnV(PO4)3, which are deeply investigated by both experiments and calculations.  相似文献   

8.
To accommodate the decreasing lithium resource and ensure continuous development of energy storage industry, sodium‐based batteries are widely studied to inherit the next generation of energy storage devices. In this work, a novel Na super ionic conductor type KTi2(PO4)3/carbon nanocomposite is designed and fabricated as sodium storage electrode materials, which exhibits considerable reversible capacity (104 mAh g?1 under the rate of 1 C with flat voltage plateaus at ≈2.1 V), high‐rate cycling stability (74.2% capacity retention after 5000 cycles at 20 C), and ultrahigh rate capability (76 mAh g?1 at 100 C) in sodium ion batteries. Besides, the maximum ability for sodium storage is deeply excavated by further investigations about different voltage windows in half and full sodium ion cells. Meanwhile, as cathode material in sodium‐magnesium hybrid batteries, the KTi2(PO4)3/carbon nanocomposite also displays good electrochemical performances (63 mAh g?1 at the 230th cycle under the voltage window of 1.0–1.9 V). The results demonstrate that the KTi2(PO4)3/carbon nanocomposite is a promising electrode material for sodium ion storage, and lay theoretical foundations for the development of new type of batteries.  相似文献   

9.
10.
11.
Sodium‐ion battery has captured much attention due to the abundant sodium resources and potentially low cost. However, it suffers from poor cycling stability and low diffusion coefficient, which seriously limit its widespread application. Here, K3V2(PO4)3/C bundled nanowires are fabricated usinga facile organic acid‐assisted method. With a highly stable framework, nanoporous structure, and conductive carbon coating, the K3V2(PO4)3/C bundled nanowires manifest excellent electrochemical performances in sodium‐ion battery. A stable capacity of 119 mAh g?1 can be achieved at 100 mA g?1. Even at a high current density of 2000 mA g?1, 96.0% of the capacity can be retained after 2000 charge–discharge cycles. Comparing with K3V2(PO4)3/C blocks, the K3V2(PO4)3/C bundled nanowires show significantly improved cycling stability. This work provides a facile and effective approach to enhance the electrochemical performance of sodium‐ion batteries.  相似文献   

12.
13.
Sodium‐ion batteries (SIBs) that operate in a wide temperature range are in high demand for practical large‐scale electric energy storage. Herein, a novel full SIB is composed of a bulk Bi anode, a Na3V2(PO4)3/carbon nanotubes composite (NVP‐CNTs) cathode and a NaPF6‐diglyme electrolyte. The Bi anode gradually evolves into a porous network in the ether‐based electrolyte during initial cycles, and in the NVP‐CNTs cathode the NVP is cross linked by CNTs to show large exchange current density. These unique features merit the full SIB of Bi//NVP‐CNTs with high Na+ diffusion coefficient and low reaction activation energy, and hence fast Na+ transport and facile redox reaction kinetics. The resultant full SIB presents high power density of 2354.6 W kg?1 and energy density of 150 Wh kg?1 and superior cycling stability in a wide temperature range from ?15 to 45 °C. This will shed light on battery design, and promote their development for practical applications in various weather conditions.  相似文献   

14.
15.
In this paper, a novel freestanding core‐branch negative and positive electrode material through integrating trim aligned Fe2O3 nanoneedle arrays (Fe2O3 NNAs) is first proposed with typical mesoporous structures and NiCo2O4/Ni(OH)2 hybrid nanosheet arrays (NiCo2O4/Ni(OH)2 HNAs) on SiC nanowire (SiC NW) skeletons with outstanding resistance to oxidation and corrosion, good conductivity, and large‐specific surface area. The original built SiC NWs@Fe2O3 NNAs is validated to be a highly capacitive negative electrode (721 F g?1 at 2 A g?1, i.e., 1 F cm?2 at 2.8 mA cm?2), matching well with the similarly constructed SiC NWs@NiCo2O4/Ni(OH)2 HNAs positive electrode (2580 F g?1 at 4 A g?1, i.e., 3.12 F cm?2 at 4.8 mA cm?2). Contributed by the uniquely engineered electrodes, a high‐performance asymmetric supercapacitor (ASC) is developed, which can exhibit a maximum energy density of 103 W h kg?1 at a power density of 3.5 kW kg?1, even when charging the device within 6.5 s, the energy density can still maintain as high as 45 W h kg?1 at 26.1 kW kg?1, and the ASC manifests long cycling lifespan with 86.6% capacitance retention even after 5000 cycles. This pioneering work not only offers an attractive strategy for rational construction of high‐performance SiC NW‐based nanostructured electrodes materials, but also provides a fresh route for manufacturing next‐generation high‐energy storage and conversion systems.  相似文献   

16.
Despite great progress in aluminum ion batteries (AIBs), the commercialization and performance improvement of AIBs‐based carbon cathodes is greatly impeded by sluggish intercalation/extraction and redox kinetics due to large‐sized AlCl4? anions. Phosphates with tunnel channels and much larger d‐spacing than the radius of Al3+ could be an alternative candidate as a cathode for potential high‐performance AIBs. Herein, elaborately designed porous tunnel structured Co3(PO4)2@C composites derived from ZIF‐67 as AIBs cathodes are demonstrated, showing increased active sites, high ionic mobility, and high Al3+ ion diffusion coefficient, leading to remarkably enhanced discharge–charge redox reaction kinetics. Furthermore, the carbon shell and porous structure performs as armor to alleviate volume change and maintain the structure integrity of the cathodes. As expected, the rationally constructed Co3(PO4)2@C composite exhibits a superior capacity of 111 mA h g?1 at a high current density of 6 A g?1 and 151 mA h g?1 at 2 A g?1 after 500 cycles with capacity decay of 0.02% per cycle. This innovative strategy could be a big step forward for long‐term cycle stable AIBs and reveals significant insights into the redox reaction mechanism for high‐performance AIBs based on Al3+ rather than large‐sized AlCl4?.  相似文献   

17.
18.
19.
20.
Alzheimer disease is a neurodegenerative disease affecting an increasing number of patients worldwide. Current therapeutic strategies are directed to molecules capable to block the aggregation of the β‐amyloid(1‐42) (Aβ) peptide and its shorter naturally occurring peptide fragments into toxic oligomers and amyloid fibrils. Aβ‐specific antibodies have been recently developed as powerful antiaggregation tools. The identification and functional characterization of the epitope structures of Aβ antibodies contributes to the elucidation of their mechanism of action in the human organism. In previous studies, the Aβ(4‐10) peptide has been identified as an epitope for the polyclonal anti‐Aβ(1‐42) antibody that has been shown capable to reduce amyloid deposition in a transgenic Alzheimer disease mouse model. To determine the functional significance of the amino acid residues involved in binding to the antibody, we report here the effects of alanine single‐site mutations within the Aβ‐epitope sequence on the antigen‐antibody interaction. Specific identification of the essential affinity preserving mutant peptides was obtained by exposing a Sepharose‐immobilized antibody column to an equimolar mixture of mutant peptides, followed by analysis of bound peptides using high‐resolution MALDI‐Fourier transform‐Ion Cyclotron Resonance mass spectrometry. For the polyclonal antibody, affinity was preserved in the H6A, D7A, S8A, and G9A mutants but was lost in the F4, R5, and Y10 mutants, indicating these residues as essential amino acids for binding. Enzyme‐linked immunosorbent assays confirmed the binding differences of the mutant peptides to the polyclonal antibody. In contrast, the mass spectrometric analysis of the mutant Aβ(4‐10) peptides upon affinity binding to a monoclonal anti‐Aβ(1‐17) antibody showed complete loss of binding by Ala‐site mutation of any residue of the Aβ(4‐10) epitope. Surface plasmon resonance affinity determination of wild‐type Aβ(1‐17) to the monoclonal Aβ antibody provided a binding constant KD in the low nanomolar range. These results provide valuable information in the elucidation of the binding mechanism and the development of Aβ‐specific antibodies with improved therapeutic efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号