首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Efficient utilization of methane via catalytic complete combustion is a very important pathway to realize energy efficiency and pollution reduction. From the viewpoint of structural design, herein a green water‐phase route is developed to prepare ultrathin Co(OH)2 nanosheet supported Pd catalysts. As a platform, the as‐obtained Pd/Co(OH)2 nanosheets are able to be further used to load CeO2 nanoparticles to form 2D nanostructured Pd/CeO2/Co(OH)2 multicomponent hybrids, and further calcination can result in the final well‐crystallized ultrathin Co3O4 nanosheet supported PdO/CeO2 catalysts. Catalytic tests on methane combustion reveal that CeO2 as a catalytic assistant greatly boosts the catalytic performance of PdO/Co3O4 via strong synergetic effects with Pd species and Co3O4 components. The best sample of PdO/CeO2‐0.1/Co3O4 exhibits surprisingly enhanced light‐off activity, indicating that such 2D Co3O4 nanosheet supported nanocatalysts might show promising prospect for heterogeneous catalysis.  相似文献   

2.
Ultrathin Li4Ti5O12 nanosheet based hierarchical microspheres are synthesized through a three‐step hydrothermal procedure. The average thickness of the Li4Ti5O12 sheets is only ≈(6.6 ± 0.25) nm and the specific surface area of the sample is 178 m2 g?1. When applied into lithium ion batteries as anode materials, the hierarchical Li4Ti5O12 microspheres exhibit high specific capacities at high rates (156 mA h g?1 at 20 C, 150 mA h g?1 at 50 C) and maintain a capacity of 126 mA h g?1 after 3000 cycles at 20 C. The results clearly suggest that the utility of hierarchical structures based on ultrathin nanosheets can promote the lithium insertion/extraction reactions in Li4Ti5O12. The obtained hierarchical Li4Ti5O12 with ultrathin nanosheets and large specific surface area can be perfect anode materials for the lithium ion batteries applied in high power facilities, such as electric vehicles and hybrid electric vehicles.  相似文献   

3.
Owing to its high theoretical specific capacity (1166 mA h g?1) and particularly its advantage to be paired with a lithium‐metal‐free anode, lithium sulfide (Li2S) is regarded as a much safer cathode for next‐generation advanced lithium–sulfur (Li–S) batteries. However, the low conductivity of Li2S and particularly the severe “polysulfide shuttle” of lithium polysulfide (LiPS) dramatically hinder their practical application in Li–S batteries. To address such issues, herein a bifuctional 3D metal sulfide‐decorated carbon sponge (3DTSC), which is constructed by 1D carbon nanowires cross‐linked with 2D graphene nanosheets with high conductivity and polar 0D metal sulfide nanodots with efficient electrocatalytic activity and strong chemical adsorption capability for LiPSs, is presented. Benefiting from the well‐designed multiscale, multidimensional 3D porous nanoarchitecture with high conductivity, and efficient electrocatalytic and absorption ability, the 3DTSC significantly mitigates LiPS shuttle, improves the utilization of Li2S, and facilitates the transport of electrons and ions. As a result, even with a high Li2S loading of 8 mg cm?2, the freestanding 3DTSC‐Li2S cathode without a polymer binder and metallic current collector delivers outstanding electrochemical performance with a high areal capacity of 8.44 mA h cm?2.  相似文献   

4.
A new form of TiO2 microspheres comprised of anatase/TiO2‐B ultrathin composite nanosheets has been synthesized successfully and used as Li‐ion storage electrode material. By comparison between samples obtained with different annealing temperatures, it is demonstrated that the anatase/TiO2‐B coherent interfaces may contribute additional lithium storage venues due to a favorable charge separation at the boundary between the two phases. The as‐prepared hierarchical nanostructures show capacities of 180 and 110 mAh g?1 after 1000 cycles at current densities of 3400 and 8500 mA g?1. The ultrathin nanosheet structure which provides short lithium diffusion length and high electrode/electrolyte contact area also accounts for the high capacity and long‐cycle stability.  相似文献   

5.
Highly conductive and ultrathin 2D nanosheets are of importance for the development of portable electronics and electric vehicles. However, scalable production and rational design for highly electronic and ionic conductive 2D nanosheets still remain a challenge. Herein, an industrially adoptable fluid dynamic exfoliation process is reported to produce large quantities of ionic liquid (IL)‐functionalized metallic phase MoS2 (m‐MoS2) and defect‐free graphene (Gr) sheets. Hybrid 2D–2D layered films are also fabricated by incorporating Gr sheets into compact m‐MoS2 films. The incorporated IL functionalities and Gr sheets prevent aggregation and restacking of the m‐MoS2 sheets, thereby creating efficient and rapid ion and electron pathways in the hybrid films. The hybrid film with a high packing density of 2.02 g cm?3 has an outstanding volumetric capacitance of 1430.5 F cm?3 at 1 A g?1 and an extremely high rate capability of 80% retention at 1000 A g?1. The flexible supercapacitor assembled using a polymer‐gel electrolyte exhibits excellent resilience to harsh electrochemical and mechanical conditions while maintaining an impressive rate performance and long cycle life. Successful achievement of an ultrahigh volumetric energy density (1.14 W h cm?3) using an organic electrolyte with a wide cell voltage of ≈3.5 V is demonstrated.  相似文献   

6.
Li‐rich electrode materials of the family x Li2MnO3·(1?x )LiNia Cob Mnc O2 (a + b + c = 1) suffer a voltage fade upon cycling that limits their utilization in commercial batteries despite their extremely high discharge capacity, ≈250 mA h g?1. Li‐rich, 0.35Li2MnO3·0.65LiNi0.35Mn0.45Co0.20O2, is exposed to NH3 at 400 °C, producing materials with improved characteristics: enhanced electrode capacity and a limited average voltage fade during 100 cycles in half cells versus Li. Three main changes caused by NH3 treatment are established. First, a general bulk reduction of Co and Mn is observed via X‐ray photoelectron spectroscopy and X‐ray absorption near edge structure. Next, a structural rearrangement lowers the coordination number of Co? O and Mn? O bonds, as well as formation of a surface spinel‐like structure. Additionally, Li+ removal from the bulk causes the formation of surface LiOH, Li2CO3, and Li2O. These structural and surface changes can enhance the voltage and capacity stability of the Li‐rich material electrodes after moderate NH3 treatment times of 1–2 h.  相似文献   

7.
As the lightest member of transition metal dichalcogenides, 2D titanium disulfide (2D TiS2) nanosheets are attractive for energy storage and conversion. However, reliable and controllable synthesis of single‐ to few‐layered TiS2 nanosheets is challenging due to the strong tendency of stacking and oxidation of ultrathin TiS2 nanosheets. This study reports for the first time the successful conversion of Ti3C2Tx MXene to sandwich‐like ultrathin TiS2 nanosheets confined by N, S co‐doped porous carbon (TiS2@NSC) via an in situ polydopamine‐assisted sulfuration process. When used as a sulfur host in lithium–sulfur batteries, TiS2@NSC shows both high trapping capability for lithium polysulfides (LiPSs), and remarkable electrocatalytic activity for LiPSs reduction and lithium sulfide oxidation. A freestanding sulfur cathode integrating TiS2@NSC with cotton‐derived carbon fibers delivers a high areal capacity of 5.9 mAh cm?2 after 100 cycles at 0.1 C with a low electrolyte/sulfur ratio and a high sulfur loading of 7.7 mg cm?2, placing TiS2@NSC one of the best LiPSs adsorbents and sulfur conversion catalysts reported to date. The developed nanospace‐confined strategy will shed light on the rational design and structural engineering of metal sulfides based nanoarchitectures for diverse applications.  相似文献   

8.
A facile one‐step hydrothermal co‐deposition method for growth of ultrathin Ni(OH)2‐MnO2 hybrid nanosheet arrays on three dimensional (3D) macroporous nickel foam is presented. Due to the highly hydrophilic and ultrathin nature of hybrid nanosheets, as well as the synergetic effects of Ni(OH)2 and MnO2, the as‐fabricated Ni(OH)2‐MnO2 hybrid electrode exhibits an ultrahigh specific capacitance of 2628 F g?1. Moreover, the asymmetric supercapacitor with the as‐obtained Ni(OH)2‐MnO2 hybrid film as the positive electrode and the reduced graphene oxide as the negative electrode has a high energy density (186 Wh kg?1 at 778 W kg?1), based on the total mass of active materials.  相似文献   

9.
Olivine‐type LiMnPO4 (LMP) cathodes have gained enormous attraction for Li‐ion batteries (LIBs), thanks to their large theoretical capacity, high discharge platform, and thermal stability. However, it is still hugely challenging to achieve encouraging Li‐storage behaviors owing to their low electronic conductivity and limited lithium diffusion. Herein, the core double‐shell Ti‐doped LMP@NaTi2(PO4)3@C/3D graphene (TLMP@NTP@C/3D‐G) architecture is designed and constructed via an in situ synthetic methodology. A continuous electronic conducting network is formed with the unfolded 3D‐G and conducting carbon nanoshell. The Nasicon‐type NTP nanoshell with exceptional ionic conductivity efficiently inhibits gradual enrichment in by‐products, and renders low surfacial/interfacial electron/ion‐diffusion resistance. Besides, a rapid Li+ diffusion in the bulk structure is guaranteed with the reduction of MnLi+˙ antisite defects originating from the synchronous Ti‐doping. Benefiting from synergetic contributions from these design rationales, the integrated TLMP@NTP@C/3D‐G cathode yields high initial discharge capacity of ≈164.8 mAh g?1 at 0.05 C, high‐rate reversible capacity of ≈116.2 mAh g?1 at 10 C, and long‐term capacity retention of ≈93.3% after 600 cycles at 2 C. More significantly, the electrode design developed here will exert significant impact upon constructing other advanced cathodes for high‐energy/power LIBs.  相似文献   

10.
3D CoNi2S4‐graphene‐2D‐MoSe2 (CoNi2S4‐G‐MoSe2) nanocomposite is designed and prepared using a facile ultrasonication and hydrothermal method for supercapacitor (SC) applications. Because of the novel nanocomposite structures and resultant maximized synergistic effect among ultrathin MoSe2 nanosheets, highly conductive graphene and CoNi2S4 nanoparticles, the electrode exhibits rapid electron and ion transport rate and large electroactive surface area, resulting in its amazing electrochemical properties. The CoNi2S4‐G‐MoSe2 electrode demonstrates a maximum specific capacitance of 1141 F g?1, with capacitance retention of ≈108% after 2000 cycles at a high charge–discharge current density of 20 A g?1. As to its symmetric device, 109 F g?1 at a scan rate of 5 mV s?1 is exhibited. This pioneering work should be helpful in enhancing the capacitive performance of SC materials by designing nanostructures with efficient synergetic effects.  相似文献   

11.
The nonaqueous lithium–oxygen (Li–O2) battery is considered as one of the most promising candidates for next‐generation energy storage systems because of its very high theoretical energy density. However, its development is severely hindered by large overpotential and limited capacity, far less than theory, caused by sluggish oxygen redox kinetics, pore clogging by solid Li2O2 deposition, inferior Li2O2/cathode contact interface, and difficult oxygen transport. Herein, an open‐structured Co9S8 matrix with sisal morphology is reported for the first time as an oxygen cathode for Li–O2 batteries, in which the catalyzing for oxygen redox, good Li2O2/cathode contact interface, favorable oxygen evolution, and a promising Li2O2 storage matrix are successfully achieved simultaneously, leading to a significant improvement in the electrochemical performance of Li–O2 batteries. The intrinsic oxygen‐affinity revealed by density functional theory calculations and superior bifunctional catalytic properties of Co9S8 electrode are found to play an important role in the remarkable enhancement in specific capacity and round‐trip efficiency for Li–O2 batteries. As expected, the Co9S8 electrode can deliver a high discharge capacity of ≈6875 mA h g?1 at 50 mA g?1 and exhibit a low overpotential of 0.57 V under a cutoff capacity of 1000 mA h g?1, outperforming most of the current metal‐oxide‐based cathodes.  相似文献   

12.
A NaSICON‐type Li+‐ion conductive membrane with a formula of Li1+ x Y x Zr2? x (PO4)3 (LYZP) (x = 0–0.15) has been explored as a solid‐electrolyte/separator to suppress polysulfide‐crossover in lithium‐sulfur (Li‐S) batteries. The LYZP membrane with a reasonable Li+‐ion conductivity shows both favorable chemical compatibility with the lithium polysulfide species and exhibits good electrochemical stability under the operating conditions of the Li‐S batteries. Through an integration of the LYZP solid electrolyte with the liquid electrolyte, the hybrid Li‐S batteries show greatly enhanced cyclability in contrast to the conventional Li‐S batteries with the porous polymer (e.g., Celgard) separator. At a rate of C/5, the hybrid Li ||LYZP|| Li2S6 batteries developed in this study (with a Li‐metal anode, a liquid/LYZP hybrid electrolyte, and a dissolved lithium polysulfide cathode) delivers an initial discharge capacity of ≈1000 mA h g?1 (based on the active sulfur material) and retains ≈90% of the initial capacity after 150 cycles with a low capacity fade‐rate of <0.07% per cycle.  相似文献   

13.
A practical, low‐cost synthesis of hollow mesoporous organic polymer (HMOP) spheres is reported. The electrochemical properties of Li+/Na+‐electrolyte membranes with these spheres substituting for oxide filler particles in poly(ethylene oxide) (PEO)‐filler composite are explored. The electrolyte membranes are mechanically robust, thermally stable to over 250 °C, and block dendrites from a metallic‐lithium/sodium anode. The Li+/Na+ transfer impedance across the lithium/sodium–electrolyte interface is initially acceptable at 65 °C and scavenging of impurities by the porous‐spheres filler lowers this impedance relative to that with Al2O3. All‐solid‐state Li/LiFePO4 and Na/NaTi2(PO4)3 cells give stable discharge capacity of ≈130 and 80 mAh g?1, respectively, at 0.5 C and 65 °C for 100 cycles.  相似文献   

14.
Current battery technologies are known to suffer from kinetic problems associated with the solid‐state diffusion of Li+ in intercalation electrodes materials. Not only the use of nanostructure materials but also the design of electrode architectures can lead to more advanced properties. Here, advanced electrode architectures consisting of carbon textiles conformally covered by Li4Ti5O12 nanocrystal are rationally designed and synthesized for lithium ion batteries. The efficient two‐step synthesis involves the growth of ultrathin TiO2 nanosheets on carbon textiles, and subsequent conversion into spinel Li4Ti5O12 through chemical lithiation. Importantly, this novel approach is simple and general, and it is used to successfully produce LiMn2O4/carbon composites textiles, one of the leading cathode materials for lithium ion batteries. The resulting 3D textile electrode, with various advantages including the direct electronic pathway to current collector, the easy access of electrolyte ions, the reduced Li+/e? diffusion length, delivers excellent rate capability and good cyclic stability over the Li‐ion batteries of conventional configurations.  相似文献   

15.
It has become clear that cycling lithium‐oxygen cells in carbonate electrolytes is impractical, as electrolyte decomposition, triggered by oxygen reduction products, dominates the cell chemistry. This research shows that employing an α‐MnO2/ramsdellite‐MnO2 electrode/electrocatalyst results in the formation of lithium‐oxide‐like discharge products in propylene carbonate, which has been reported to be extremely susceptible to decomposition. X‐ray photoelectron data have shown that what are likely lithium oxides (Li2O2 and Li2O) appear to form and decompose on the air electrode surface, particularly at the MnO2 surface, while Li2CO3 is also formed. By contrast, cells without α‐MnO2/ramsdellite‐MnO2 fail rapidly in electrochemical cycling, likely due to the differences in the discharge product. Relatively high electrode capacities, up to 5000 mAh/g (carbon + electrode/electrocatalyst), have been achieved with non‐optimized air electrodes. Insights into reversible insertion reactions of lithium, lithium peroxide (Li2O2) and lithium oxide (Li2O) in the tunnels of α‐MnO2, and the reaction of lithium with ramsdellite‐MnO2, as determined by first principles density functional theory calculations, are used to provide a possible explanation for some of the observed results. It is speculated that a Li2O‐stabilized and partially‐lithiated electrode component, 0.15Li2α‐LixMnO2, that has Mn4+/3+ character may facilitate the Li2O2/Li2O discharge/charge chemistries providing dual electrode/electrocatalyst functionality.  相似文献   

16.
Covalent organic framework (COF) can grow into self‐exfoliated nanosheets. Their graphene/graphite resembling microtexture and nanostructure suits electrochemical applications. Here, covalent organic nanosheets (CON) with nanopores lined with triazole and phloroglucinol units, neither of which binds lithium strongly, and its potential as an anode in Li‐ion battery are presented. Their fibrous texture enables facile amalgamation as a coin‐cell anode, which exhibits exceptionally high specific capacity of ≈720 mA h g?1 (@100 mA g?1). Its capacity is retained even after 1000 cycles. Increasing the current density from 100 mA g?1 to 1 A g?1 causes the specific capacity to drop only by 20%, which is the lowest among all high‐performing anodic COFs. The majority of the lithium insertion follows an ultrafast diffusion‐controlled intercalation (diffusion coefficient, DLi+ = 5.48 × 10?11 cm2 s?1). The absence of strong Li‐framework bonds in the density functional theory (DFT) optimized structure supports this reversible intercalation. The discrete monomer of the CON shows a specific capacity of only 140 mA h g?1 @50 mA g?1 and no sign of lithium intercalation reveals the crucial role played by the polymeric structure of the CON in this intercalation‐assisted conductivity. The potentials mapped using DFT suggest a substantial electronic driving‐force for the lithium intercalation. The findings underscore the potential of the designer CON as anode material for Li‐ion batteries.  相似文献   

17.
For mass production of all‐solid‐state lithium‐ion batteries (ASLBs) employing highly Li+ conductive and mechanically sinterable sulfide solid electrolytes (SEs), the wet‐slurry process is imperative. Unfortunately, the poor chemical stability of sulfide SEs severely restrict available candidates for solvents and in turn polymeric binders. Moreover, the binders interrupt Li+‐ionic contacts at interfaces, resulting in the below par electrochemical performance. In this work, a new scalable slurry fabrication protocol for sheet‐type ASLB electrodes made of Li+‐conductive polymeric binders is reported. The use of intermediate‐polarity solvent (e.g., dibromomethane) for the slurry allows for accommodating Li6PS5Cl and solvate‐ionic‐liquid‐based polymeric binders (NBR‐Li(G3)TFSI, NBR: nitrile?butadiene rubber, G3: triethylene glycol dimethyl ether, LiTFSI: lithium bis(trifluoromethanesulfonyl)imide) together without suffering from undesirable side reactions or phase separation. The LiNi0.6Co0.2Mn0.2O2 and Li4Ti5O12 electrodes employing NBR‐Li(G3)TFSI show high capacities of 174 and 160 mA h g?1 at 30 °C, respectively, which are far superior to those using conventional NBR (144 and 76 mA h g?1). Moreover, high areal capacity of 7.4 mA h cm?2 is highlighted for the LiNi0.7Co0.15Mn0.15O2 electrodes with ultrahigh mass loading of 45 mg cm?2. The facilitated Li+‐ionic contacts at interfaces paved by NBR‐Li(G3)TFSI are evidenced by the complementary analysis from electrochemical and 7Li nuclear magnetic resonance measurements.  相似文献   

18.
Herein, this study successfully fabricates porous g‐C3N4‐based nanocomposites by decorating sheet‐like nanostructured MnOx and subsequently coupling Au‐modified nanocrystalline TiO2. It is clearly demonstrated that the as‐prepared amount‐optimized nanocomposite exhibits exceptional visible‐light photocatalytic activities for CO2 conversion to CH4 and for H2 evolution, respectively by ≈28‐time (140 µmol g?1 h?1) and ≈31‐time (313 µmol g?1 h?1) enhancement compared to the widely accepted outstanding g‐C3N4 prepared with urea as the raw material, along with the calculated quantum efficiencies of ≈4.92% and 2.78% at 420 nm wavelength. It is confirmed mainly based on the steady‐state surface photovoltage spectra, transient‐state surface photovoltage responses, fluorescence spectra related to the produced ?OH amount, and electrochemical reduction curves that the exceptional photoactivities are comprehensively attributed to the large surface area (85.5 m2 g?1) due to the porous structure, to the greatly enhanced charge separation and to the introduced catalytic functions to the carrier‐related redox reactions by decorating MnOx and coupling Au‐TiO2, respectively, to modulate holes and electrons. Moreover, it is suggested mainly based on the photocatalytic experiments of CO2 reduction with isotope 13CO2 and D2O that the produced ?CO2 and ?H as active radicals would be dominant to initiate the conversion of CO2 to CH4.  相似文献   

19.
Li2MnO3 is the parent compound of the well‐studied Li‐rich Mn‐based cathode materials xLi2MnO3·(1‐x)LiMO2 for high‐energy‐density Li‐ion batteries. Li2MnO3 has a very high theoretical capacity of 458 mA h g?1 for extracting 2 Li. However, the delithiation and lithiation behaviors and the corresponding structure evolution mechanism in both Li2MnO3 and Li‐rich Mn‐based cathode materials are still not very clear. In this research, the atomic structures of Li2MnO3 before and after partial delithiation and re‐lithiation are observed with spherical aberration‐corrected scanning transmission electron microscopy (STEM). All atoms in Li2MnO3 can be visualized directly in annular bright‐field images. It is confirmed accordingly that the lithium can be extracted from the LiMn2 planes and some manganese atoms can migrate into the Li layer after electrochemical delithiation. In addition, the manganese atoms can move reversibly in the (001) plane when ca. 18.6% lithium is extracted and 12.4% lithium is re‐inserted. LiMnO2 domains are also observed in some areas in Li1.63MnO3 at the first cycle. As for the position and occupancy of oxygen, no significant difference is found between Li1.63MnO3 and Li2MnO3.  相似文献   

20.
Covalent organic frameworks (COFs) are crystalline organic polymers with tunable structures. Here, a COF is prepared using building units with highly flexible tetrahedral sp3 nitrogens. This flexibility gives rise to structural changes which generate mesopores capable of confining very small (<2 nm sized) non‐noble‐metal‐based nanoparticles (NPs). This nanocomposite shows exceptional activity toward the oxygen‐evolution reaction from alkaline water with an overpotential of 258 mV at a current density of 10 mA cm?2. The overpotential observed in the COF‐nanoparticle system is the best in class, and is close to the current record of ≈200 mV for any noble‐metal‐free electrocatalytic water splitting system—the Fe–Co–Ni metal‐oxide‐film system. Also, it possesses outstanding kinetics (Tafel slope of 38.9 mV dec?1) for the reaction. The COF is able to stabilize such small‐sized NP in the absence of any capping agent because of the COF–Ni(OH)2 interactions arising from the N‐rich backbone of the COF. Density‐functional‐theory modeling of the interaction between the hexagonal Ni(OH)2 nanosheets and the COF shows that in the most favorable configuration the Ni(OH)2 nanosheets are sandwiched between the sp3 nitrogens of the adjacent COF layers and this can be crucial to maximizing their synergistic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号